Optimising White Wheat Bread Fortification with Vitamin D3 and Dietary Fibre: Balancing Nutritional Enhancement and Technological Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Ingredients
2.2. Design of Experiment (DoE) and Response Surface Methodology (RSM)
2.3. Water Content Optimisation
2.4. Dietary Fibre Quantification
2.5. Vitamin D3 Content in Bread
2.6. Dough Characteristics
2.6.1. Dough Preparation
2.6.2. Development of the Gluten Network
2.6.3. Starch Pasting Properties
2.6.4. Dough Mixing and Pasting Properties
2.6.5. Dough Fermentation
2.6.6. Breadmaking
2.7. Bread Quality Analysis
2.7.1. Specific Volume
2.7.2. Crumb Structure
2.7.3. Colour
2.7.4. Textural Properties
2.7.5. Water Activity
2.7.6. Staling Rate
2.8. Statistical Analysis
3. Results
3.1. Experimental Design
3.2. Dietary Fibre Determination
3.3. Dough Properties Determination
3.4. Bread Characteristics Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BF | Baker’s Flour |
BV | Breakdown Viscosity |
DDT | Dough Development Time |
DoE | Design of Experiment |
FV | Final Viscosity |
HM | Height Maximum |
IDF | Insoluble Dietary Fibre |
MCT | Medium Chain Triglyceride |
PMT | Peak Maximum Time |
PV | Peak Viscosity |
RSM | Response Surface Methodology |
SDF | Soluble Dietary Fibre |
SDFP | High-Molecular Weight Soluble Dietary Fibre |
SDFS | Low-Molecular Weight Soluble Dietary Fibre |
TDF | Total Dietary Fibre |
WMF | Wholemeal Flour |
Appendix A
Sample | BF (%) | Oat Fibre (%) | Cellulose (%) | Pectin (%) | Beta-Glucan (%) | Gluten (%) |
---|---|---|---|---|---|---|
Pre-optimised-1 | 82.8 | 7.6 | 3.0 | 1.4 | 5.2 | 4.4 |
Pre-optimised-2 | 81.1 | 6.0 | 2.6 | 2.6 | 7.7 | 4.8 |
Pre-optimised-3 | 82.3 | 9.8 | 2.0 | 5.1 | 0.8 | 4.6 |
Pre-optimised-4 | 79.6 | 2.9 | 5.2 | 4.8 | 7.5 | 5.2 |
Pre-optimised-5 | 82.4 | 1.0 | 5.7 | 4.6 | 6.3 | 4.3 |
Pre-optimised-6 | 82.3 | 3.1 | 5.5 | 4.1 | 5.0 | 4.4 |
Pre-optimised-7 | 77.6 | 7.5 | 4.3 | 1.5 | 9.1 | 4.9 |
Pre-optimised-8 | 82.5 | 6.7 | 4.8 | 5.0 | 1.0 | 4.6 |
Pre-optimised-9 | 81.4 | 9.5 | 2.8 | 2.9 | 3.4 | 4.6 |
Pre-optimised-10 | 81.2 | 1.8 | 5.8 | 3.6 | 7.6 | 4.4 |
References
- Bouillon, R.; Manousaki, D.; Rosen, C.; Trajanoska, K.; Rivadeneira, F.; Richards, J.B. The Health Effects of Vitamin D Supplementation: Evidence from Human Studies. Nat. Rev. Endocrinol. 2022, 18, 96–110. [Google Scholar] [CrossRef]
- Cashman, K.D. Vitamin D Deficiency: Defining, Prevalence, Causes, and Strategies of Addressing. Calcif. Tissue Int. 2020, 106, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D Deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Dietary Reference Values for Vitamin D. EFSA J. 2016, 14, e04547. [Google Scholar] [CrossRef]
- Souza, S.V.S.; Borges, N.; Vieira, E.F. Vitamin D-Fortified Bread: Systematic Review of Fortification Approaches and Clinical Studies. Food Chem. 2022, 372, 131325. [Google Scholar] [CrossRef] [PubMed]
- Autier, P.; Gandini, S.; Mullie, P. A Systematic Review: Influence of Vitamin D Supplementation on Serum 25-Hydroxyvitamin D Concentration. J. Clin. Endocrinol. Metab. 2012, 97, 2606–2613. [Google Scholar] [CrossRef]
- Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hyppönen, E.; Berry, J.; Vieth, R.; et al. Comparison of Vitamin D2 and Vitamin D3 Supplementation in Raising Serum 25-Hydroxyvitamin D Status: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2012, 95, 1357–1364. [Google Scholar] [CrossRef]
- Auestad, N.; Hurley, J.S.; Fulgoni, V.L.; Schweitzer, C.M. Contribution of Food Groups to Energy and Nutrient Intakes in Five Developed Countries. Nutrients 2015, 7, 4593–4618. [Google Scholar] [CrossRef] [PubMed]
- Ribet, L.; Amira, K.; Emma, J.; Céline, M.; Mickaël, D.-D.; Bosco, N. The Nutritional Contribution and Relationship with Health of Bread Consumption: A Narrative Review. Crit. Rev. Food Sci. Nutr. 2024, 1–28. [Google Scholar] [CrossRef]
- AIBI 2013 Bread Market Report (2015). Available online: https://www.aibi.eu/wp-content/uploads/draft-AIBI-Bread-Market-report-2013.pdf (accessed on 27 May 2025).
