Simultaneous Detection of Four Foodborne Pathogens in Raw Freshwater Fish Using High-Resolution Melting Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacteria Strain Culture and DNA Extraction
2.2. Primer Design and Synthesis
2.3. Establishment of Singleplex PCR-HRM Method
2.4. Establishment of Quadruple PCR-HRM Assay
2.5. Detection Limit of Quadruple PCR-HRM Assay
2.6. Sensitivity, Specificity, and Anti-Interference Assay
2.7. Detection and Subtyping of Four Pathogenic Bacteria in Sliced Raw Freshwater Fish
2.8. Statistical Analysis
3. Results
3.1. Singleplex PCR-HRM Assay
3.2. Quadruplex PCR-HRM Analysis
3.3. Detection Limit of PCR-HRM Assay
3.4. Sensitivity, Specificity, and Anti-Interference Ability of PCR-HRM Assay
3.5. Detection of the Four Foodborne Pathogens in Sliced Raw Freshwater Fish
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Sun, C.; Wang, Z.; Che, B. Seafood Consumption patterns and affecting factors in urban China: A field survey from six cities. Aquac. Rep. 2021, 19, 100608. [Google Scholar] [CrossRef]
- Smith, H.A. Food, health, and nutrition in Chinese history. Hist. Compass 2022, 20, e12704. [Google Scholar] [CrossRef]
- Li, N.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Wu, C.; Rao, Z.; Du, L.; Zhao, R.; Yi, M.; et al. Fish consumption and multiple health outcomes: Umbrella review. Trends Food Sci. Technol. 2020, 99, 273–283. [Google Scholar] [CrossRef]
- Novoslavskij, A.; Terentjeva, M.; Eizenberga, I.; Valciņa, O.; Bartkevičs, V.; Bērziņš, A. Major foodborne pathogens in fish and fish products: A review. Ann. Microbiol. 2016, 66, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Pei, X.; Yan, J.; Liu, D.; Zhang, H.; Yu, B.; Li, N.; Yang, D. Prevalence of foodborne pathogens isolated from retail freshwater fish and shellfish in China. Food Control 2019, 99, 131–136. [Google Scholar] [CrossRef]
- Liu, Y.; Ceruso, M.; Gunther, N.; Pepe, T.; Cortesi, M.; Fratamico, P. Construction of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette (ABC) transporters and analysis of their growth under stress conditions. J. Microb. Biochem. Technol. 2012, 4, 141–146. [Google Scholar] [CrossRef]
- Quereda, J.J.; Morón-García, A.; Palacios-Gorba, C.; Dessaux, C.; García-del Portillo, F.; Pucciarelli, M.G.; Ortega, A.D. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021, 12, 2509–2545. [Google Scholar] [CrossRef]
- Radoshevich, L.; Cossart, P. Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 2018, 16, 32–46. [Google Scholar] [CrossRef]
- Galán-Relaño, Á.; Valero Díaz, A.; Huerta Lorenzo, B.; Gómez-Gascón, L.; Mena Rodríguez, M.Á.; Carrasco Jiménez, E.; Pérez Rodríguez, F.; Astorga Márquez, R.J. Salmonella and salmonellosis: An update on public health implications and control Strategies. Animals 2023, 13, 3666. [Google Scholar] [CrossRef]
- Li, L.; Meng, H.; Gu, D.; Li, Y.; Jia, M. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis. Microbiol. Res. 2019, 222, 43–51. [Google Scholar] [CrossRef]
- Wang, R.; Zhong, Y.; Gu, X.; Yuan, J.; Saeed, A.F.; Wang, S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front. Microbiol. 2015, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Pabón, W.; Tran, P.M. Chapter 25–Staphylococcal Food Poisoning. In Foodborne Infections and Intoxications, 5th ed.; Morris, J.G., Vugia, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 417–430. ISBN 978-0-12-819519-2. [Google Scholar]
- Song, X.; Li, W.; Wu, L.; Lv, T.; Zhang, Y.; Sun, J.; Shentu, X.; Yu, X.; Wu, Y. Detection of Vibrio parahaemolyticus based on magnetic and upconversion nanoparticles combined with aptamers. Foods 2023, 12, 4433. [Google Scholar] [CrossRef] [PubMed]
