Quantitative Prediction and Kinetic Modelling for the Thermal Inactivation of Brochothrix thermosphacta in Beef Using Hyperspectral Imaging
Abstract
1. Introduction
2. Materials and Methods
2.1. Inoculum Preparation
2.2. Sample Preparation and Inoculation
2.3. Thermal Inactivation
2.4. Enumeration of Surviving B. thermosphacta
2.5. Modeling B. thermosphacta Inactivation in Beef
2.5.1. Mathematical Models of B. thermosphacta Inactivation
2.5.2. One-Step Nonlinear Regression
2.6. Hyperspectral Imaging (HSI) Data Acquisition and Preprocessing
2.7. Modeling of Spectral Information from HSI
2.7.1. Quantitative Modeling of Surviving B. thermosphacta
2.7.2. Survival Kinetic Modeling of B. thermosphacta by HSI
2.8. Evaluation of Survival Models
2.9. External Validation of Survival Kinetic Models
3. Results and Discussion
3.1. Analysis of Spectral Features
3.2. Quantitative Prediction of Surviving B. thermosphacta by HSI
3.3. Survival Kinetic Modeling of B. thermosphacta by the Plate Count Method
3.4. Different Survival Kinetic Modeling Methods of B. thermosphacta
3.4.1. Survival Kinetic Modeling of B. thermosphacta by Method I
3.4.2. Survival Kinetic Modeling of B. thermosphacta by Method II
3.4.3. Survival Kinetic Modeling of B. thermosphacta by Method III
3.4.4. Secondary Model of B. thermosphacta
3.4.5. Validation of Survival Kinetic Models at Different Temperatures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abebe, E.; Gugsa, G.; Ahmed, M. Review on Major Food-Borne Zoonotic Bacterial Pathogens. J. Trop. Med. 2020, 2020, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Majer-Baranyi, K.; Székács, A.; Adányi, N. Application of Electrochemical Biosensors for Determination of Food Spoilage. Biosensors 2023, 13, 456. [Google Scholar] [CrossRef] [PubMed]
- Russo, F.; Ercolini, D.; Mauriello, G.; Villani, F. Behaviour of Brochothrix Thermosphacta in Presence of Other Meat Spoilage Microbial Groups. Food Microbiol. 2006, 23, 797–802. [Google Scholar] [CrossRef]
- Fang, J.; Feng, L.; Lu, H.; Zhu, J. Metabolomics Reveals Spoilage Characteristics and Interaction of Pseudomonas Lundensis and Brochothrix Thermosphacta in Refrigerated Beef. Food Res. Int. 2022, 156, 111139. [Google Scholar] [CrossRef]
- Illikoud, N.; Gohier, R.; Werner, D.; Barrachina, C.; Roche, D.; Jaffrès, E.; Zagorec, M. Transcriptome and Volatilome Analysis During Growth of Brochothrix Thermosphacta in Food: Role of Food Substrate and Strain Specificity for the Expression of Spoilage Functions. Front. Microbiol. 2019, 10, 2527. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, N.; Li, Y.; Zhang, D.; Sun, T.; Li, J. Dynamics and Diversity of Microbial Community in Salmon Slices during Refrigerated Storage and Identification of Biogenic Amine-Producing Bacteria. Food Biosci. 2023, 52, 102441. [Google Scholar] [CrossRef]
- Höll, L.; Hilgarth, M.; Geissler, A.J.; Behr, J.; Vogel, R.F. Metatranscriptomic Analysis of Modified Atmosphere Packaged Poultry Meat Enables Prediction of Brochothrix Thermosphacta and Carnobacterium Divergens in Situ Metabolism. Arch. Microbiol. 2020, 202, 1945–1955. [Google Scholar] [CrossRef]
- Vinnikova, L.; Synytsia, O.; Kyshenia, A. THE PROBLEMS OF MEAT PRODUCTS THERMAL TREATMENT. Food Sci. Technol. 2019, 13, 44–57. [Google Scholar] [CrossRef]
