Innovative Fermentation Approach Employing Lachancea thermotolerans for the Selective Production of High-Acidity Wines, Designed for Blending with Low-Acidity Counterparts to Achieve Chemically and Organoleptically Balanced Final Compositions
Abstract
1. Introduction
2. Materials and Methods
2.1. Fermentation Conditions
2.2. Coupages
2.3. Enological Parameters
2.4. Analysis of Volatile Compounds
2.4.1. Majority Volatile Compounds
2.4.2. Minority Volatile Compounds
2.4.3. Calculation of Aromatic Series
2.5. Organoleptic Characterization
2.6. Statistical Analysis
3. Results and Discussion
3.1. Base Wines
3.1.1. Enological Parameters
3.1.2. Volatile Compounds
3.1.3. Aromatic Series
3.2. Coupages
3.2.1. Enological Parameters
3.2.2. Volatile Compounds
3.2.3. Aromatic Series
3.3. Cluster and Principal Component Analysis
3.4. Analysis of the Correlation Between Aromatic Compounds and Lactic Acid Production
3.5. Organoleptic Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GC-FID | Gas chromatography—flame ionization detector |
GC-MS | Gas chromatography—mass spectrum detector |
OAV | Odour activity value |
PCA | Principal component analysis |
TDS | Thermal desorption system |
YAN | Yeast assimilable nitrogen |
References
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Arellano, B.; Zheng, Q.; Roca, J. Analysis of Climate Change Effects on Precipitation and Temperature Trends in Spain. Land 2025, 14, 85. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Sgubin, G.; Bois, B.; Ollat, N.; Swingedouw, D.; Zito, S.; Gambetta, G.A. Climate Change Impacts and Adaptations of Wine Production. Nat. Rev. Earth Environ. 2024, 5, 258–275. [Google Scholar] [CrossRef]
- Molitor, D.; Junk, J. Climate Change Is Implicating a Two-Fold Impact on Air Temperature Increase in the Ripening Period under the Conditions of the Luxembourgish Grapegrowing Region. OENO One 2019, 53, 3. [Google Scholar] [CrossRef]
- Pons, A.; Allamy, L.; Schüttler, A.; Rauhut, D.; Thibon, C.; Darriet, P. What Is the Expected Impact of Climate Change on Wine Aroma Compounds and Their Precursors in Grape? OENO One 2017, 51, 141–146. [Google Scholar] [CrossRef]
- Deloire, A.; Rogiers, S.; Šuklje, K.; Antalick, G.; Zeyu, X.; Pellegrino, A. Grapevine Berry Shrivelling, Water Loss and Cell Death: An Increasing Challenge for Growers in the Context of Climate Change. IVES Tech. Rev. Vine Wine 2021. [Google Scholar] [CrossRef]
- Greer, D.H.; Weedon, M.M. Modelling Photosynthetic Responses to Temperature of Grapevine (Vitis vinifera Cv. Semillon) Leaves on Vines Grown in a Hot Climate. Plant Cell Environ. 2012, 35, 1050–1064. [Google Scholar] [CrossRef]
- Dequin, S.; Escudier, J.-L.; Bely, M.; Noble, J.; Albertin, W.; Masneuf-Pomarède, I.; Marullo, P.; Salmon, J.-M.; Sablayrolles, J.M. How to Adapt Winemaking Practices to Modified Grape Composition under Climate Change Conditions. OENO One 2017, 51, 205–214. [Google Scholar] [CrossRef]
- Payan, C.; Gancel, A.-L.; Jourdes, M.; Christmann, M.; Teissedre, P.-L. Wine Acidification Methods: A Review. OENO One 2023, 57, 113–126. [Google Scholar] [CrossRef]
- Moreno, J.J.; Peinado, R.A. Química Enológica; Mundi-Prensa: Madid, Spain, 2010. [Google Scholar]
- Reglamento (UE) n ° 1308/2013 Reglamento (UE) n ° 1308/2013 Del Parlamento Europeo y Del Consejo, de 17 de Diciembre de 2013, Por El Que Se Crea La Organización Común de Mercados de Los Productos Agrarios y Por El Que Se Derogan Los Reglamentos (CEE) n ° 922/72, (CEE) n ° 234/79, (CE) n ° 1037/2001 y (CE) n ° 1234/2007. Available online: https://eur-lex.europa.eu/legal-content/ES/ALL/?uri=celex%3A32013R1308 (accessed on 26 April 2025).