- Mazur, F.; Tjandra, A.D.; Zhou, Y.; Gao, Y.; Chandrawati, R. Paper-based sensors for bacteria detection. Nat. Rev. Bioeng. 2023, 1, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Kabiraz, M.P.; Majumdar, P.R.; Mahmud, M.M.C.; Bhowmik, S.; Ali, A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023, 9, e15482. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Huang, Y.; Liu, D.; Liu, C.; Shan, S.; Li, G.; Duan, M.; Lai, W. Multicolor and ultrasensitive enzyme-linked immunosorbent assay based on the fluorescence hybrid chain reaction for simultaneous detection of pathogens. J. Agric. Food Chem. 2019, 67, 9390–9398. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jin, X.; Cheng, J.; Zhou, H.; Zhang, Y.; Dai, Y. Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review). Mol. Med. Rep. 2023, 27, 104. [Google Scholar] [CrossRef]
- Garg, N.; Ahmad, F.J.; Kar, S. Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Curr. Res. Microb. Sci. 2022, 3, 100120. [Google Scholar] [CrossRef]
- Luo, Y.; Shan, S.; Wang, S.; Li, J.; Liu, D.; Lai, W. Accurate Detection of Salmonella Based on Microfluidic Chip to Avoid Aerosol Contamination. Foods 2022, 11, 3887. [Google Scholar] [CrossRef]
- Tombuloglu, H.; Sabit, H.; Al-Khallaf, H.; Kabanja, J.H.; Alsaeed, M.; Al-Saleh, N.; Al-Suhaimi, E. Multiplex real-time RT-PCR method for the diagnosis of SARS-CoV-2 by targeting viral N, RdRP and human RP genes. Sci. Rep. 2022, 12, 2853. [Google Scholar] [CrossRef]
- Shan, S.; Huang, Y.; Huang, Z.; Long, Z.; Liu, C.; Zhao, X.; Xing, K.; Xiao, X.; Liu, J.; Huang, Y.; et al. Detection of stx1 and stx2 and subtyping of Shiga toxin-producing Escherichia coli using asymmetric PCR combined with lateral flow immunoassay. Food Control 2021, 126, 108051. [Google Scholar] [CrossRef]
- Starolis, M.W. The contamination monitoring toolbox: Best practices for molecular microbiology testing. Clin. Microbiol. Newsl. 2024, 47, 21–27. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kim, U.; Kim, Y.; Lee, S.J.; Park, E.Y.; Oh, S.-W. Enhanced detection of Listeria monocytogenes using tetraethylenepentamine-functionalized magnetic nanoparticles and LAMP-CRISPR/Cas12a-based biosensor. Anal. Chim. Acta 2023, 1281, 341905. [Google Scholar] [CrossRef]
- Shi, D.; Shi, H. Combining loop-mediated isothermal amplification and nanozyme-strip for ultrasensitive and rapid detection of viable Listeria monocytogenes cells and biofilms. LWT 2022, 154, 112641. [Google Scholar] [CrossRef]
- Buehler, A.J.; Wiedmann, M.; Kassaify, Z.; Cheng, R.A. Evaluation of invA diversity among Salmonella species suggests why some commercially available rapid detection kits may fail to detect multiple Salmonella subspecies and species. J. Food Prot. 2019, 82, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Park, S.B.; Zhang, Y. Innovative multiplex PCR assay for detection of tlh, trh, and tdh denes in Vibrio parahaemolyticus with reference to the U.S. FDA’s bacteriological analytical manual (BAM). Pathogens 2024, 13, 774. [Google Scholar] [CrossRef] [PubMed]
- Karimzadeh, R.; Ghassab, R.K. Identification of nuc nuclease and sea enterotoxin genes in Staphylococcus aureus isolates from nasal mucosa of burn hospital staff: A cross-sectional study. New Microbes New Infect. 2022, 47, 100992. [Google Scholar] [CrossRef]
- Churchill, R.L.T.; Lee, H.; Hall, J.C. Detection of Listeria monocytogenes and the toxin listeriolysin O in Food. J. Microbiol. Methods 2006, 64, 141–170. [Google Scholar] [CrossRef]
