Study on the Modification of Dietary Fiber and Degradation of Zearalenone in Corn Germ Meal by Solid-State Fermentation with Bacillus subtilis K6
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Pretreatment
2.3. Determination of ZEN Content in Corn Germ
2.4. Preparation of Fermentation Broth
2.5. Extraction of Dietary Fiber from Corn Germ Meal
2.6. Effect of Filling Amount on Solid-State Fermentation Efficiency
2.7. Effect of Amount of NaHCO3 Added on Solid-State Fermentation Efficiency
2.8. Single-Factor Experiments on the Effects of Solid-State Fermentation on DF Yield and ZEN Degradation Rate
2.8.1. Fermentation Temperature
2.8.2. Fermentation Time
2.8.3. Solid-to-Liquid Ratio
2.9. Response Surface Optimization
2.10. Component Analysis of Corn Germ Meal
2.11. Determination of Physicochemical Properties of Dietary Fiber
2.11.1. Water-Holding Capacity
2.11.2. Oil-Holding Capacity
2.11.3. Water-Swelling Capacity
2.12. Observation of Dietary Fiber by CLSM
2.13. Observation of Dietary Fiber by SEM
2.14. Statistical Analyses
3. Results and Discussion
3.1. Effect of Filling Amount and Amount of NaHCO3 Added on Solid-State Fermentation Efficiency
3.2. Solid-State Fermentation Single-Factor Experiments
3.2.1. Effect of Fermentation Temperature on SDF Yield and ZEN Degradation Rate
3.2.2. Effect of Fermentation Time on SDF Yield and ZEN Degradation Rate
3.2.3. Effect of Solid-to-Liquid Ratio on SDF Yield and ZEN Degradation Rate
3.3. Response Surface Optimization Experiments
3.3.1. Response Surface Experimental Results and Regression Model Analysis
3.3.2. Response Surface Analysis
3.3.3. Determination and Verification of the Optimal Fermentation Process
3.4. Microstructure Observation of Dietary Fiber
3.5. Changes in Components of Corn Germ Meal Before and After Fermentation
3.6. Effects of Fermentation on Physicochemical Properties of Dietary Fiber
3.7. Inference on the Mechanism of DF Modification and ZEN Degradation by Fermentation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Kong, X.; Xing, X.; Hu, X.; Sun, Y. Comparison of different technologies for dietary fiber extraction from cold-pressed corn germ meal: Changes in structural characteristics, physicochemical properties and adsorption capacity. J. Cereal Sci. 2025, 121, 104077. [Google Scholar] [CrossRef]
- Jiao, Y.; Chen, H.-D.; Han, H.; Chang, Y. Development and utilization of corn processing by-products: A review. Foods 2022, 11, 3709. [Google Scholar] [CrossRef]
- Bakr, A.F.; Farag, M.A. Soluble Dietary Fibers as Antihyperlipidemic Agents: A Comprehensive Review to Maximize Their Health Benefits. Acs Omega 2023, 8, 24680–24694. [Google Scholar] [CrossRef]
- Sasaki, D.; Sasaki, K.; Kondo, A. Glycosidic Linkage Structures Influence Dietary Fiber Fermentability and Propionate Production by Human Colonic Microbiota In Vitro. Biotechnol. J. 2020, 15, 1900523. [Google Scholar] [CrossRef]
- Torbica, A.; Radosavljevic, M.; Belovic, M.; Tamilselvan, T.; Prabhasankar, P. Biotechnological tools for cereal and pseudocereal dietary fibre modification in the bakery products creation—Advantages, disadvantages and challenges. Trends Food Sci. Technol. 2022, 129, 194–209. [Google Scholar] [CrossRef]