- Hassoun, A.; Cropotova, J.; Rustad, T.; Heia, K.; Lindberg, S.-K.; Nilsen, H. Use of Spectroscopic Techniques for a Rapid and Non-Destructive Monitoring of Thermal Treatments and Storage Time of Sous-Vide Cooked Cod Fillets. Sensors 2020, 20, 2410. [Google Scholar] [CrossRef]
- Hassoun, A.; Ojha, S.; Tiwari, B.; Rustad, T.; Nilsen, H.; Heia, K.; Cozzolino, D.; Bekhit, A.E.-D.; Biancolillo, A.; Wold, J.P. Monitoring Thermal and Non-Thermal Treatments during Processing of Muscle Foods: A Comprehensive Review of Recent Technological Advances. Appl. Sci. 2020, 10, 6802. [Google Scholar] [CrossRef]
- Kong, F.; Tang, J.; Rasco, B.; Crapo, C. Kinetics of Salmon Quality Changes during Thermal Processing. J. Food Eng. 2007, 83, 510–520. [Google Scholar] [CrossRef]
- Rattanathanalerk, M.; Chiewchan, N.; Srichumpoung, W. Effect of Thermal Processing on the Quality Loss of Pineapple Juice. J. Food Eng. 2005, 66, 259–265. [Google Scholar] [CrossRef]
- McDermott, A.; Whyte, P.; Brunton, N.; Bolton, D.J. Thermal Inactivation of Listeria Monocytogenes in Crab Meat. J. Food Prot. 2018, 81, 2003–2006. [Google Scholar] [CrossRef]
- Brar, J.S.; Waddell, J.N.; Bailey, M.; Corkran, S.; Velasquez, C.; Juneja, V.K.; Singh, M. Thermal Inactivation of Shiga Toxin–Producing Escherichia Coli in Ground Beef with Varying Fat Content. J. Food Prot. 2018, 81, 986–992. [Google Scholar] [CrossRef]
- Awang, M.S.; Bustami, Y.; Hamzah, H.H.; Zambry, N.S.; Najib, M.A.; Khalid, M.F.; Aziah, I.; Abd Manaf, A. Advancement in Salmonella Detection Methods: From Conventional to Electrochemical-Based Sensing Detection. Biosensors 2021, 11, 346. [Google Scholar] [CrossRef]
- Wang, K.; Pu, H.; Sun, D. Emerging Spectroscopic and Spectral Imaging Techniques for the Rapid Detection of Microorganisms: An Overview. Comp. Rev. Food Sci. Food Saf. 2018, 17, 256–273. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pu, H.; Sun, D.-W. Hyperspectral Imaging Technique for Evaluating Food Quality and Safety during Various Processes: A Review of Recent Applications. Trends Food Sci. Technol. 2017, 69, 25–35. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, D.-W.; Cheng, J.-H.; Han, Z. Hyperspectral Imaging Sensing of Changes in Moisture Content and Color of Beef During Microwave Heating Process. Food Anal. Methods 2018, 11, 2472–2484. [Google Scholar] [CrossRef]
- Bonah, E.; Huang, X.; Hongying, Y.; Harrington Aheto, J.; Yi, R.; Yu, S.; Tu, H. Nondestructive Monitoring, Kinetics and Antimicrobial Properties of Ultrasound Technology Applied for Surface Decontamination of Bacterial Foodborne Pathogen in Pork. Ultrason. Sonochemistry 2021, 70, 105344. [Google Scholar] [CrossRef]
- Hassoun, A.; Aït-Kaddour, A.; Sahar, A.; Cozzolino, D. Monitoring Thermal Treatments Applied to Meat Using Traditional Methods and Spectroscopic Techniques: A Review of Advances over the Last Decade. Food Bioprocess Technol. 2021, 14, 195–208. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, J.-H.; Sun, D.-W.; Liu, D. Mapping Changes in Sarcoplasmatic and Myofibrillar Proteins in Boiled Pork Using Hyperspectral Imaging with Spectral Processing Methods. LWT 2019, 110, 338–345. [Google Scholar] [CrossRef]