- Sajdakowska, M.; Gębski, J.; Jeżewska-Zychowicz, M.; Królak, M. Consumer Choices in the Bread Market: The Importance of Fiber in Consumer Decisions. Nutrients 2021, 13, 2931. [Google Scholar] [CrossRef]
- Lockyer, S.; Spiro, A. The Role of Bread in the UK Diet: An Update. Nutr. Bull. 2020, 45, 133–164. [Google Scholar] [CrossRef]
- Wandersleben, T.; Morales, E.; Burgos-Díaz, C.; Barahona, T.; Labra, E.; Rubilar, M.; Salvo-Garrido, H. Enhancement of Functional and Nutritional Properties of Bread Using a Mix of Natural Ingredients from Novel Varieties of Flaxseed and Lupine. LWT 2018, 91, 48–54. [Google Scholar] [CrossRef]
- Borczak, B.; Sikora, M.; Sikora, E.; Dobosz, A.; Kapusta-Duch, J. Glycaemic Index of Wheat Bread. Starch-Stärke 2018, 70, 1700022. [Google Scholar] [CrossRef]
- Qi, K.; Yi, X.; Li, C. Effects of Endogenous Macronutrients and Processing Conditions on Starch Digestibility in Wheat Bread. Carbohydr. Polym. 2022, 295, 119874. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef] [PubMed]
- Martins, Z.E.; Pinto, E.; Almeida, A.A.; Pinho, O.; Ferreira, I.M.P.L.V.O. Fibre Fortification of Wheat Bread: Impact on Mineral Composition and Bioaccessibility. Food Funct. 2017, 8, 1979–1987. [Google Scholar] [CrossRef]
- Kaim, U.; Goluch, Z.S. Health Benefits of Bread Fortification: A Systematic Review of Clinical Trials According to the PRISMA Statement. Nutrients 2023, 15, 4459. [Google Scholar] [CrossRef]
- Roseli, C.M. 14-Vitamin and Mineral Fortification of Bread. In Technology of Functional Cereal Products; Hamaker, B.R., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2008; pp. 336–361. ISBN 978-1-84569-177-6. [Google Scholar]
- Snetselaar, L.G.; de Jesus, J.M.; DeSilva, D.M.; Stoody, E.E. Dietary Guidelines for Americans, 2020–2025. Nutr. Today 2021, 56, 287–295. [Google Scholar] [CrossRef]
- Hager, A.-S.; Ryan, L.A.M.; Schwab, C.; Gänzle, M.G.; O’Doherty, J.V.; Arendt, E.K. Influence of the Soluble Fibres Inulin and Oat β-Glucan on Quality of Dough and Bread. Eur. Food Res. Technol. 2011, 232, 405–413. [Google Scholar] [CrossRef]
- Atzler, J.J.; Sahin, A.W.; Gallagher, E.; Zannini, E.; Arendt, E.K. Characteristics and Properties of Fibres Suitable for a Low FODMAP Diet- an Overview. Trends Food Sci. Technol. 2021, 112, 823–836. [Google Scholar] [CrossRef]
- Sempio, R.; Segura Godoy, C.; Nyhan, L.; Sahin, A.W.; Zannini, E.; Walter, J.; Arendt, E.K. Closing the Fibre Gap-The Impact of Combination of Soluble and Insoluble Dietary Fibre on Bread Quality and Health Benefits. Foods 2024, 13, 1980. [Google Scholar] [CrossRef] [PubMed]
- Moslemi, M. Reviewing the Recent Advances in Application of Pectin for Technical and Health Promotion Purposes: From Laboratory to Market. Carbohydr. Polym. 2021, 254, 117324. [Google Scholar] [CrossRef]
- Bobade, H.; Gupta, A.; Sharma, S. Chapter 20-Beta-Glucan. In Nutraceuticals and Health Care; Kour, J., Nayik, G.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 343–358. ISBN 978-0-323-89779-2. [Google Scholar]
- Prasadi, N.P.V.; Joye, I.J. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef] [PubMed]
- Joyce, S.A.; Kamil, A.; Fleige, L.; Gahan, C.G.M. The Cholesterol-Lowering Effect of Oats and Oat Beta Glucan: Modes of Action and Potential Role of Bile Acids and the Microbiome. Front. Nutr. 2019, 6, 171. [Google Scholar] [CrossRef] [PubMed]
- Xu, R. Oat Fibre: Overview on Their Main Biological Properties. Eur. Food Res. Technol. 2012, 234, 563–569. [Google Scholar] [CrossRef]
- Tebben, L.; Shen, Y.; Li, Y. Improvers and Functional Ingredients in Whole Wheat Bread: A Review of Their Effects on Dough Properties and Bread Quality. Trends Food Sci. Technol. 2018, 81, 10–24. [Google Scholar] [CrossRef]
- Bread and Flour: Labelling and Composition. Available online: https://www.gov.uk/guidance/bread-and-flour-labelling-and-composition (accessed on 31 May 2025).