- Wen, Y.-q.; Xu, L.-l.; Xue, C.-h.; Jiang, X.-m. Effect of stored humidity and initial moisture content on the qualities and mycotoxin levels of maize germ and its processing products. Toxins 2020, 12, 535. [Google Scholar] [CrossRef] [PubMed]
- Angulo-López, J.E.; Flores-Gallegos, A.C.; Ascacio-Valdes, J.A.; Esquivel, J.C.C.; Torres-León, C.; Rúelas-Chácon, X.; Aguilar, C.N. Antioxidant Dietary Fiber Sourced from Agroindustrial Byproducts and Its Applications. Foods 2023, 12, 15. [Google Scholar] [CrossRef]
- Miao, W.; Li, N.; Wu, J.-L. Food-polysaccharide utilization via in vitro fermentation: Microbiota, structure, and function. Curr. Opin. Food Sci. 2022, 48, 100911. [Google Scholar] [CrossRef]
- Grzelak-Błaszczyk, K.; Czarnecki, A.; Klewicki, R.; Grzegorzewska, M.; Klewicka, E. Lactic acid fermentation of osmo-dehydrated onion. Food Chem. 2023, 399, 133954. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.A.; Xue, P.Y.; Chen, Y.; Xie, J.H.; Peng, G.Y.; Tian, S.L.; Chang, X.X.; Yu, Q. Effect of Soluble Dietary Fiber of Navel Orange Peel Prepared by Mixed Solid-State Fermentation on the Quality of Jelly. Foods 2023, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, B.; Li, X.; Dong, L.; Saleemi, M.K.; Iqbal, M.; Majeed, S.; Li, G.; Jin, B.; Wang, L.; Chen, B.; et al. New trends for the efficient bio-degradation of food contaminant zearalenone using a plant rhizobacterial strain: An in-vitro study. World Mycotoxin J. 2023, 16, 251–260. [Google Scholar] [CrossRef]
- Zadeike, D.; Vaitkeviciene, R.; Bartkevics, V.; Bogdanova, E.; Bartkiene, E.; Lele, V.; Juodeikiene, G.; Cernauskas, D.; Valatkeviciene, Z. The expedient application of microbial fermentation after whole-wheat milling and fractionation to mitigate mycotoxins in wheat-based products. Lwt-Food Sci. Technol. 2021, 137, 110440. [Google Scholar] [CrossRef]
- Lin, D.; Long, X.; Huang, Y.; Yang, Y.; Wu, Z.; Chen, H.; Zhang, Q.; Wu, D.; Qin, W.; Tu, Z. Effects of microbial fermentation and microwave treatment on the composition, structural characteristics, and functional properties of modified okara dietary fiber. Lwt-Food Sci. Technol. 2020, 123, 109059. [Google Scholar] [CrossRef]
- Lim, C.W.; Kang, K.K.; Yoo, Y.-B.; Kim, B.H.; Bae, S.-H. Dietary fiber and β-glucan contents of Sparassis crispa fruit fermented with Lactobacillus brevis and Monascus pilosus. J. Korean Soc. Food Sci. Nutr. 2012, 41, 1740–1746. [Google Scholar] [CrossRef]
- Ban, H.; Liu, Q.N.; Xiu, L.; Cai, D.; Liu, J.S. Effect of Solid-State Fermentation of Hericium erinaceus on the Structure and Physicochemical Properties of Soluble Dietary Fiber from Corn Husk. Foods 2024, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Zhao, H.; Lu, Z.; Lu, F.; Bie, X.; Zhang, C. Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto. Food Chem. 2019, 294, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yu, M.; Dong, F.; Shi, J.; Xu, J. Esterase activity inspired selection and characterization of zearalenone degrading bacteria Bacillus pumilus ES-21. Food Control 2017, 77, 57–64. [Google Scholar] [CrossRef]