- Mafart, P.; Couvert, O.; Gaillard, S.; Leguerinel, I. On Calculating Sterility in Thermal Preservation Methods: Application of the Weibull Frequency Distribution Model. Int. J. Food Microbiol. 2002, 72, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Linton, R.H.; Carter, W.H.; Pierson, M.D.; Hackney, C.R. Use of a Modified Gompertz Equation to Model Nonlinear Survival Curves for Listeria Monocytogenes Scott A. J. Food Prot. 1995, 58, 946–954. [Google Scholar] [CrossRef]
- Liu, C.; Chu, Z.; Weng, S.; Zhu, G.; Han, K.; Zhang, Z.; Huang, L.; Zhu, Z.; Zheng, S. Fusion of Electronic Nose and Hyperspectral Imaging for Mutton Freshness Detection Using Input-Modified Convolution Neural Network. Food Chem. 2022, 385, 132651. [Google Scholar] [CrossRef]
- He, J.; Zhu, S.; Chu, B.; Bai, X.; Xiao, Q.; Zhang, C.; Gong, J. Nondestructive Determination and Visualization of Quality Attributes in Fresh and Dry Chrysanthemum Morifolium Using Near-Infrared Hyperspectral Imaging. Appl. Sci. 2019, 9, 1959. [Google Scholar] [CrossRef]
- Baek, I.; Lee, H.; Cho, B.; Mo, C.; Chan, D.E.; Kim, M.S. Shortwave Infrared Hyperspectral Imaging System Coupled with Multivariable Method for TVB-N Measurement in Pork. Food Control 2021, 124, 107854. [Google Scholar] [CrossRef]
- Shicheng, Q.; Youwen, T.; Qinghu, W.; Shiyuan, S.; Ping, S. Nondestructive Detection of Decayed Blueberry Based on Information Fusion of Hyperspectral Imaging (HSI) and Low-Field Nuclear Magnetic Resonance (LF-NMR). Comput. Electron. Agric. 2021, 184, 106100. [Google Scholar] [CrossRef]
- Xie, A.; Sun, J.; Wang, T.; Liu, Y. Visualized Detection of Quality Change of Cooked Beef with Condiments by Hyperspectral Imaging Technique. Food Sci. Biotechnol. 2022, 31, 1257–1266. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive Measurement of Fruit and Vegetable Quality by Means of NIR Spectroscopy: A Review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Tarlak, F.; Khosravi-Darani, K. Development and validation of growth models using one-step modelling approach for determination of chicken meat shelf-life under isothermal and non-isothermal storage conditions. J. Food Nutr. Res. 2021, 60, 76–86. [Google Scholar]
- Ross, T. Indices for Performance Evaluation of Predictive Models in Food Microbiology. J. Appl. Bacteriol. 1996, 81, 501–550. [Google Scholar] [CrossRef] [PubMed]
- Von Gersdorff, G.J.E.; Kirchner, S.M.; Hensel, O.; Sturm, B. Impact of Drying Temperature and Salt Pre-Treatments on Drying Behavior and Instrumental Color and Investigations on Spectral Product Monitoring during Drying of Beef Slices. Meat Sci. 2021, 178, 108525. [Google Scholar] [CrossRef]
- Swatland, H.J. Internal Fresnel Reflectance from Meat Microstructure in Relation to Pork Paleness and pH. Food Res. Int. 1997, 30, 565–570. [Google Scholar] [CrossRef]
- Weng, S.; Guo, B.; Du, Y.; Wang, M.; Tang, P.; Zhao, J. Feasibility of Authenticating Mutton Geographical Origin and Breed Via Hyperspectral Imaging with Effective Variables of Multiple Features. Food Anal. Methods 2021, 14, 834–844. [Google Scholar] [CrossRef]
- Guo, B.L.; Wei, Y.M.; Pan, J.R.; Li, Y. Stable C and N Isotope Ratio Analysis for Regional Geographical Traceability of Cattle in China. Food Chem. 2010, 118, 915–920. [Google Scholar] [CrossRef]
- Xiong, Z.; Sun, D.-W.; Pu, H.; Xie, A.; Han, Z.; Luo, M. Non-Destructive Prediction of Thiobarbituricacid Reactive Substances (TBARS) Value for Freshness Evaluation of Chicken Meat Using Hyperspectral Imaging. Food Chem. 2015, 179, 175–181. [Google Scholar] [CrossRef]