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; Wiley: Hoboken, NJ, USA, 2016; ISBN 9781118627808. [Google Scholar]
- Hranilovic, A.; Gambetta, J.M.; Schmidtke, L.; Boss, P.K.; Grbin, P.R.; Masneuf-Pomarede, I.; Bely, M.; Albertin, W.; Jiranek, V. Oenological Traits of Lachancea Thermotolerans Show Signs of Domestication and Allopatric Differentiation. Sci. Rep. 2018, 8, 14812. [Google Scholar] [CrossRef]
- Vion, C.; Muro, M.; Bernard, M.; Richard, B.; Valentine, F.; Yeramian, N.; Masneuf-Pomarède, I.; Tempère, S.; Marullo, P. New Malic Acid Producer Strains of Saccharomyces Cerevisiae for Preserving Wine Acidity during Alcoholic Fermentation. Food Microbiol. 2023, 112, 104209. [Google Scholar] [CrossRef]
- Comitini, F.; Gobbi, M.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Selected Non-Saccharomyces Wine Yeasts in Controlled Multistarter Fermentations with Saccharomyces Cerevisiae. Food Microbiol. 2011, 28, 873–882. [Google Scholar] [CrossRef]
- Gobbi, M.; Comitini, F.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Lachancea Thermotolerans and Saccharomyces Cerevisiae in Simultaneous and Sequential Co-Fermentation: A Strategy to Enhance Acidity and Improve the Overall Quality of Wine. Food Microbiol. 2013, 33, 271–281. [Google Scholar] [CrossRef]
- Benito, S. The Impacts of Lachancea Thermotolerans Yeast Strains on Winemaking. Appl. Microbiol. Biotechnol. 2018, 102, 6775–6790. [Google Scholar] [CrossRef]
- Balikci, E.K.; Tanguler, H.; Jolly, N.P.; Erten, H. Influence of Lachancea Thermotolerans on Cv. Emir Wine Fermentation. Yeast 2016, 33, 313–321. [Google Scholar] [CrossRef]
- Morata, A.; Bañuelos, M.A.; Vaquero, C.; Loira, I.; Cuerda, R.; Palomero, F.; González, C.; Suárez-Lepe, J.A.; Wang, J.; Han, S.; et al. Lachancea Thermotolerans as a Tool to Improve PH in Red Wines from Warm Regions. Eur. Food Res. Technol. 2019, 245, 885–894. [Google Scholar] [CrossRef]
- Vicente, J.; Kelanne, N.; Navascués, E.; Calderón, F.; Santos, A.; Marquina, D.; Yang, B.; Benito, S. Combined Use of Schizosaccharomyces Pombe and a Lachancea Thermotolerans Strain with a High Malic Acid Consumption Ability for Wine Production. Fermentation 2023, 9, 165. [Google Scholar] [CrossRef]
- Snyder, E.C.; Jiranek, V.; Hranilovic, A. Impact of Lachancea Thermotolerans Strain and Lactic Acid Concentration on Oenococcus Oeni and Malolactic Fermentation in Wine. OENO One 2021, 55, 365–380. [Google Scholar] [CrossRef]