- Ju, J.; Tinyiro, S.E.; Yao, W.; Yu, H.; Guo, Y.; Qian, H.; Xie, Y. The ability of Bacillus subtilis and Bacillus natto to degrade zearalenone and its application in food. J. Food Process. Preserv. 2019, 43, e14122. [Google Scholar] [CrossRef]
- Dai, C.; Ma, H.; He, R.; Huang, L.; Zhu, S.; Ding, Q.; Luo, L. Improvement of nutritional value and bioactivity of soybean meal by solid-state fermentation with Bacillus subtilis. Lwt-Food Sci. Technol. 2017, 86, 1–7. [Google Scholar] [CrossRef]
- Kuzdraliński, A.; Solarska, E.; Muszyńska, M. Deoxynivalenol and zearalenone occurence in beers analysed by an enzyme-linked immunosorbent assay method. Food Control 2013, 29, 22–24. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Lu, Z.; Wang, Y. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J. Anim. Sci. Biotechnol. 2017, 8, 50. [Google Scholar] [CrossRef]
- Chen, L.; Wu, Y.; Jiang, X.; Gan, D.; Fan, J.; Sun, Y.; Liu, W.; Li, X. Dietary fiber extraction from citrus peel pomace: Yield optimization and evaluation of its functionality, rheological behavior, and microstructure properties. J. Food Sci. 2023, 88, 3507–3523. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Zhao, H.; Lu, F.; Zhang, C.; Bie, X.; Lu, Z. Improvement of the nutritional quality andfibrinolytic enzyme activity of soybean meal by fermentation of Bacillus subtilis. J. Food Process. Preserv. 2015, 39, 1235–1242. [Google Scholar] [CrossRef]
- da Silva, A.F.V.; dos Santos, L.A.; de Melo, A.H.F.; Jucá, J.F.T.; Santos, A.; Porto, T.S. Use of cellulase obtained from solid-state fermentation of orange and passion fruit peels as an enzymatic pre-treatment step for anaerobic digestion. BioEnergy Res. 2024, 17, 1288–1301. [Google Scholar] [CrossRef]
- GB 5009.88-2023; National Food Safety Standard Determination of Dietary Fiber in Foods. SAC: Beijing, China, 2023.
- GB/T 35818-2018; Analytical Methods for Forestry Biomass Feedstocks—Determination of Polysaccharides and Lignin Content. SAC: Beijing, China, 2018.
- GB 5009.5-2025; National Food Safety Standard-Determination of Protein in Food. SAC: Beijing, China, 2025.
- GB 5009.4-2016; National Food Safety Standard—Determination of Ash in Foods. SAC: Beijing, China, 2016.
- LS/T 6119-2017; Grain and Oils Inspection-Determination of Polyphenols in Vegetable Oils-Spectrophotometric Method. ISO: Beijing, China, 2017.
- Shang, Y.; Zhang, W.; Dang, Y.; Gao, X. Physical properties and functional characteristics of broccoli-soluble dietary fiber. Food Biosci. 2023, 56, 103272. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Tan, B.; Li, R. Effect of structural characteristics on the physicochemical properties and functional activities of dietary fiber: A review of structure-activity relationship. Int. J. Biol. Macromol. 2024, 269, 132214. [Google Scholar] [CrossRef] [PubMed]
- Liao, A.-M.; Zhang, J.; Yang, Z.-L.; Huang, J.-H.; Pan, L.; Hou, Y.-C.; Li, X.-X.; Zhao, P.-H.; Dong, Y.-Q.; Hu, Z.-Y. Structural, physicochemical, and functional properties of wheat bran insoluble dietary fiber modified with probiotic fermentation. Front. Nutr. 2022, 9, 803440. [Google Scholar] [CrossRef]