- Barbin, D.; Elmasry, G.; Sun, D.-W.; Allen, P. Near-Infrared Hyperspectral Imaging for Grading and Classification of Pork. Meat Sci. 2012, 90, 259–268. [Google Scholar] [CrossRef]
- Liu, Y.; Lyon, B.G.; Windham, W.R.; Realini, C.E.; Pringle, T.D.D.; Duckett, S. Prediction of Color, Texture, and Sensory Characteristics of Beef Steaks by Visible and near Infrared Reflectance Spectroscopy. A Feasibility Study. Meat Sci. 2003, 65, 1107–1115. [Google Scholar] [CrossRef]
- Minvielle, B.; Davey, K.R.; Thomas, C.J. Hot water decontamination of E. coli on beef surfaces: Inactivation modeling and meat surface changes. In Proceedings of the ICoMST 2018, 64th International Congress of Meat Science and Technology, Melbourne, Australia, 12–17 August 2018. [Google Scholar]
- Chen, H.; Hoover, D.G. Use of Weibull Model to Describe and Predict Pressure Inactivation of Listeria Monocytogenes Scott A in Whole Milk. Innov. Food Sci. Emerg. Technol. 2004, 5, 269–276. [Google Scholar] [CrossRef]
- Huang, L. IPMP Global Fit—A One-Step Direct Data Analysis Tool for Predictive Microbiology. Int. J. Food Microbiol. 2017, 262, 38–48. [Google Scholar] [CrossRef]
- Buzrul, S. The Weibull Model for Microbial Inactivation. Food Eng. Rev. 2022, 14, 45–61. [Google Scholar] [CrossRef]
- Huang, L. Thermal Inactivation of Listeria Monocytogenes in Ground Beef under Isothermal and Dynamic Temperature Conditions. J. Food Eng. 2009, 90, 380–387. [Google Scholar] [CrossRef]
- Kale, K.V.; Solankar, M.M.; Nalawade, D.B.; Dhumal, R.K.; Gite, H.R. A Research Review on Hyperspectral Data Processing and Analysis Algorithms. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2017, 87, 541–555. [Google Scholar] [CrossRef]
- Gil, M.M.; Miller, F.A.; Brandão, T.R.S.; Silva, C.L.M. Mathematical Models for Prediction of Temperature Effects on Kinetic Parameters of Microorganisms’ Inactivation: Tools for Model Comparison and Adequacy in Data Fitting. Food Bioprocess Technol. 2017, 10, 2208–2225. [Google Scholar] [CrossRef]
- Germec, M.; Cheng, K.-C.; Karhan, M.; Demirci, A.; Turhan, I. Application of Mathematical Models to Ethanol Fermentation in Biofilm Reactor with Carob Extract. Biomass Conv. Bioref. 2020, 10, 237–252. [Google Scholar] [CrossRef]
Modeling Methods | Pretreatment | Calibration | Internal Validation | RPD | ||
---|---|---|---|---|---|---|
Rc2 | RMSEC | Rv2 | RMSEV | |||
(log CFU/g) | (log CFU/g) | |||||
PLSR | None | 0.838 | 0.305 | 0.780 | 0.389 | 2.147 |
OSC | 0.838 | 0.304 | 0.784 | 0.388 | 2.167 | |
SNV | 0.859 | 0.284 | 0.824 | 0.343 | 2.401 | |
MSC | 0.859 | 0.284 | 0.826 | 0.341 | 2.415 | |
SVMR | None | 0.856 | 0.288 | 0.775 | 0.393 | 2.123 |
OSC | 0.828 | 0.315 | 0.784 | 0.366 | 2.167 | |
SNV | 0.924 | 0.211 | 0.804 | 0.354 | 2.275 | |
MSC | 0.857 | 0.288 | 0.770 | 0.383 | 2.100 |
Model | Parameter | Estimate | Standard Error | p Value | RMSE | R2 | AIC |
---|---|---|---|---|---|---|---|
Weibull | a | −0.071 | 0.008 | 0.194 | 0.922 | −91.699 | |
c | 4.366 | 0.413 | |||||
0.481 | 0.064 | ||||||
Modified Gompertz | A | 1.905 | 0.266 | 0.256 | 0.864 | −73.919 | |
−0.031 | 0.004 | ||||||
−0.117 | 0.138 | ||||||
59.601 | 13.114 | ||||||
Tmin (°C) | 36.009 | 0.870 |
Model | Parameter | Estimate | Standard Error | p Value | RMSE | R2 | AIC |
---|---|---|---|---|---|---|---|
Weibull | a | −0.074 | 0.194 | 0.274 | 0.907 | −70.982 | |
c | 4.557 | 0.461 | |||||
