Comparative Assessment of Gold and Carbon Nanoparticles as Tags for Lateral Flow Immunoassay of Fenpropathrin in Green Tea
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Synthesis of AuNPs and CNPs
2.3. Preparation of Immunoprobes
2.4. Optimization of AuNP-Based LFIA and CNP-Based LFIA
2.5. Pretreatment of Green Tea
2.6. Analytical Performance of LFIA
2.7. Statistical Analysis
3. Results and Discussion
3.1. Principle of AuNP-Based LFIA and CNP-Based LFIA Detection
3.2. Characterization of AuNPs, CNPs, and Immunoprobes
3.3. Development of AuNP-Based LFIA and CNP-Based LFIA
3.3.1. Optimization of the Key Parameters for LFIA
3.3.2. Development of AuNP-Based and CNP-Based LFIA in Buffer Solution
3.3.3. Sample Pretreatment Confirmation of Green Tea
3.4. Detection Performance of AuNP-Based and CNP-Based LFIA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaczyński, P.; Iwaniuk, P.; Jankowska, M.; Orywal, K.; Socha, K.; Perkowski, M.; Farhan, J.A.; Łozowicka, B. Pesticide residues in common and herbal teas combined with risk assessment and transfer to the infusion. Chemosphere 2024, 367, 143550. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yang, Q.; Yang, Y.; Ye, T.; Cao, H.; Hao, L.; Wu, X.; Xu, F. A simplified in-situ extraction method for pyrethroid pesticides from complex food matrix through pore—Switching response based on rationally designed Zr-MOFs with anti-interference performance. Chem. Eng. J. 2025, 514, 163337. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, X.; Han, L.; Liu, H.; Sun, B. A smartphone-integrated optosensing platform based on red-emission carbon dots for real-time detection of pyrethroids. Biosens. Bioelectron. 2021, 191, 113460. [Google Scholar] [CrossRef]
- Wang, W.; Mou, S.; Xiu, W.; Li, Y.; Liu, Z.; Feng, Y.; Ma, J.; Li, X. Fenpropathrin disrupted the gills of common carp (Cyprinus carpio L.) through oxidative stress, inflammatory responses, apoptosis, and transcriptional alterations. Ecotox. Environ. Saf. 2024, 271, 116007. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture and Rural Affairs, China. Maximum Residue Limits for Pesticides in Food, in National Food Safety Standard. 2019. Available online: http://www.chinapesticide.org.cn/oldfile/181729272s82.pdf (accessed on 5 March 2021).
- Ministry of Health, Labour and Welfare (MHLW). Maximum Residue Limits (MRLs) for Pesticides in Foods. Positive List System. 2006. Available online: https://db.ffcr.or.jp/front/pesticide_detail?id=59400 (accessed on 29 May 2006).
- Commission Regulation (EU) No 839/2008 of 31 July 2008 amending Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards Annexes II, III and IV on maximum residue levels of pesticides in or on certain products. Off. J. Eur. Union 2008, L 234, 1–72.