- Jia, M.; Chen, J.; Liu, X.; Xie, M.; Nie, S.; Chen, Y.; Xie, J.; Yu, Q. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation. Food Hydrocoll. 2019, 94, 468–474. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Chen, H. Correlations of medium physical properties and process performance in solid-state fermentation. Chem. Eng. Sci. 2017, 165, 65–73. [Google Scholar] [CrossRef]
- Wu, D.; Lü, F.; Gao, H.; Shao, L.; He, P. Mesophilic bio-liquefaction of lincomycin manufacturing biowaste: The influence of total solid content and inoculum to substrate ratio. Bioresour. Technol. 2011, 102, 5855–5862. [Google Scholar] [CrossRef] [PubMed]
- Bellon-Maurel, V.; Orliac, O.; Christen, P. Sensors and measurements in solid state fermentation: A review. Process Biochem. 2003, 38, 881–896. [Google Scholar] [CrossRef]
- Wang, H.; Sun, C.; Yang, S.; Ruan, Y.; Lyu, L.; Guo, X.; Wu, X.; Chen, Y. Exploring the impact of initial moisture content on microbial community and flavor generation in Xiaoqu baijiu fermentation. Food Chem. X 2023, 20, 100981. [Google Scholar] [CrossRef]
- Martínez, J.M.; Delso, C.; Aguilar, D.; Cebrián, G.; Álvarez, I.; Raso, J. Factors influencing autolysis of Saccharomyces cerevisiae cells induced by pulsed electric fields. Food Microbiol. 2018, 73, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Du, Z.; Li, J.; Liu, S.; Sun, L.; Tao, X.; Lv, L.; Liang, J. Selection of short-chain fatty acid or methane production by rumen fermentation of lignocellulosic biomass: Effects of dynamic and constant pH regulation. Biomass Bioenergy 2025, 200, 107976. [Google Scholar] [CrossRef]
- Bakri, B.; Putra, A.; Mochtar, A.; Renreng, I.; Arsyad, H. Sodium bicarbonate treatment on mechanical and morphological properties of coir fibres. Int. J. Automot. Mech. Eng. 2018, 15, 5562–5572. [Google Scholar] [CrossRef]
- Chen, L.; Chen, W.; Zheng, B.; Yu, W.; Zheng, L.; Qu, Z.; Yan, X.; Wei, B.; Zhao, Z. Fermentation of NaHCO3-treated corn germ meal by Bacillus velezensis CL-4 promotes lignocellulose degradation and nutrient utilization. Appl. Microbiol. Biotechnol. 2022, 106, 6077–6094. [Google Scholar] [CrossRef]
- Yao, L.; Huang, Q.; Wang, H.; Feng, T.; Yu, C.; Xie, K.; Liu, H.; Song, S.; Shao, L.; Sun, M. Microbial hydrolysis of camellia seed cake with Bacillus subtilis: Fermentation process optimization and bioactivity assessment of the hydrolysates. Biocatal. Agric. Biotechnol. 2025, 66, 103579. [Google Scholar] [CrossRef]
- Hou, C.; Zhang, Y.; Chen, J.; Hu, J.; Yang, C.; Chen, F.; Zhu, T.; Xin, Y.; Geng, X. Optimization of solid-state fermentation process for dietary fiber in flaxseed meal and analysis of its microstructure and functional properties. Foods 2025, 14, 1722. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Liu, P.; Zhang, H.; Liu, M.; Ding, Q.; Cai, J. In vitro degradation of zearalenone by culture supernatant of Bacillus subtilis. Food Bioprocess Technol. 2024, 17, 2206–2215. [Google Scholar] [CrossRef]