- Ibraheim, H.; Fayez, R.; Jasim, A.; Gharban, H. Role of nuc gene in Staphylococcus aureus to phagocytic activity in different cattle infections. Open Veter- J. 2023, 13, 1021. [Google Scholar] [CrossRef]
- Wittwer, C.T.; Hemmert, A.C.; Kent, J.O.; Rejali, N.A. DNA melting analysis. Mol. Asp. Med. 2024, 97, 101268. [Google Scholar] [CrossRef]
- Narimisa, N.; Amraei, F.; Sholeh, M.; Mirkalantari, S.; Razavi, S.; Kalani, B.S.; Lotfollahi, L.; Jazi, F.M. Genotyping of Listeria monocytogenes isolates by high-resolution melting curve (HRM) analysis of tandem repeat locus. Braz. J. Infect. Dis. 2022, 26, 102348. [Google Scholar] [CrossRef]
- Guion, C.E.; Ochoa, T.J.; Walker, C.M.; Barletta, F.; Cleary, T.G. Detection of Diarrheagenic Escherichia coli by use of melting-curve analysis and real-time multiplex PCR. J. Clin. Microbiol. 2008, 46, 1752–1757. [Google Scholar] [CrossRef]
- Dehbashi, S.; Tahmasebi, H.; Sedighi, P.; Davarian, F.; Arabestani, M.R. Development of high-resolution melting curve analysis in rapid detection of vanA gene, Enterococcus faecalis, and Enterococcus faecium from clinical isolates. Trop. Med. Health 2020, 48, 8. [Google Scholar] [CrossRef]
- Yan, D.; Ma, Y.; Wang, H.; Jia, W.; Niu, X.; Wang, H.; Zou, W.; Wang, L. High ionic conductivity conjugated artificial solid electrolyte interphase enabling stable lithium metal batteries. Green Chem. 2025, 27, 7564–7574. [Google Scholar] [CrossRef]
- Forghani, F.; Singh, P.; Seo, K.-H.; Oh, D.-H. A novel pentaplex real time (RT)- PCR high resolution melt curve assay for simultaneous detection of emetic and enterotoxin producing Bacillus cereus in food. Food Control 2016, 60, 560–568. [Google Scholar] [CrossRef]
- Harrison, L.B.; Hanson, N.D. High-Resolution Melting Analysis for Rapid Detection of Sequence Type 131 Escherichia coli. Antimicrob. Agents Chemother. 2017, 61, e00265-17. [Google Scholar] [CrossRef] [PubMed]
- Velez, F.J.; Bosilevac, J.M.; Delannoy, S.; Fach, P.; Nagpal, R.; Singh, P. Development and validation of high-resolution melting assays for the detection of potentially virulent strains of Escherichia coli O103 and O121. Food Control 2022, 139, 109095. [Google Scholar] [CrossRef]
- Singh, P.; Cubillos, G.; Kirshteyn, G.; Bosilevac, J.M. High-resolution melting real-time PCR assays for detection of Escherichia coli O26 and O111 strains possessing shiga toxin genes. LWT 2020, 131, 109785. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, S.; Tong, X.; Du, W.; Chen, Y.; Cheng, L.; Yan, F.; Zhai, Y.; Zhao, K.; Ni, H.; Sha, X.; et al. Simultaneous Detection of Four Foodborne Pathogens in Raw Freshwater Fish Using High-Resolution Melting Analysis. Foods 2025, 14, 3202. https://doi.org/10.3390/foods14183202
Shan S, Tong X, Du W, Chen Y, Cheng L, Yan F, Zhai Y, Zhao K, Ni H, Sha X, et al. Simultaneous Detection of Four Foodborne Pathogens in Raw Freshwater Fish Using High-Resolution Melting Analysis. Foods. 2025; 14(18):3202. https://doi.org/10.3390/foods14183202
Chicago/Turabian StyleShan, Shan, Xiaoyu Tong, Wenyu Du, Yin Chen, Long Cheng, Fang Yan, Yujie Zhai, Kui Zhao, Haiyan Ni, Xiaomei Sha, and et al. 2025. "Simultaneous Detection of Four Foodborne Pathogens in Raw Freshwater Fish Using High-Resolution Melting Analysis" Foods 14, no. 18: 3202. https://doi.org/10.3390/foods14183202
APA StyleShan, S., Tong, X., Du, W., Chen, Y., Cheng, L., Yan, F., Zhai, Y., Zhao, K., Ni, H., Sha, X., Liu, X., Liu, C., Wang, S., & Liu, D. (2025). Simultaneous Detection of Four Foodborne Pathogens in Raw Freshwater Fish Using High-Resolution Melting Analysis. Foods, 14(18), 3202. https://doi.org/10.3390/foods14183202