- Kiely, M. A Dietary Intervention Study to Evaluate the Efficacy of Fortified Bread in Preventing Low Vitamin D Status Among Older Adults During Wintertime in Ireland. 2024. Available online: https://clinicaltrials.gov/study/NCT06705582 (accessed on 24 April 2025).
- McCleary, B.V.; McLoughlin, C. Determination of Insoluble, Soluble, and Total Dietary Fiber in Foods Using a Rapid Integrated Procedure of Enzymatic-Gravimetric-Liquid Chromatography: First Action 2022.01. J. AOAC Int. 2023, 106, 127–145. [Google Scholar] [CrossRef]
- Sahin, A.W.; Atzler, J.J.; Crofton, E.; Gallagher, E.; Zannini, E.; Walter, J.; Arendt, E.K. Impact of Different Fibre Ingredients on a Low-FODMAP Biscuit Model System. Food Funct. 2023, 14, 7082–7095. [Google Scholar] [CrossRef]
- Hoehnel, A.; Axel, C.; Bez, J.; Arendt, E.K.; Zannini, E. Comparative Analysis of Plant-Based High-Protein Ingredients and Their Impact on Quality of High-Protein Bread. J. Cereal Sci. 2019, 89, 102816. [Google Scholar] [CrossRef]
- Heitmann, M.; Zannini, E.; Arendt, E.K. Impact of Different Beer Yeasts on Wheat Dough and Bread Quality Parameters. J. Cereal Sci. 2015, 63, 49–56. [Google Scholar] [CrossRef]
- Bojňanská, T.; Musilová, J.; Vollmannová, A. Effects of Adding Legume Flours on the Rheological and Breadmaking Properties of Dough. Foods 2021, 10, 1087. [Google Scholar] [CrossRef] [PubMed]
- Angioloni, A.; Collar, C. Bread Crumb Quality Assessment: A Plural Physical Approach. Eur. Food Res. Technol. 2009, 229, 21–30. [Google Scholar] [CrossRef]
- Monteiro, J.S.; Farage, P.; Zandonadi, R.P.; Botelho, R.B.A.; de Oliveira, L.d.L.; Raposo, A.; Shakeel, F.; Alshehri, S.; Mahdi, W.A.; Araújo, W.M.C. A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator. Foods 2021, 10, 614. [Google Scholar] [CrossRef]
- Collar, C.; Bollaín, C.; Angioloni, A. Significance of Microbial Transglutaminase on the Sensory, Mechanical and Crumb Grain Pattern of Enzyme Supplemented Fresh Pan Breads. J. Food Eng. 2005, 70, 479–488. [Google Scholar] [CrossRef]
- Gámbaro, A.; Fiszman, S.; Giménez, A.; Varela, P.; Salvador, A. Consumer Acceptability Compared with Sensory and Instrumental Measures of White Pan Bread: Sensory Shelf-Life Estimation by Survival Analysis. J. Food Sci. 2004, 69, S401–S405. [Google Scholar] [CrossRef]
- O’Connor, A. An Overview of the Role of Bread in the UK Diet. Nutr. Bull. 2012, 37, 193–212. [Google Scholar] [CrossRef]
- Buttriss, J.L.; Stokes, C.S. Dietary Fibre and Health: An Overview. Nutr. Bull. 2008, 33, 186–200. [Google Scholar] [CrossRef]
- Fu, B.X.; Wang, K.; Dupuis, B. Predicting Water Absorption of Wheat Flour Using High Shear-Based GlutoPeak Test. J. Cereal Sci. 2017, 76, 116–121. [Google Scholar] [CrossRef]
- Malegori, C.; Grassi, S.; Ohm, J.-B.; Anderson, J.; Marti, A. GlutoPeak Profile Analysis for Wheat Classification: Skipping the Refinement Process. J. Cereal Sci. 2018, 79, 73–79. [Google Scholar] [CrossRef]
- Goldstein, A.; Ashrafi, L.; Seetharaman, K. Effects of Cellulosic Fibre on Physical and Rheological Properties of Starch, Gluten and Wheat Flour. Int. J. Food Sci. Technol. 2010, 45, 1641–1646. [Google Scholar] [CrossRef]
- Neylon, E.; Arendt, E.K.; Zannini, E.; Sahin, A.W. Fermentation as a Tool to Revitalise Brewers’ Spent Grain and Elevate Techno-Functional Properties and Nutritional Value in High Fibre Bread. Foods 2021, 10, 1639. [Google Scholar] [CrossRef] [PubMed]
- Sahin, A.W.; Atzler, J.J.; Valdeperez, D.; Münch, S.; Cattaneo, G.; O’Riordan, P.; Arendt, E.K. Rejuvenated Brewer’s Spent Grain: EverVita Ingredients as Game-Changers in Fibre-Enriched Bread. Foods 2021, 10, 1162. [Google Scholar] [CrossRef] [PubMed]
- European Union. Regulation (EC) No 1924/2006 of the European Parliament and of the Council. Available online: http://data.europa.eu/eli/reg/2006/1924/oj (accessed on 3 May 2025).