- Rui, H.; Li, L.; Sen, M.; Yanhua, L. Fermentation optimization and characterization of wheat bran dietary fiber mixed with microbes in solid state. J. Henan Univ. Technol. (Nat. Sci. Ed.) 2024, 45, 81–89. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Yang, X.; Wan, J.; Liu, P.; Xu, Q.; Tang, Y.; Zhang, X. Dietary fiber production from sweet potato residue by solid state fermentation using the edible and medicinal fungus Schizophyllum commune. Bioresources 2012, 7, 4022–4030. [Google Scholar] [CrossRef]
- Shanock, L.R.; Baran, B.E.; Gentry, W.A.; Pattison, S.C.; Heggestad, E.D. Polynomial regression with response surface analysis: A powerful approach for examining moderation and overcoming limitations of difference scores. J. Bus. Psychol. 2010, 25, 543–554. [Google Scholar] [CrossRef]
- Ma, S.; Dong, J.; Li, J.; Zhu, Y.; Li, Y.; Shen, R. Effect of solid-state fermentation on the nutritional composition and physicochemical properties of whole-grain highland barley and the application in digestive cookies. Food Biosci. 2024, 59, 104088. [Google Scholar] [CrossRef]
- Qin, Y.J.; Fan, X.Y.; Gao, Y.; Wang, P.; Chang, J.; Liu, C.Q.; Wang, L.J.; Yin, Q.Q. Effects of physicochemical and biological treatment on structure, functional and prebiotic properties of dietary fiber from corn straw. Foods 2024, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Liu, S.; Dong, R.; Xie, J.; Chen, Y.; Peng, G.; Liao, W.; Xue, P.; Feng, L.; Yu, Q. Bound polyphenols from insoluble dietary fiber of defatted rice bran by solid-state fermentation with trichoderma viride: Profile, activity, and release mechanism. J. Agric. Food Chem. 2021, 69, 5026–5039. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Ruan, L.; Zhang, J.; Wang, Y.; Shen, Q.; Deng, Y.; Liu, Y. Improved physicochemical and functional properties of dietary fiber from matcha fermented by Trichoderma viride. Food Chem. 2024, 460, 140784. [Google Scholar] [CrossRef]
- Chen, J.; Huang, H.; Chen, Y.; Xie, J.; Song, Y.; Chang, X.; Liu, S.; Wang, Z.; Hu, X.; Yu, Q. Effects of fermentation on the structural characteristics and in vitro binding capacity of soluble dietary fiber from tea residues. Lwt-Food Sci. Technol. 2020, 131, 109818. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Q.; Li, Z.; Shen, Z.; Tan, B.; Zhai, X. Changing the polyphenol composition and enhancing the enzyme activity of sorghum grain by solid-state fermentation with different microbial strains. J. Sci. Food Agric. 2024, 104, 6186–6195. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.-T.; Xu, X.-R.; Gan, R.-Y.; Zhang, Y.; Xia, E.-Q.; Li, H.-B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Zhang, H.F.; Pu, J.; Tang, Y.; Wang, M.; Tian, K.; Wang, Y.Q.; Luo, X.; Deng, Q.X. Changes in phenolic compounds and antioxidant activity during development of ‘Qiangcuili’ and ‘Cuihongli’ fruit. Foods 2022, 11, 17. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, J.L.; Li, L.; Gu, T.; Chen, S.; Wang, J.S.; Gao, M.X. The release of bound phenolics to enhance the antioxidant activity of cornmeal by liquid fermentation with Bacillus subtilis. Foods 2025, 14, 18. [Google Scholar] [CrossRef]