- Sánchez-Suárez, F.; Peinado, R.A. Use of Non-Saccharomyces Yeast to Enhance the Acidity of Wines Produced in a Warm Climate Region: Effect on Wine Composition. Fermentation 2023, 10, 17. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Dijon, France, 2023; ISBN 9782850380686. [Google Scholar]
- Peinado, R.A.; Moreno, J.A.; Muñoz, D.; Medina, M.; Moreno, J. Gas Chromatographic Quantification of Major Volatile Compounds and Polyols in Wine by Direct Injection. J. Agric. Food Chem. 2004, 52, 6389–6393. [Google Scholar] [CrossRef]
- López de Lerma, N.; Peinado, R.A.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J.; García-Martínez, T. Influence of Two Yeast Strains in Free, Bioimmobilized or Immobilized with Alginate Forms on the Aromatic Profile of Long Aged Sparkling Wines. Food Chem. 2018, 250, 22–29. [Google Scholar] [CrossRef]
- Del Valle Palenzuela, M.; López de Lerma, N.; Sánchez-Suárez, F.; Martínez-García, R.; Peinado, R.A.; Rosal, A. Aroma Composition of Wines Produced from Grapes Treated with Organic Amendments. Appl. Sci. 2023, 13, 8001. [Google Scholar] [CrossRef]
- Hernandez-Orte, P.; Bely, M.; Cacho, J.; Ferreira, V. Impact of Ammonium Additions on Volatile Acidity, Ethanol, and Aromatic Compound Production by Different Saccharomyces Cerevisiae Strains during Fermentation in Controlled Synthetic Media. Aust. J. Grape Wine Res. 2006, 12, 150–160. [Google Scholar] [CrossRef]
- García-Martínez, T.; Moreno, J.; Mauricio, J.C.; Peinado, R. Natural Sweet Wine Production by Repeated Use of Yeast Cells Immobilized on Penicillium Chrysogenum. LWT-Food Sci. Technol. 2015, 61, 503–509. [Google Scholar] [CrossRef]
- Pérez, D.; Denat, M.; Heras, J.M.; Guillamón, J.M.; Ferreira, V.; Querol, A. Effect of Non-Wine Saccharomyces Yeasts and Bottle Aging on the Release and Generation of Aromas in Semi-Synthetic Tempranillo Wines. Int. J. Food Microbiol. 2022, 365, 109554. [Google Scholar] [CrossRef]
- Seguinot, P.; Rollero, S.; Sanchez, I.; Sablayrolles, J.-M.; Ortiz-Julien, A.; Camarasa, C.; Mouret, J.-R. Impact of the Timing and the Nature of Nitrogen Additions on the Production Kinetics of Fermentative Aromas by Saccharomyces Cerevisiae during Winemaking Fermentation in Synthetic Media. Food Microbiol. 2018, 76, 29–39. [Google Scholar] [CrossRef]
- OIV. OIV. Available online: https://www.oiv.int/es (accessed on 12 May 2025).
- Su, Y.; Dong, Q.; Chen, Y.; Wang, R.; Jiang, J.; Qin, Y.; Song, Y.; Liu, Y. Impact of Sequential Inoculation Timing on the Quality of Wine Fermented by Indigenous Lachancea Thermotolerans and Saccharomyces Cerevisiae. LWT 2024, 204, 116438. [Google Scholar] [CrossRef]