- Farajzadeh, M.A.; Barazandeh, S.; Pezhhanfar, S.; Mogaddam, M.R.A. Graphene-modified magnetic nanoparticles for analyzing some pesticides through magnetic dispersive solid phase extraction and dispersive liquid–liquid microextraction followed by GC–MS determination. Food Anal. Method. 2023, 16, 177–189. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, S.; Lai, X.; Peng, J.; Lai, W. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci. Technol. 2021, 111, 68–88. [Google Scholar] [CrossRef]
- Peng, P.; Liu, C.; Li, Z.; Xue, Z.; Mao, P.; He, J.; Xu, F.; Yao, C.; You, M. Emerging ELISA derived technologies for in vitro diagnostics. TrAC-Trends Anal. Chem. 2022, 152, 116605. [Google Scholar] [CrossRef]
- Yang, M.; Xu, X.; Zhang, M.; Wang, J.; Wu, Y.; Wang, N.; Li, Z. Recent advances in lateral flow immunoassay based on sandwich format for whole-cell pathogen detection. Coord. Chem. Rev. 2025, 533, 216538. [Google Scholar] [CrossRef]
- Sharma, R.; Verma, A.; Shinde, N.; Mann, B.; Gandhi, K.; Wichers, J.H.; Van Amerongen, A. Adulteration of cow’s milk with buffalo’s milk detected by an on-site carbon nanoparticles-based lateral flow immunoassay. Food Chem. 2021, 351, 129311. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, Y.; Chen, X.; Ye, Y.; Yu, S.; Li, N.; Yao, H.; Wang, Z.; Feng, Q.; Wu, R.; et al. Ultrasensitive point-of-care multiplex diagnosis for influenza virus based robust quantum dot microsphere-lateral flow immunoassay. Biosens. Bioelectron. 2025, 273, 117187. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, Q.; Zhu, A.; Qiu, F.; Niu, L.; Jing, J. Au-nanoshells modified surface field enhanced LRSPR biosensor with low LOD for highly sensitive hIgG sensing. Opt. Laser Technol. 2021, 134, 106656. [Google Scholar] [CrossRef]
- Li, G.; Li, Q.; Wang, X.; Liu, X.; Zhang, Y.; Li, R.; Guo, J.; Zhang, G. Lateral flow immunoassays for antigens, antibodies and haptens detection. Int. J. Biol. Macromol. 2023, 242, 125186. [Google Scholar] [CrossRef]
- Fang, B.; Zhang, G.; Li, Y.; Wu, J.; Chang, C.; Gong, Z.; Liu, X.; Xiong, Y.; Lai, W. Emerging engineerable multifunctional metal nanocomposites for promoting comprehensive sensing performance of lateral flow immunoassay. Coord. Chem. Rev. 2025, 542, 216900. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, F.; Sun, Y.; Mi, T.; Wang, L.; Li, Q.; Li, J.; Ma, W.; Liu, W.; Zuo, J.; et al. Development of a highly sensitive lateral flow immunoassay based on receptor-antibody-amorphous carbon nanoparticles to detect 22 β-lactams in milk. Sens. Actuators B-Chem. 2020, 321, 128458. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Kuang, H.; Song, S.; Xu, C. A strip-based immunoassay for rapid determination of fenpropathrin. Anal. Methods 2013, 5, 6234. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, T.; Fang, Y.; Zhao, Y.; Yang, M.; Zhao, L.; Li, Y.; Huang, J.; Zhu, G.; Guo, Y. On-site rapid detection of multiple pesticide residues in tea leaves by lateral flow immunoassay. J. Pharm. Anal. 2023, 14, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Hao, D.; Chu, Q.; Wang, T.; Liu, S.; Lan, T.; Wang, F.; Pan, C. A one adsorbent QuEChERS method coupled with LC-MS/MS for simultaneous determination of 10 organophosphorus pesticide residues in tea. Food Chem. 2020, 321, 126657. [Google Scholar] [CrossRef]
- Chen, W.; Cai, F.; Wu, Q.; Wu, Y.H.; Yao, B.; Xu, J. Prediction, evaluation, confirmation, and elimination of matrix effects for lateral flow test strip based rapid and on-site detection of aflatoxin B1 in tea soups. Food Chem. 2020, 328, 127081. [Google Scholar] [CrossRef]