- Xia, T.; Nie, Y.; Chen, Y.; Zhang, N.; Wang, Y.; Liu, S.; Bai, X.; Cao, H.; Xu, Y.; Wang, M. Structural and physicochemical properties and changes in vitro digestion and fermentation of soluble dietary fiber from tea residues modified by fermentation. Food Chem. 2025, 473, 142926. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhou, W.; Yang, Y.; Xing, J.; Lin, Y. Penicillium sp. Cis16 improves soluble dietary fiber content in citrus dregs fermentation. Food Biotechnol. 2022, 36, 191–208. [Google Scholar] [CrossRef]
- Li, N.; Wang, S.; Wang, T.; Liu, R.; Zhi, Z.; Wu, T.; Sui, W.; Zhang, M. Valorization of wheat bran by three fungi solid-state fermentation: Physicochemical properties, antioxidant activity and flavor characteristics. Foods 2022, 11, 1722. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, E.; Sorour, M.A.; Hussein, M.; Hassan, M.A. Impact of solid state fermentation on chemical composition, functional properties, and antioxidant activity of wheat bran. J. Sohag Agrisci. 2022, 7, 41–50. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, Q.; Teng, C.; Zhou, M.; Fan, G.; Qu, P. Preparation and improvement of physicochemical and functional properties of dietary fiber from corn cob fermented by Aspergillus Niger. J. Microbiol. Biotechnol. 2023, 34, 330. [Google Scholar] [CrossRef]
- Gari, J.; Abdella, R. Degradation of zearalenone by microorganisms and enzymes. PeerJ 2023, 11, e15808. [Google Scholar] [CrossRef]
- Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Manes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef]
- Kowalska, K.; Habrowska-Górczyńska, D.E.; Piastowska-Ciesielska, A.W. Zearalenone as an endocrine disruptor in humans. Environ. Toxicol. Pharmacol. 2016, 48, 141–149. [Google Scholar] [CrossRef]
- Chen, S.-W.; Wang, H.-T.; Shih, W.-Y.; Ciou, Y.-A.; Chang, Y.-Y.; Ananda, L.; Wang, S.-Y.; Hsu, J.-T. Application of zearalenone (ZEN)-detoxifying Bacillus in animal feed decontamination through fermentation. Toxins 2019, 11, 330. [Google Scholar] [CrossRef]
Coded Level | Factors | ||
---|---|---|---|
Temperature (°C) | Time (h) | Solid-to-Liquid Ratio (g/mL) | |
−1 | 32 | 48 | 1:0.7 |
0 | 37 | 60 | 1:0.8 |
1 | 42 | 72 | 1:0.9 |
Number | A | B | C | Y1 (%) | Y2 (%) |
---|---|---|---|---|---|
1 | 42 | 72 | 1:0.8 | 92.05 | 17.08 |
2 | 37 | 60 | 1:0.8 | 95.89 | 18.83 |
3 | 37 | 72 | 1:0.9 | 92.81 | 15.18 |
4 | 32 | 48 | 1:0.8 | 90.3 | 15.05 |
5 | 37 | 60 | 1:0.8 | 95.55 | 18.65 |
6 | 42 | 60 | 1:0.9 | 92.64 | 16.35 |
7 | 37 | 60 | 1:0.8 | 95.48 | 18.42 |
8 | 37 | 60 | 1:0.8 | 95.79 | 18.51 |
9 | 37 | 60 | 1:0.8 | 95.04 | 18.79 |
10 | 42 | 48 | 1:0.8 | 90.89 | 16.20 |
11 | 32 | 60 | 1:0.7 | 83.23 | 15.04 |
12 | 42 | 60 | 1:0.7 | 84.40 | 15.28 |
13 | 32 | 72 | 1:0.8 | 91.37 | 16.45 |
14 | 32 | 60 | 1:0.9 | 92.42 | 16.02 |
15 | 37 | 48 | 1:0.9 | 90.83 | 15.33 |
16 | 37 | 72 | 1:0.7 | 84.23 | 15.73 |
17 | 37 | 48 | 1:0.7 | 84.99 | 14.08 |
Source of Variation | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 38.36 | 9 | 4.26 | 48.84 | <0.0001 | ** |
A: Temperature | 0.6903 | 1 | 0.6903 | 7.91 | 0.0261 | * |
B: Time | 1.79 | 1 | 1.79 | 20.47 | 0.0027 | ** |
C: Solid-to-liquid ratio | 0.9453 | 1 | 0.9453 | 10.83 | 0.0133 | * |