0.560 | 0.899 | ||||||
Modified Gompertz | A | 2.114 | 0.209 | 0.258 | 0.926 | −74.592 | |
−0.034 | 0.005 | ||||||
−0.092 | 0.059 | ||||||
66.786 | 8.451 | ||||||
Tmin (°C) | 36.308 | 0.781 |
Method | Model | Parameter | Estimate | Standard Error | p Value | RMSE | R2 | AIC |
---|---|---|---|---|---|---|---|---|
Method II412 | Weibull | a | −0.906 | 0.015 | 0.016 | 0.753 | −241.415 | |
c | 7.848 | 1.024 | ||||||
0.606 | 0.159 | |||||||
Modified Gompertz | A | 0.223 | 0.513 | 0.018 | 0.676 | −233.207 | ||
−0.005 | 0.001 | |||||||
1236.900 | ||||||||
56.260 | 0.019 | |||||||
Tmin (°C) | 37.924 | 2.079 | ||||||
Method II735 | Weibull | a | −0.083 | 0.006 | 0.037 | 0.937 | −191.115 | |
c | 6.085 | 0.309 | ||||||
1.087 | 0.149 | |||||||
Modified Gompertz | A | 0.374 | 0.079 | 0.041 | 0.924 | −183.815 | ||
−0.010 | 0.002 | |||||||
−0.036 | 0.141 | |||||||
92.435 | 131.640 | |||||||
Tmin (°C) | 36.471 | 0.916 | ||||||
Method II484 | Weibull | a | −0.094 | 0.010 | 0.023 | 0.915 | −219.640 | |
c | 7.253 | 0.580 | ||||||
0.729 | 0.126 | |||||||
Modified Gompertz | A | 0.189 | 0.001 | 0.029 | 0.873 | −204.592 | ||
−0.007 | 0.001 | |||||||
−6.412 | 1.693 | |||||||
59.914 | 0.005 | |||||||
Tmin (°C) | 36.972 | 1.159 |
Model | Parameter | Estimate | Standard Error | p Value | RMSE | R2 | AIC |
---|---|---|---|---|---|---|---|
Weibull | a | −0.078 | 0.006 | 3.450 | 0.918 | 80.998 | |
c | 3.614 | 0.342 | |||||
0.862 | 0.115 | ||||||
Modified Gompertz | A | 35.536 | 12.570 | 4.700 | 0.855 | 99.549 | |
−0.078 | 0.015 | ||||||
−0.0005 | 45.622 | ||||||
63.927 | 0.001 | ||||||
Tmin (°C) | 33.846 | 1.562 |
Model | Method | 40 °C | 60 °C | ||
---|---|---|---|---|---|
Weibull | Plate count method | 1.001 | 1.031 | 1.004 | 1.046 |
Method I | 0.999 | 1.020 | 1.001 | 1.021 | |
Method II735 | 1.011 | 1.053 | 1.124 | 1.129 | |
Method III | 1.014 | 1.341 | 0.898 | 1.295 | |
Modified Gompertz | Plate count method | 1.002 | 1.037 | 1.004 | 1.031 |
Method Ⅰ | 1.000 | 1.041 | 1.001 | 1.019 | |
Method Ⅱ735 | 1.014 | 1.060 | 1.022 | 1.062 | |
Method III | 0.883 | 1.333 | 1.081 | 1.174 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; García-Martín, J.F.; Ding, F.; Tu, K.; Lan, W.; Tang, C.; Liu, X.; Pan, L. Quantitative Prediction and Kinetic Modelling for the Thermal Inactivation of Brochothrix thermosphacta in Beef Using Hyperspectral Imaging. Foods 2025, 14, 2778. https://doi.org/10.3390/foods14162778
Li Q, García-Martín JF, Ding F, Tu K, Lan W, Tang C, Liu X, Pan L. Quantitative Prediction and Kinetic Modelling for the Thermal Inactivation of Brochothrix thermosphacta in Beef Using Hyperspectral Imaging. Foods. 2025; 14(16):2778. https://doi.org/10.3390/foods14162778
Chicago/Turabian StyleLi, Qinglin, Juan Francisco García-Martín, Fangchen Ding, Kang Tu, Weijie Lan, Changbo Tang, Xiaohua Liu, and Leiqing Pan. 2025. "Quantitative Prediction and Kinetic Modelling for the Thermal Inactivation of Brochothrix thermosphacta in Beef Using Hyperspectral Imaging" Foods 14, no. 16: 2778. https://doi.org/10.3390/foods14162778
APA StyleLi, Q., García-Martín, J. F., Ding, F., Tu, K., Lan, W., Tang, C., Liu, X., & Pan, L. (2025). Quantitative Prediction and Kinetic Modelling for the Thermal Inactivation of Brochothrix thermosphacta in Beef Using Hyperspectral Imaging. Foods, 14(16), 2778. https://doi.org/10.3390/foods14162778