- Escribano, R.; González-Arenzana, L.; Portu, J.; Garijo, P.; López-Alfaro, I.; López, R.; Santamaría, P.; Gutiérrez, A.R. Wine Aromatic Compound Production and Fermentative Behaviour within Different Non-Saccharomyces Species and Clones. J. Appl. Microbiol. 2018, 124, 1521–1531. [Google Scholar] [CrossRef]
- Battjes, J.; Melkonian, C.; Mendoza, S.N.; Haver, A.; Al-Nakeeb, K.; Koza, A.; Schrubbers, L.; Wagner, M.; Zeidan, A.A.; Molenaar, D.; et al. Ethanol-Lactate Transition of Lachancea Thermotolerans Is Linked to Nitrogen Metabolism. Food Microbiol. 2023, 110, 104167. [Google Scholar] [CrossRef]
- Moreno, J.J.; Peinado, R.A. Enological Chemistry; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Vicente, J.; Vladic, L.; Navascués, E.; Brezina, S.; Santos, A.; Calderón, F.; Tesfaye, W.; Marquina, D.; Rauhut, D.; Benito, S. A Comparative Study of Lachancea Thermotolerans Fermentative Performance under Standardized Wine Production Conditions. Food Chem. X 2024, 21, 101214. [Google Scholar] [CrossRef]
- Forino, M.; Picariello, L.; Rinaldi, A.; Moio, L.; Gambuti, A. How Must PH Affects the Level of Red Wine Phenols. LWT 2020, 129, 109546. [Google Scholar] [CrossRef]
- Tang, X.; Feng, L.; Chen, L.; Chen, W.N. Engineering Saccharomyces Cerevisiae for Efficient Biosynthesis of Fatty Alcohols Based on Enhanced Supply of Free Fatty Acids. ACS Omega 2017, 2, 3284–3290. [Google Scholar] [CrossRef]
- Vicente, J.; Navascués, E.; Calderón, F.; Santos, A.; Marquina, D.; Benito, S. An Integrative View of the Role of Lachancea Thermotolerans in Wine Technology. Foods 2021, 10, 2878. [Google Scholar] [CrossRef]
- Laguna, L.; Bartolomé, B.; Moreno-Arribas, M.V. Mouthfeel Perception of Wine: Oral Physiology, Components and Instrumental Characterization. Trends Food Sci. Technol. 2017, 59, 49–59. [Google Scholar] [CrossRef]
- Gawel, R.; Smith, P.A.; Cicerale, S.; Keast, R. The Mouthfeel of White Wine. Crit. Rev. Food Sci. Nutr. 2018, 58, 2939–2956. [Google Scholar] [CrossRef]
- Beg, M.S.; Ahmad, S.; Jan, K.; Bashir, K. Status, Supply Chain and Processing of Cocoa—A Review. Trends Food Sci. Technol. 2017, 66, 108–116. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.-P.; Martín-López, C.; Ferreira, V.; Fernández-Zurbano, P. Sensory Properties of Premium Spanish Red Wines and Their Implication in Wine Quality Perception. Aust. J. Grape Wine Res. 2011, 17, 9–19. [Google Scholar] [CrossRef]
- Gutiérrez, R.; Gonzlez, A.; Torres, F.; Gallardo, J.A. Universidad de Granada: Granada, Spain, 1994.