- Hu, X.; Cao, Y.; Tian, Y.; Qi, Y.; Fang, G.; Wang, S. A molecularly imprinted fluorescence nanosensor based on upconversion metal–organic frameworks for alpha-cypermethrin specific recognition. Mikrochim. Acta 2020, 187, 632. [Google Scholar] [CrossRef]
- Chen, C.; Xu, W.; Zhu, Y.; Liu, X.; Peng, C.; Cai, H.; Fang, Q.; Hou, R.; Li, H. Lateral flow immunoassay for the rapid detection of thiamethoxam in tea based on a sers tag constructed by phenolic-mediated coating engineering. J. Agric. Food. Chem. 2024, 72, 24786–24796. [Google Scholar] [CrossRef]
- Xie, S.; Yue, Y.; Xu, G. In situ formed carbon nanoparticles enables colorimetric and fluorometric dual—Mode immunoassay detection of amantadine in poultry foodstuffs. Microchem. J. 2023, 192, 108895. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Kong, L.; Huang, B.; Xu, Y.; Hou, R. AuNPs-based lateral flow immunoassay for point-of-needs analysis of four neonicotinoids in tea samples: Effects of grinding degrees, solvent types and contents on extraction efficiency. Food Chem. 2022, 397, 133790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Q.; Li, S.; Zhao, Y.; Chen, D.; Wu, Y. Simultaneous determination of neonicotinoids and fipronils in tea using a modified QuEChERS method and liquid chromatography-high resolution mass spectrometry. Food Chem. 2020, 329, 127159. [Google Scholar] [CrossRef]
- Wang, J.; Shi, L.; Jing, Y.; Wang, X.; Liu, X.; Li, S.; Yang, Q.; Wang, J.; Wang, Y. “Molecular Velcro”: Design of coupled AuNPs with streptavidin-biotin immobilized nanobody in lateral flow immunoassay for sensitive Salmonella typhimurium detection. Sens. Actuators B-Chem. 2025, 435, 137604. [Google Scholar] [CrossRef]
- Posthuma-Trumpie, G.A.; Wichers, J.H.; Koets, M.; Berendsen, L.B.J.M.; van Amerongen, A. Amorphous carbon nanoparti-cles: A versatile label for rapid diagnostic (immuno)assays. Anal. Bioanal. Chem. 2011, 402, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yao, X.; Wang, R.; Ji, Y.; Yue, T.; Sun, J.; Li, T.; Wang, J.; Zhang, D. Label-free strip sensor based on surface positively charged nitrogen-rich carbon nanoparticles for rapid detection of Salmonella enteritidis. Biosens. Bioelectron. 2019, 132, 360–367. [Google Scholar] [CrossRef]
- Shu, X.; Guo, P.; Zhang, G.; Zhang, W.; Hu, H.; Peng, J.; Xiong, Y.; Ma, B.; Lai, W. Novel litchi-like Au–Ag nanospheres driven dual-readout lateral flow immunoassay for sensitive detection of pyrimethanil. Food Chem. 2024, 450, 139380. [Google Scholar] [CrossRef]
- Yao, X.; Wang, Z.; Zhao, M.; Liu, S.; Su, L.; Dou, L.; Li, T.; Wang, J.; Zhang, D. Graphite-like carbon nitride-laden gold nanoparticles as signal amplification label for highly sensitive lateral flow immunoassay of 17β-estradiol. Food Chem. 2021, 347, 129001. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Wu, T.; Yu, Q.; Li, J.; Zheng, S.; Qi, K.; Sun, G.; Xiao, R.; Wang, C. Introduction of multilayered magnetic core–dual shell SERS tags into lateral flow immunoassay: A highly stable and sensitive method for the simultaneous detection of multiple veterinary drugs in complex samples. J. Hazard. Mater. 2023, 448, 130912. [Google Scholar] [CrossRef]
- Czarniecka-Skubina, E.; Korzeniowska-Ginter, R.; Pielak, M.; Sałek, P.; Owczarek, T.; Kozak, A. Consumer choices and habits related to tea consumption by poles. Foods 2022, 11, 2873. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Shafer-Peltier, K.; Randtke, S.J.; Peltier, E. Competitive association of cations with poly (sodium 4-styrenesulfonate) (PSS) and heavy metal removal from water by PSS-assisted ultrafiltration. Chem. Eng. J. 2018, 344, 155–164. [Google Scholar] [CrossRef]