AB | 0.0676 | 1 | 0.0676 | 0.7746 | 0.4080 | |
AC | 0.0020 | 1 | 0.0020 | 0.0232 | 0.8832 | |
BC | 0.8100 | 1 | 0.8100 | 9.28 | 0.0187 | * |
A2 | 3.61 | 1 | 3.61 | 41.39 | 0.0004 | ** |
B2 | 9.71 | 1 | 9.71 | 111.29 | <0.0001 | ** |
C2 | 17.54 | 1 | 17.54 | 201.04 | <0.0001 | ** |
Residual | 0.6109 | 7 | 0.0873 | |||
Lack of Fit | 0.4869 | 3 | 0.1623 | 5.24 | 0.0718 | Not significant |
Pure Error | 0.1240 | 4 | 0.0310 | |||
Total | 38.97 | 16 |
Source of Variation | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 297.84 | 9 | 33.09 | 136.26 | <0.0001 | ** |
A: Temperature | 0.8845 | 1 | 0.8845 | 3.64 | 0.0980 | |
B: Time | 1.49 | 1 | 1.49 | 6.13 | 0.0425 | * |
C: Solid-to-liquid ratio | 126.80 | 1 | 126.80 | 522.12 | <0.0001 | ** |
AB | 0.0020 | 1 | 0.0020 | 0.0083 | 0.9298 | |
AC | 0.2256 | 1 | 0.2256 | 0.9290 | 0.3672 | |
BC | 1.88 | 1 | 1.88 | 7.73 | 0.0273 | * |
A2 | 20.75 | 1 | 20.75 | 85.44 | <0.0001 | ** |
B2 | 19.96 | 1 | 19.96 | 82.20 | <0.0001 | ** |
C2 | 112.00 | 1 | 112.00 | 461.17 | <0.0001 | ** |
Residual | 1.70 | 7 | 0.2429 | |||
Lack of Fit | 1.26 | 3 | 0.4206 | 3.84 | 0.1133 | Not significant |
Pure Error | 0.4382 | 4 | 0.1095 | |||
Total | 299.54 | 16 |
Component | Before Fermentation | After Fermentation |
---|---|---|
IDF (%) | 55.76 ± 0.74 a | 45.31 ± 1.06 b |
SDF (%) | 9.47 ± 0.68 a | 19.55 ± 0.83 b |
Cellulose (%) | 30.30 ± 0.10 a | 22.70 ± 1.00 b |
Hemicellulose (%) | 26.00 ± 0.50 a | 24.00 ± 0.35 b |
Acid-Soluble Lignin (%) | 9.30 ± 0.10 a | 9.40 ± 0.05 a |
Acid-Insoluble Lignin (%) | 7.00 ± 0.20 a | 5.50 ± 0.20 b |
Protein (%) | 16.80 ± 1.36 a | 20.67 ± 0.97 b |
Ash (%) | 2.88 ± 0.04 a | 3.75 ± 0.02 b |
Total Phenolics (%) | 6.50 ± 0.11 a | 11.87 ± 0.31 b |
DF | FDF | |
---|---|---|
WHC (g/g) | 8.40 ± 0.09 a | 11.32 ± 0.07 b |
OHC (g/g) | 11.99 ± 0.16 a | 13.96 ± 0.13 b |
WSC (mL/g) | 7.06 ± 0.05 a | 8.13 ± 0.10 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, K.; Tang, L.; Hua, C.; Chen, N.; Yang, C.; Xin, Y.; Chen, F. Study on the Modification of Dietary Fiber and Degradation of Zearalenone in Corn Germ Meal by Solid-State Fermentation with Bacillus subtilis K6. Foods 2025, 14, 2680. https://doi.org/10.3390/foods14152680
Li J, Li K, Tang L, Hua C, Chen N, Yang C, Xin Y, Chen F. Study on the Modification of Dietary Fiber and Degradation of Zearalenone in Corn Germ Meal by Solid-State Fermentation with Bacillus subtilis K6. Foods. 2025; 14(15):2680. https://doi.org/10.3390/foods14152680
Chicago/Turabian StyleLi, Jiahao, Kailong Li, Langwen Tang, Chun Hua, Na Chen, Chenxian Yang, Ying Xin, and Fusheng Chen. 2025. "Study on the Modification of Dietary Fiber and Degradation of Zearalenone in Corn Germ Meal by Solid-State Fermentation with Bacillus subtilis K6" Foods 14, no. 15: 2680. https://doi.org/10.3390/foods14152680
APA StyleLi, J., Li, K., Tang, L., Hua, C., Chen, N., Yang, C., Xin, Y., & Chen, F. (2025). Study on the Modification of Dietary Fiber and Degradation of Zearalenone in Corn Germ Meal by Solid-State Fermentation with Bacillus subtilis K6. Foods, 14(15), 2680. https://doi.org/10.3390/foods14152680