- Piro, M.C.; Muylle, H.; Haesaert, G. Exploiting Rye in Wheat Quality Breeding: The Case of Arabinoxylan Content. Plants 2023, 12, 737. [Google Scholar] [CrossRef]
- Chen, Z.; Li, S.; Fu, Y.; Li, C.; Chen, D.; Chen, H. Arabinoxylan Structural Characteristics, Interaction with Gut Microbiota and Potential Health Functions. J. Funct. Foods 2019, 54, 536–551. [Google Scholar] [CrossRef]
- Zannini, E.; Bravo Núñez, Á.; Sahin, A.W.; Arendt, E.K. Arabinoxylans as Functional Food Ingredients: A Review. Foods 2022, 11, 1026. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Dhital, S.; Zhao, C.; Ye, F.; Chen, J.; Zhao, G. Dietary Fiber-Gluten Protein Interaction in Wheat Flour Dough: Analysis, Consequences and Proposed Mechanisms. Food Hydrocoll. 2021, 111, 106203. [Google Scholar] [CrossRef]
- Mocanu, V.; Stitt, P.A.; Costan, A.R.; Voroniuc, O.; Zbranca, E.; Luca, V.; Vieth, R. Long-Term Effects of Giving Nursing Home Residents Bread Fortified with 125 Microg (5000 IU) Vitamin D(3) per Daily Serving. Am. J. Clin. Nutr. 2009, 89, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, J.; Knuthsen, P. Stability of Vitamin D in Foodstuffs during Cooking. Food Chem. 2014, 148, 170–175. [Google Scholar] [CrossRef]
- Zareie, M.; Abbasi, A.; Faghih, S. Thermal Stability and Kinetic Study on Thermal Degradation of Vitamin D3 in Fortified Canola Oil. J. Food Sci. 2019, 84, 2475–2481. [Google Scholar] [CrossRef]
- Mahmoodani, F.; Perera, C.O.; Fedrizzi, B.; Abernethy, G.; Chen, H. Degradation Studies of Cholecalciferol (Vitamin D3) Using HPLC-DAD, UHPLC-MS/MS and Chemical Derivatization. Food Chem. 2017, 219, 373–381. [Google Scholar] [CrossRef]
- Hemery, Y.M.; Fontan, L.; Moench-Pfanner, R.; Laillou, A.; Berger, J.; Renaud, C.; Avallone, S. Influence of Light Exposure and Oxidative Status on the Stability of Vitamins A and D3 during the Storage of Fortified Soybean Oil. Food Chem. 2015, 184, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodani, F.; Perera, C.O.; Abernethy, G.; Fedrizzi, B.; Chen, H. Lipid Oxidation and Vitamin D3 Degradation in Simulated Whole Milk Powder as Influenced by Processing and Storage. Food Chem. 2018, 261, 149–156. [Google Scholar] [CrossRef]
- Tabibian, M.; Torbati, M.; Afshar Mogaddam, M.R.; Mirlohi, M.; Sadeghi, M.; Mohtadinia, J. Evaluation of Vitamin D3 and D2 Stability in Fortified Flat Bread Samples During Dough Fermentation, Baking and Storage. Adv. Pharm. Bull. 2017, 7, 323–328. [Google Scholar] [CrossRef] [PubMed]
- European Union. Council Directive 90/496/EEC of 24 September 1990 on Nutrition Labelling for Foodstuffs. Off. J. L 1990, 276, 40–44. [Google Scholar]
- Rizzoli, R. Vitamin D Supplementation: Upper Limit for Safety Revisited? Aging Clin. Exp. Res. 2021, 33, 19–24. [Google Scholar] [CrossRef]