- Kappacher, C.; Neurauter, M.; Rainer, M.; Bonn, G.K.; Huck, C.W. Innovative combination of dispersive solid phase extraction followed by nir-detection and multivariate data analysis for prediction of total polyphenolic content. Molecules 2021, 26, 4807. [Google Scholar] [CrossRef]
- Guo, W.; Guo, R.; Pei, H.; Wang, B.; Liu, N.; Mo, Z. PAN/PEI Nanofiber membrane for effective removal of heavy metal ions and oil-water separation. J. Polym. Environ. 2022, 30, 4835–4847. [Google Scholar] [CrossRef]
- Shu, R.; Liu, S.; Wang, M.; Zhang, M.; Wang, B.; Wang, K.; Darwish, I.; Wang, J.; Zhang, D. Dual-plasmonic CuS@Au heterojunctions synergistic enhanced photothermal and colorimetric dual signal for sensitive multiplexed LFIA. Biosens. Bioelectron. 2024, 255, 116235. [Google Scholar] [CrossRef]
- Meng, X.; Song, W.; Xiao, Y.; Zheng, P.; Cui, C.; Gao, W.; Hou, R. Rapid determination of 134 pesticides in tea through multi-functional filter cleanup followed by UPLC-QTOF-MS. Food Chem. 2022, 370, 130846. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, P.; Tian, Y.; Feng, J.; Xiao, J.; Li, J.; Liu, J.; Li, G.; He, Q. Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite. J. Nanobiotechnol. 2020, 18, 112. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Zhang, Y.; Huang, J.; Yang, J.; Tian, Y.; Shen, Y. Rapid detection of multiple sildenafil and tadalafil adulterants in dietary supplements by dual-labeled probe time-resolved fluorescence immunochromatography assay. Food Biosci. 2024, 59, 103905. [Google Scholar] [CrossRef]
- Liu, S.; Shu, R.; Zhao, C.; Sun, C.; Zhang, M.; Wang, S.; Li, B.; Dou, L.; Ji, Y.; Wang, Y.; et al. Precise spectral overlap-based donor-acceptor pair for a sensitive traffic light-typed bimodal multiplexed lateral flow immunoassay. Anal. Chem. 2024, 96, 5046–5055. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, J.; Ye, Q.; Jiang, L.; Deng, H.; Liang, J.; Chen, R.; Huang, W.; Lei, H.; Xu, Z.; et al. Highly selective monoclonal antibody-based fluorescence immunochromatographic assay for the detection of fenpropathrin in vegetable and fruit samples. Anal. Chim. Acta 2023, 1246, 340898. [Google Scholar] [CrossRef]
- Wang, X.; Huang, H.; Zhong, S.; Shentu, X.; Ye, Z.; Yu, X. Carboxymethyl chitosan–modified UiO-66 for the rapid detection of fenpropathrin in grains. Int. J. Biol. Macromol. 2024, 265, 131032. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Jin, J.; Hu, L.; Hu, B.; Wang, M.; Guo, L.; Lv, X. Core-Shell-Shell upconversion nanomaterials applying for simultaneous immunofluorescent detection of fenpropathrin and procymidone. Foods 2023, 12, 3445. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Xia, J.; Wang, J.; Wei, H.; Liang, Q.; Feng, Z.; Cai, H.; Fang, Q.; Hou, R.; Li, H. Comparative Assessment of Gold and Carbon Nanoparticles as Tags for Lateral Flow Immunoassay of Fenpropathrin in Green Tea. Foods 2025, 14, 2806. https://doi.org/10.3390/foods14162806
Chen C, Xia J, Wang J, Wei H, Liang Q, Feng Z, Cai H, Fang Q, Hou R, Li H. Comparative Assessment of Gold and Carbon Nanoparticles as Tags for Lateral Flow Immunoassay of Fenpropathrin in Green Tea. Foods. 2025; 14(16):2806. https://doi.org/10.3390/foods14162806
Chicago/Turabian StyleChen, Chen, Jinglei Xia, Jing Wang, Hongxing Wei, Qianxin Liang, Ziye Feng, Huimei Cai, Qingkui Fang, Ruyan Hou, and Hongfang Li. 2025. "Comparative Assessment of Gold and Carbon Nanoparticles as Tags for Lateral Flow Immunoassay of Fenpropathrin in Green Tea" Foods 14, no. 16: 2806. https://doi.org/10.3390/foods14162806
APA StyleChen, C., Xia, J., Wang, J., Wei, H., Liang, Q., Feng, Z., Cai, H., Fang, Q., Hou, R., & Li, H. (2025). Comparative Assessment of Gold and Carbon Nanoparticles as Tags for Lateral Flow Immunoassay of Fenpropathrin in Green Tea. Foods, 14(16), 2806. https://doi.org/10.3390/foods14162806