- Izquierdo-Cañas, P.M.; del Fresno, J.M.; Malfeito-Ferreira, M.; Mena-Morales, A.; García-Romero, E.; Heras, J.M.; Loira, I.; González, C.; Morata, A. Wine Bioacidification: Fermenting Airén Grape Juices with Lachancea Thermotolerans and Metschnikovia Pulcherrima Followed by Sequential Saccharomyces Cerevisiae Inoculation. Int. J. Food Microbiol. 2025, 427, 110977. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Tesfaye, W.; Bañuelos, M.A.; González, C.; Lepe, J.A.S. Lachancea Thermotolerans Applications in Wine Technology. Fermentation 2018, 4, 53. [Google Scholar] [CrossRef]
- Hernández, P. Use of Lachancea Thermotolerans to Improve PH in Red Wines. Effect of the Coinoculation with Oenococcus Oeni. Universidad Politécnica de Madrid: Madrid, Spain, 2018. [Google Scholar]
Control | BW20 | BW40 | BW60 | |
---|---|---|---|---|
pH | 4.01 ± 0.02 a | 3.62 ± 0.02 b | 3.6 ± 0.02 b | 3.62 ± 0.01 b |
Titratable Acidity (g/L TH2) | 3.65 ± 0.05 d | 6.01 ± 0.06 c | 7.06 ± 0.04 b | 7.26 ± 0.02 a |
Ethanol (%v/v) | 13.8 ± 0.1 a | 13.33 ± 0.06 b | 13.07 ± 0.06 c | 12.8 ± 0.1 d |
Volatile Acidity (g/L AcH) | 0.44 ± 0.02 c | 0.46 ± 0.05 bc | 0.59 ± 0.07 ab | 0.7 ± 0.07 a |
Lactic Acid (g/L) | 0.7 ± 0.2 c | 2.5 ± 0.2 b | 3.47 ± 0.08 a | 3.8 ± 0.08 a |
Malic Acid (g/L) | 0.27 ± 0.02 c | 0.29 ± 0.02 b | 0.54 ± 0.03 a | 0.52 ± 0.05 a |
Glycerin (g/L) | 4.7 ± 0.3 d | 5.4 ± 0.1 c | 6.9 ± 0.2 a | 6.1 ± 0.2 b |
Color Index | 10.9 ± 0.4 b | 12.6 ± 0.03 a | 12.88 ± 0.06 a | 13.05 ± 0.05 a |
Tonality | 36.58 ± 0.07 d | 39.6 ± 0.4 c | 45.7 ± 0.3 b | 47.06 ± 0.09 a |
Total Polyphenol Index | 23.77 ± 0.06 c | 25.2 ± 0.8 b | 26 ± 0.1 ab | 27 ± 0.3 a |
Control | BW20 | BW40 | BW60 | |
---|---|---|---|---|
Alcohol | ||||
Major Alcohols (mg/L) | 518 ± 7 c | 558 ± 4 b | 609 ± 10 a | 514 ± 16 c |
Methanol | 65 ± 5 a | 55 ± 3 b | 57 ± 1 ab | 61 ± 5 b |
Propanol | 62 ± 2 c | 73 ± 1 a | 68 ± 1 b | 56 ± 1 |
Isobutanol | 51.6 ± 0.5 c | 68 ± 1 b | 85 ± 2 a | 68 ± 2 |
2-methylbutanol | 53.8 ± 0.1 a | 45.6 ± 0.6 b | 42.9 ± 0.6 c | 33.9 ± 0.9 b |
3-methylbutanol | 266.7 ± 0.8 c | 293 ± 2 b | 326 ± 6 a | 268 ± 6 b |
2-phenylethanol | 17.9 ± 0.3 c | 24 ± 1 b | 29.3 ± 0.9 a | 26.1 ± 0.6 a |
Minor Alcohols (µg/L) | 2896 ± 205 | 2742 ± 273 | 2792 ± 170 | 2414 ± 166 |
Hexanol | 2840 ± 204 a | 2670 ± 271 ab | 2712 ± 167 ab | 2324 ± 163 b |
2-ethyl-1-hexanol | 39 ± 1 bc | 50 ± 2 a | 42 ± 2 b | 38 ± 2 c |
Octanol | 7.78 ± 0 c | 9.8 ± 0.03 b | 13.7 ± 0.4 a | 13.5 ± 0.2 a |
Decanol | 5 ± 0.4 | N.D. | N.D. | N.D. |
Dodecanol | 2.7 ± 0.1 d | 11.5 ± 0.3 c | 22 ± 1 b | 37 ± 3 a |
Farnesol | 1.9 ± 0.1 a | 0.21 ± 0.02 b | 1.7 ± 0.2 a | 1.63 ± 0.01 a |
Esters | ||||