- Nawrocka, A.; Szymańska-Chargot, M.; Miś, A.; Wilczewska, A.Z.; Markiewicz, K.H. Effect of Dietary Fibre Polysaccharides on Structure and Thermal Properties of Gluten Proteins–A Study on Gluten Dough with Application of FT-Raman Spectroscopy, TGA and DSC. Food Hydrocoll. 2017, 69, 410–421. [Google Scholar] [CrossRef]
- Li, M.; Li, L.; Sun, B.; Ma, S. Interaction of Wheat Bran Dietary Fiber-Gluten Protein Affects Dough Product: A Critical Review. Int. J. Biol. Macromol. 2024, 255, 128199. [Google Scholar] [CrossRef]
- Farkas, A.; Szabó, E.; Horváth, A.; Jaksics, E.; Németh, R.; Tömösközi, S. Development and Application of a Laboratory Baking Test for the Characterisation of Wholemeal Oat Flours. J. Cereal Sci. 2023, 114, 103761. [Google Scholar] [CrossRef]
- Janssen, F.; Wouters, A.G.B.; Pauly, A.; Delcour, J.A. Relating the Composition and Air/Water Interfacial Properties of Wheat, Rye, Barley, and Oat Dough Liquor. Food Chem. 2018, 264, 126–134. [Google Scholar] [CrossRef]
- Biliaderis, C.G.; Izydorczyk, M.S. (Eds.) Functional Food Carbohydrates; Functional Foods and Nutraceuticals Series; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-8493-1822-1. [Google Scholar]
- Huang, J.; Liao, J.; Qi, J.; Jiang, W.; Yang, X. Structural and Physicochemical Properties of Pectin-Rich Dietary Fiber Prepared from Citrus Peel. Food Hydrocoll. 2021, 110, 106140. [Google Scholar] [CrossRef]
- Neylon, E.; Arendt, E.K.; Zannini, E.; Sahin, A.W. Fundamental Study of the Application of Brewers Spent Grain and Fermented Brewers Spent Grain on the Quality of Pasta. Food Struct. 2021, 30, 100225. [Google Scholar] [CrossRef]
- Tarahi, M.; Shahidi, F.; Hedayati, S. Physicochemical, Pasting, and Thermal Properties of Native Corn Starch–Mung Bean Protein Isolate Composites. Gels 2022, 8, 693. [Google Scholar] [CrossRef]
- Brennan, C.S.; Samyue, E. Evaluation of Starch Degradation and Textural Characteristics of Dietary Fiber Enriched Biscuits. Int. J. Food Prop. 2004, 7, 647–657. [Google Scholar] [CrossRef]
- Zhuang, J.; Zhu, J.; Cheung, P.C.K.; Li, C. The Physical and Chemical Interactions between Starch and Dietary Fiber: Their Impact on the Physicochemical and Nutritional Properties of Starch. Trends Food Sci. Technol. 2024, 149, 104566. [Google Scholar] [CrossRef]
- D’Amore, T.; Russell, I.; Stewart, G.G. Sugar Utilization by Yeast during Fermentation. J. Ind. Microbiol. 1989, 4, 315–323. [Google Scholar] [CrossRef]
- Torbica, A.; Radosavljević, M.; Belović, M.; Tamilselvan, T.; Prabhasankar, P. Biotechnological Tools for Cereal and Pseudocereal Dietary Fibre Modification in the Bakery Products Creation–Advantages, Disadvantages and Challenges. Trends Food Sci. Technol. 2022, 129, 194–209. [Google Scholar] [CrossRef]
- Daum, G.; Lees, N.D.; Bard, M.; Dickson, R. Biochemistry, Cell Biology and Molecular Biology of Lipids of Saccharomyces Cerevisiae. Yeast 1998, 14, 1471–1510. [Google Scholar] [CrossRef]
- Bender, D.; Schönlechner, R. Innovative Approaches towards Improved Gluten-Free Bread Properties. J. Cereal Sci. 2020, 91, 102904. [Google Scholar] [CrossRef]
- Qian, X.; Sun, B.; Ma, S.; Liu, C.; Wang, X. The Role of Lipids in Determining the Gas Cell Structure of Gluten-Free Steamed Oat Cake. Food Hydrocoll. 2024, 148, 109460. [Google Scholar] [CrossRef]
- Baiano, A.; Romaniello, R.; Lamacchia, C.; Notte, E.L. Physical and Mechanical Properties of Bread Loaves Produced by Incorporation of Two Types of Toasted Durum Wheat Flour. J. Food Eng. 2009, 95, 199–207. [Google Scholar] [CrossRef]
- Han, W.; Ma, S.; Li, L.; Zheng, X.; Wang, X. Impact of Wheat Bran Dietary Fiber on Gluten and Gluten-Starch Microstructure Formation in Dough. Food Hydrocoll. 2019, 95, 292–297. [Google Scholar] [CrossRef]
- Pareyt, B.; Finnie, S.M.; Putseys, J.A.; Delcour, J.A. Lipids in Bread Making: Sources, Interactions, and Impact on Bread Quality. J. Cereal Sci. 2011, 54, 266–279. [Google Scholar] [CrossRef]
- Monteau, J.-Y.; Purlis, E.; Besbes, E.; Jury, V.; Le-Bail, A. Water Transfer in Bread during Staling: Physical Phenomena and Modelling. J. Food Eng. 2017, 211, 95–103. [Google Scholar] [CrossRef]
- Salmenkallio-Marttila, M.; Katina, K.; Autio, K. Effects of Bran Fermentation on Quality and Microstructure of High-Fiber Wheat Bread. Cereal Chem. 2001, 78, 429–435. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zeng, X.A.; Brennan, C.S.; Brennan, M.; Han, Z.; Xiong, X.Y. Effects of Pulsed Electric Fields (PEF) on Vitamin C and Its Antioxidant Properties. Int. J. Mol. Sci. 2015, 16, 24159–24173. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D. Vitamin D fortification of foods–sensory, acceptability, cost, and public acceptance considerations. J. Steroid Biochem. Mol. Biol. 2024, 239, 106494. [Google Scholar] [CrossRef]
- Majeed, M.; Rather, M.A. Enhancing Shelf Life and Bioavailability of Vitamin D Through Encapsulation: A Comprehensive Review. Food Biophys. 2025, 20, 15. [Google Scholar] [CrossRef]
Run | BF (%) | Oat Fibre (%) | Cellulose (%) | Pectin (%) | Beta-Glucan (%) | Gluten (%) |
---|---|---|---|---|---|---|
1 | 80 | 0 | 10 | 0 | 10 | 2.9 |
2 | 80 | 0 | 0 | 10 | 10 | 2.9 |
3 | 90 | 0 | 0 | 0 | 10 | 1.2 |
4 | 65 | 15 | 10 | 5 | 5 | 5.7 |
5 | 50 | 30 | 10 | 0 | 10 | 8.0 |
6 | 65 | 15 | 5 | 5 | 10 | 5.5 |
7 | 70 | 15 | 5 | 5 | 5 | 4.9 |
8 | 70 | 0 | 10 | 10 | 10 | 4.6 |
9 | 70 | 15 | 5 | 5 | 5 | 4.9 |
10 | 60 | 30 | 0 | 0 | 10 | 6.3 |
11 | 100 | 0 | 0 | 0 | 0 | 0 |
12 | 50 | 30 | 0 | 10 | 10 | 8.0 |
13 | 50 | 30 | 10 | 10 | 0 | 8.6 |
14 | 75 | 15 | 0 | 5 | 5 | 4.0 |