Major Esters (mg/L) | 101.9 ± 0.9 d | 144 ± 1 c | 186 ± 3 a | 164 ± 3 a |
Ethyl acetate | 61.3 ± 0.6 b | 51 ± 1 c | 69 ± 1 a | 61 ± 1 c |
Ethyl lactate | 33.5 ± 0.1 d | 86 ± 2 c | 109 ± 2 a | 95 ± 2 c |
Diethyl succinate | 7.2 ± 0.7 b | 7.1 ± 0.3 b | 8.4 ± 0.2 a | 8.5 ± 0.3 c |
Minor Esters (µg/L) | 4072 ± 118 a | 1148 ± 23 b | 964 ± 10 c | 959 ± 25 c |
Ethyl isobutanoate | 41 ± 1 c | 37.7 ± 0.6 c | 94 ± 7 a | 65 ± 2 b |
Ethyl butanoate | 101 ± 5 a | 45.3 ± 0.9 b | 33.7 ± 0.9 c | 29 ± 1 c |
Butyl acetate | 0.98 ± 0.08 b | 1.3 ± 0.1 a | 1.31 ± 0.07 a | 0.95 ± 0.08 b |
Ethyl 2-methylbutanoate | 4.7 ± 0.4 a | 2.4 ± 0.3 b | 2.3 ± 0.1 b | 2.47 ± 0.08 b |
Ethyl 3-methylbutanoate | 5.5 ± 0.2 a | 1.9 ± 0.2 b | 5.8 ± 0.1 a | 2 ± 0.1 b |
Isoamyl acetate | 1248 ± 115 a | 444 ± 18 b | 308 ± 4 bc | 257 ± 11 c |
Ethyl hexanoate | 595 ± 10 a | 115.1 ± 0.4 b | 7.6 ± 0.7 c | 7.2 ± 0.2 c |
Hexyl acetate | 24.7 ± 0.5 a | 2.9 ± 0.2 c | 1.43 ± 0.07 d | 4.1 ± 0.3 b |
Ethyl heptanoate | 2.11 ± 0.04 a | 1.02 ± 0.02 b | 0.24 ± 0.02 c | 0.19 ± 0.02 c |
Ethyl benzoate | 0.27 ± 0.05 a | 0.2 ± 0.01 a | 0.13 ± 0.01 c | 0.16 ± 0.01 b |
Ethyl octanoate | 558 ± 10 a | 155 ± 4 b | 76.2 ± 0.4 c | 72.6 ± 0.9 c |
Octyl acetate | 2.7 ± 0.3 a | 2.2 ± 0.1 ab | 2.5 ± 0.2 a | 1.8 ± 0.2 b |
Ethyl phenylacetate | 0.3 ± 0.03 c | 0.21 ± 0.01 d | 0.39 ± 0.01 b | 0.6 ± 0.03 a |
2-phenylethanol acetate | 107 ± 9 a | 86 ± 5 b | 92 ± 4 ab | 85 ± 6 b |
Ethyl decanoate | 711 ± 10 a | 194 ± 3 d | 236 ± 3 c | 289 ± 3 b |
Ethyl undecanoate | 0.35 ± 0.02 c | 0.45 ± 0.02 b | 0.59 ± 0.02 a | 0.57 ± 0.01 a |
Ethyl tetradecanoate | 13.5 ± 0.8 a | 9 ± 0.7 b | 6.8 ± 0.4 c | 8.3 ± 0.8 bc |
Phenethyl benzoate | 0.84 ± 0.05 | 0.79 ± 0.06 | 0.8 ± 0.04 | 0.8 ± 0.03 |
Ethyl hexadecanoate | 23 ± 1 a | 21 ± 2 b | 20.3 ± 0.8 b | 25 ± 2 ab |
Aldehydes | ||||
Major Aldehydes (mg/L) | 61 ± 4 c | 207 ± 2 b | 224 ± 2 a | 210 ± 5 b |
Acetaldehyde | 61 ± 4 c | 207 ± 2 b | 224 ± 2 a | 210 ± 5 b |
Minor Aldehydes (µg/L) | 40 ± 0.7 a | 27.2 ± 0.5 c | 29 ± 0.5 b | 24.5 ± 0.9 d |
Benzaldehyde | 2 ± 0.2 a | 2 ± 0.1 a | 1.9 ± 0.2 a | 0.95 ± 0.04 b |
Hexanal | 6.1 ± 0.3 a | 5.4 ± 0.3 ab | 5 ± 0.4 b | 4.8 ± 0.3 b |
Heptanal | 0.61 ± 0.01 b | 0.63 ± 0.01 b | 0.83 ± 0.05 a | 0.1 ± 0.01 c |
Octanal | 12.1 ± 0.2 a | 1.23 ± 0.09 c | 0.82 ± 0.03 c | 1.14 ± 0.06 b |
Nonanal | 2.6 ± 0.2 | 2.6 ± 0.3 | 2.5 ± 0.1 | 2.1 ± 0.2 |
Decanal | 4 ± 0.2 a | 4.5 ± 0.5 a | 4.7 ± 0.4 a | 3 ± 0.05 b |
Phenylacetaldehyde | 11.6 ± 0.8 a | 9.4 ± 0.7 b | 12.4 ± 0.8 a | 11.5 ± 0.6 a |
4-methylbenzaldehyde | 1.03 ± 0.09 b | 1.4 ± 0.1 a | 0.85 ± 0.06 c | 0.82 ± 0.04 c |