15 | 90 | 0 | 0 | 10 | 0 | 1.7 |
16 | 55 | 30 | 5 | 5 | 5 | 7.4 |
17 | 60 | 30 | 0 | 10 | 0 | 6.9 |
18 | 40 | 30 | 10 | 10 | 10 | 9.7 |
19 | 90 | 0 | 10 | 0 | 0 | 1.7 |
20 | 75 | 15 | 5 | 0 | 5 | 4.0 |
21 | 65 | 15 | 5 | 10 | 5 | 5.7 |
22 | 70 | 15 | 5 | 5 | 5 | 4.9 |
23 | 70 | 15 | 5 | 5 | 5 | 4.9 |
24 | 60 | 30 | 10 | 0 | 0 | 6.9 |
25 | 80 | 0 | 10 | 10 | 0 | 3.4 |
26 | 70 | 30 | 0 | 0 | 0 | 5.1 |
27 | 75 | 15 | 5 | 5 | 0 | 4.3 |
28 | 85 | 0 | 5 | 5 | 5 | 2.3 |
Run | Specific Volume (mL/g) | Hardness (N) | Fibre Content (g/100 g) |
---|---|---|---|
1 | 3.10 ± 0.21 | 6.28 ± 1.44 | 10.97 |
2 | 2.33 ± 0.05 | 7.40 ± 0.76 | 8.06 |
3 | 4.93 ± 0.07 | 1.68 ± 0.25 | 6.55 |
4 | 2.66 ± 0.02 | 8.93 ± 0.81 | 18.34 |
5 | 2.21 ± 0.04 | 17.42 ± 2.50 | 24.01 |
6 | 2.82 ± 0.07 | 7.23 ± 2.44 | 16.45 |
7 | 3.00 ± 0.05 | 5.96 ± 0.84 | 15.90 |
8 | 1.94 ± 0.05 | 14.80 ± 1.98 | 13.06 |
9 | 3.00 ± 0.05 | 5.96 ± 0.84 | 15.90 |
10 | 2.96 ± 0.21 | 9.72 ± 1.17 | 19.68 |
11 | 4.91 ± 0.07 | 2.38 ± 0.27 | 4.90 |
12 | 1.62 ± 0.08 | 23.55 ± 4.65 | 21.27 |
13 | 1.31 ± 0.13 | 54.86 ± 4.99 | 26.23 |
14 | 3.52 ± 0.01 | 3.24 ± 0.78 | 13.66 |
15 | 2.72 ± 0.18 | 4.65 ± 1.59 | 6.96 |
16 | 2.38 ± 0.10 | 11.13 ± 1.06 | 22.36 |
17 | 1.76 ± 0.01 | 19.59 ± 2.59 | 20.15 |
18 | 1.33 ± 0.01 | 48.99 ± 3.74 | 26.07 |
19 | 3.70 ± 0.10 | 7.55 ± 0.85 | 10.59 |
20 | 2.92 ± 0.01 | 8.14 ± 1.34 | 15.15 |
21 | 1.99 ± 0.01 | 13.59 ± 0.92 | 16.68 |
22 | 3.00 ± 0.05 | 5.96 ± 0.84 | 15.90 |
23 | 3.00 ± 0.05 | 5.96 ± 0.84 | 15.90 |
24 | 1.27 ± 0.11 | 104.19 ± 15.02 | 25.39 |
25 | 2.32 ± 0.01 | 8.38 ± 1.03 | 11.54 |
26 | 2.27 ± 0.03 | 28.81 ± 2.95 | 19.68 |
27 | 4.10 ± 0.02 | 2.74 ± 0.79 | 15.59 |
28 | 4.47 ± 0.14 | 1.61 ± 0.27 | 9.90 |
Sample | BF (%) | Oat Fibre (%) | Cellulose (%) | Pectin (%) | Beta-Glucan (%) | Gluten (%) |
---|---|---|---|---|---|---|
Pre-optimised-1 | 82.8 | 7.6 | 3.0 | 1.4 | 5.2 | 4.4 |
Pre-optimised-2 | 81.1 | 6.0 | 2.6 | 2.6 | 7.7 | 4.8 |
Sample | Specific Volume (mL/g) | Hardness (N) | Fibre Content (g/100 g) |
---|---|---|---|
Pre-optimised-1 | 4.17 ± 0.33 | 2.38 ± 0.49 | 10.86 |
Pre-optimised-2 | 4.39 ± 0.12 | 3.35 ± 0.91 | 10.61 |
Ingredients | White Wheat Bread (Control) | Fibre-Fortified White Wheat Bread | Vitamin D3 + Fibre- Fortified White Wheat Bread | Wholemeal Bread | Vitamin D3-Fortified Wholemeal Bread | |||||
---|---|---|---|---|---|---|---|---|---|---|
Flour Ingredients | % WR | % FF | % WR | % FF | % WR | % FF | % WR | % FF | % WR | % FF |
Flour (BF or WMF) | 58.1 | 100.0 | 42.3 | 82.8 | 29.3 | 57.3 | 58.9 | 100 | 45.7 | 77.5 |
Vitamin D3-fortified flour (250 μg VitD3/100 g BF or WMF) | - | - | - | - | 13.0 | 25.5 | - | - | 13.3 | 22.5 |
Oat fibre | - | - | 3.9 | 7.6 | 3.9 | 7.6 | - | - | - | - |
Beta-glucan | - | - | 2.7 | 5.2 | 2.7 | 5.2 | - | - | - | - |