Ketones | ||||
Major Ketones (mg/L) | 45 ± 4 c | 97 ± 1 b | 118.7 ± 0.8 a | 114 ± 2 b |
Acetoin | 45 ± 4 c | 97 ± 1 b | 118.7 ± 0.8 a | 114 ± 2 ab |
Minor Ketones (µg/L) | 0.67 ± 0.06 b | 0.75 ± 0.06 b | 1.96 ± 0.08 a | 0.7 ± 0.03 c |
Benzophenone | 0.44 ± 0.04 a | 0.4 ± 0.04 a | 0.38 ± 0.03 a | 0.29 ± 0.02 b |
3-Heptanone | 0.23 ± 0.02 c | 0.35 ± 0.02 b | 1.58 ± 0.06 a | 0.42 ± 0.01 b |
Volatile Phenols (µg/L) | 14.1 ± 0.9 a | 5.6 ± 0.3 b | 1.41 ± 0.06 c | 0.24 ± 0.03 d |
Guaiacol | 14.1 ± 0.9 a | 5.6 ± 0.3 b | 1.41 ± 0.06 c | 0.24 ± 0.03 d |
Furanic Compounds (µg/L) | 25.8 ± 0.9 c | 27.4 ± 0.4 a | 21.4 ± 0.5 b | 21.04 ± 0.02 b |
Pentylfuran | 25.8 ± 0.9 c | 27.4 ± 0.4 a | 21.4 ± 0.5 b | 21.04 ± 0.02 b |
Lactones (µg/L) | 9.2 ± 0.8 b | 11 ± 0.3 a | 9.7 ± 0.2 c | 8.1 ± 0.3 c |
γ-Nonalactone | 7.2 ± 0.7 a | 4.5 ± 0.2 b | 2.9 ± 0.09 c | 2.46 ± 0.06 c |
γ-Decalactone | 2 ± 0.2 c | 6.6 ± 0.3 a | 6.8 ± 0.2 a | 5.7 ± 0.3 b |
Terpenes and Norisoprenoids (µg/L) | 60 ± 2 a | 48 ± 2 b | 50 ± 2 b | 48 ± 1 b |
Limonene | 29 ± 2 a | 19 ± 1 b | 19.1 ± 0.9 b | 17.9 ± 0.3 b |
β-Citronellol | 23 ± 1 a | 17 ± 1 b | 17 ± 1 b | 15 ± 1 b |
β-Damascenone | 6.1 ± 0.2 d | 10.7 ± 0.4 c | 12.3 ± 0.2 b | 13.5 ± 0.2 a |
E-Geranyl acetone | 0.94 ± 0.02 a | 0.69 ± 0.01 a | 0.48 ± 0.01 b | 0.49 ± 0.03 b |
Z-Geranyl acetone | 1.65 ± 0.03 a | 1.5 ± 0.03 b | 1.48 ± 0.04 b | 1.5 ± 0.05 b |
Control | BW20 | BW40 | BW60 | |
---|---|---|---|---|
Fruity | 177 ± 1 a | 51.2 ± 0.7 b | 31.4 ± 0.4 c | 27.1 ± 0.4 d |
Green fruit | 49.9 ± 0.6 a | 14 ± 0.1 b | 6.28 ± 0.09 c | 4.91 ± 0.03 d |
Green | 4.7 ± 0.2 ab | 4 ± 0.1 c | 4.9 ± 0.2 a | 4.3 ± 0.2 b |
Creamy | 0.81 ± 0.05 c | 1.53 ± 0.03 b | 1.78 ± 0.01 a | 1.62 ± 0.03 b |
Citrus | 11.9 ± 0.1 a | 7.1 ± 0.6 b | 7 ± 0.2 b | 5.5 ± 0.1 c |
Chemistry | 25.1 ± 0.3 b | 24.8 ± 0.1 b | 28.8 ± 0.5 a | 24.9 ± 0.5 b |
Honey | 3.3 ± 0.2 a | 2.7 ± 0.2 b | 3.5 ± 0.2 a | 3.2 ± 0.2 a |
Waxy | 118 ± 2 a | 35.6 ± 0.6 b | 20.2 ± 0.3 c | 18.4 ± 0.2 d |
Floral | 3.97 ± 0.06 c | 4.9 ± 0.2 b | 5.8 ± 0.1 a | 5.5 ± 0.2 a |
Control | CW20 | CW40 | CW60 | |
---|---|---|---|---|
pH | 4.01 ± 0.02 a | 3.68 ± 0.01 b | 3.77 ± 0.01 b | 3.82 ± 0.01 a |
Titratable Acidity (g/L TH2) | 3.65 ± 0.05 b | 5.43 ± 0.07 a | 5.48 ± 0.03 a | 5.38 ± 0.07 a |
Ethanol (%v/v) | 13.8 ± 0.1 a | 13.40 ± 0.06 b | 13.45 ± 0.12 b | 13.35 ± 0.06 b |
Volatile Acidity (g/L AcH) | 0.44 ± 0.02 c | 0.49 ± 0.02 b | 0.53 ± 0.03 a | 0.58 ± 0.03 a |
Lactic Acid (g/L) | 0.7 ± 0.2 b | 2.12 ± 0.06 a | 2.24 ± 0.04 a | 2.39 ± 0.04 a |
Malic Acid (g/L) | 0.27 ± 0.02 a | 0.28 ± 0.02 a | 0.27 ± 0.03 a | 0.28 ± 0.02 a |
Glycerin (g/L) | 4.7 ± 0.3 c | 5.1 ± 0.3 b | 6.9 ± 0.5 a | 5.6 ± 0.4 b |
Color Index | 10.9 ± 0.4 b | 12.26 ± 0.03 a | 12.5 ± 0.04 a | 12.3 ± 0.2 a |
Tonality | 36.58 ± 0.07 b | 39.2 ± 0.3 a | 39.5 ± 0.6 a | 39.8 ± 0.3 a |
Total Polyphenol Index | 23.77 ± 0.06 b | 24.8 ± 0.1 b | 26.2 ± 0.1 a | 26.55 ± 0.07 a |
Control | CW20 | CW40 | CW60 | |
---|---|---|---|---|
Fruity | 177 ± 1 a | 82 ± 1 c | 83 ± 4 c | 99 ± 4 b |
Green fruit | 49.9 ± 0.6 a | 22 ± 1 b | 25 ± 1 b | 25 ± 1 b |
Green | 4.7 ± 0.2 c | 5.8 ± 0.5 ab | 5.3 ± 0.5 bc | 6.6 ± 0.3 a |
Creamy | 0.81 ± 0.05 c | 1.67 ± 0.05 b | 1.88 ± 0.03 a | 1.97 ± 0.03 a |
Citrus | 11.9 ± 0.2 a | 7 ± 1 c | 9.5 ± 0.7 b | 10.1 ± 0.1 b |
Chemistry | 25.1 ± 0.3 b | 24.1 ± 0.4 b | 27 ± 0.4 a | 26.2 ± 0.3 a |
Honey | 3.3 ± 0.2 b | 3.8 ± 0.4 a | 3.7 ± 0.2 a | 4.4 ± 0.2 a |
Waxy | 118 ± 2 a | 49 ± 3 c | 46 ± 3 c | 64 ± 2 b |
Floral | 3.97 ± 0.06 b | 4.1 ± 0.1 b | 4.9 ± 0.1 a | 5.2 ± 0.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Suárez, F.; Palenzuela, M.d.V.; Rosal, A.; Peinado, R.A. Innovative Fermentation Approach Employing Lachancea thermotolerans for the Selective Production of High-Acidity Wines, Designed for Blending with Low-Acidity Counterparts to Achieve Chemically and Organoleptically Balanced Final Compositions. Foods 2025, 14, 2773. https://doi.org/10.3390/foods14162773
Sánchez-Suárez F, Palenzuela MdV, Rosal A, Peinado RA. Innovative Fermentation Approach Employing Lachancea thermotolerans for the Selective Production of High-Acidity Wines, Designed for Blending with Low-Acidity Counterparts to Achieve Chemically and Organoleptically Balanced Final Compositions. Foods. 2025; 14(16):2773. https://doi.org/10.3390/foods14162773
Chicago/Turabian StyleSánchez-Suárez, Fernando, María del Valle Palenzuela, Antonio Rosal, and Rafael Andrés Peinado. 2025. "Innovative Fermentation Approach Employing Lachancea thermotolerans for the Selective Production of High-Acidity Wines, Designed for Blending with Low-Acidity Counterparts to Achieve Chemically and Organoleptically Balanced Final Compositions" Foods 14, no. 16: 2773. https://doi.org/10.3390/foods14162773
APA StyleSánchez-Suárez, F., Palenzuela, M. d. V., Rosal, A., & Peinado, R. A. (2025). Innovative Fermentation Approach Employing Lachancea thermotolerans for the Selective Production of High-Acidity Wines, Designed for Blending with Low-Acidity Counterparts to Achieve Chemically and Organoleptically Balanced Final Compositions. Foods, 14(16), 2773. https://doi.org/10.3390/foods14162773