Cellulose | - | - | 1.5 | 3.0 | 1.5 | 3.0 | - | - | - | - |
Pectin | - | - | 0.7 | 1.4 | 0.7 | 1.4 | - | - | - | - |
Gluten | - | - | 2.3 | 4.4 | 2.3 | 4.4 | - | - | - | - |
Salt | 0.7 | 1.2 | 0.6 | 1.2 | 0.6 | 1.2 | 0.7 | 1.2 | 0.7 | 1.2 |
Sugar | 1.2 | 2.0 | 1.0 | 2.0 | 1.0 | 2.0 | 1.2 | 2.0 | 1.2 | 2.0 |
Yeast | 1.2 | 2.0 | 1.0 | 2.0 | 1.0 | 2.0 | 1.2 | 2.0 | 1.2 | 2.0 |
Sunflower oil | 1.9 | 3.2 | 1.6 | 3.2 | 1.6 | 3.2 | 1.9 | 3.2 | 1.9 | 3.2 |
Water | 37.1 | 63.8 | 42.4 | 83 | 42.4 | 83 | 36.1 | 61.3 | 36.1 | 61.3 |
Total | 100 | 172.2 | 100 | 195.8 | 100 | 195.8 | 100 | 169.7 | 100 | 169.7 |
White Wheat Bread (Control) | Fibre-Fortified White Wheat Bread | Vitamin D3 + Fibre-Fortified White Wheat Bread | Wholemeal Bread | Vitamin D3- Fortified Wholemeal Bread | |
---|---|---|---|---|---|
TDF (g/100 g) | 3.81 ± 0.06 c | 9.31 ± 0.25 b | 10.72 ± 0.31 a | 8.54 ± 0.24 b | 9.54 ± 0.67 ab |
IDF (g/100 g) | 2.44 ± 0.03 b | 7.30 ± 0.26 a | 8.33 ± 0.05 a | 7.18 ± 0.28 a | 7.76 ± 0.93 a |
SDF (g/100 g) | 1.38 ± 0.09 c | 2.01 ± 0.05 ab | 2.39 ± 0.29 a | 1.36 ± 0.05 c | 1.79 ± 0.27 bc |
White Wheat Flour (Control) | Fibre-Fortified White Wheat Flour | Vitamin D3 + Fibre-Fortified White Wheat Flour | Wholemeal Flour | Vitamin D3- Fortified wholemeal Flour | |
---|---|---|---|---|---|
Gluten network development | |||||
PMT (s) | 53.0 ± 2.0 b | 52.3 ± 2.3 b | 53.7 ± 2.1 b | 104.0 ± 12.5 a | 106.7 ± 10.1 a |
Maximum Torque (BU) | 69.3 ± 2.3 a | 61.7 ± 0.6 b | 60.3 ± 0.6 b | 33.7 ± 4.2 c | 29.0 ± 1.7 c |
Pasting properties | |||||
PV (cP) | 1378 ± 10.0 a | 956 ± 20.0 b | 927 ± 63.0 b | 708 ± 13.3 d | 821 ± 56.0 c |
FV (cP) | 1781 ± 11.0 a | 1353 ± 23.0 b | 1352 ± 40.0 b | 1118 ± 34.6 c | 1331 ± 97.2 b |
BV (cP) | 520 ± 28.0 a | 291 ± 10.0 b | 304 ± 26.0 b | 240 ± 10.1 c | 263 ± 19.8 bc |
DDT (min) | 1.4 ± 0.8 b | 6.1 ± 0.4 a | 6.1 ± 0.2 a | 7.8 ± 1.9 a | 7.9 ± 2.0 a |
C2 (Nm) | 0.4 ± 0.0 b | 0.3 ± 0.0 c | 0.3 ± 0.0 c | 0.6 ± 0.0 a | 0.6 ± 0.0 a |
C3 (Nm) | 4.8 ± 0.1 a | 1.3 ± 0.0 c | 1.2 ± 0.0 c | 2.1 ± 0.0 b | 2.1 ± 0.0 b |
C4 (Nm) | 1.9 ± 0.0 a | 1.1 ± 0.1 c | 1.0 ± 0.0 c | 1.5 ± 0.1 b | 1.6 ± 0.0 b |
C5 (Nm) | 4.4 ± 0.1 a | 2.0 ± 0.5 cd | 1.5 ± 0.0 d | 2.5 ± 0.1 bc | 2.7 ± 0.0 b |
Fermentation | |||||
HM (mm) | 65.9 ± 2.8 a | 56.1 ± 2.7 b | 59.2 ± 4.9 ab | 30.4 ± 0.8 c | 27.9 ± 0.7 c |
Total CO2 produced (mL) | 1958 ± 6.6 b | 2151 ± 66.5 a | 1966 ± 88.1 b | 1733 ± 38.6 c | 1732 ± 68.4 c |
White Wheat Bread (Control) | Fibre-Fortified White Wheat Bread | Vitamin D3 + Fibre-Fortified White Wheat Bread | Wholemeal Bread | Vitamin D3— Fortified Wholemeal Bread | |
---|---|---|---|---|---|
Vitamin D3 (μg/100 g bread) | n.d. | n.d. | 27.2 ± 7.4 | n.d. | 28.4 ± 7.8 |
Specific Volume (mL/g) | 4.8 ± 0.1 a | 4.2 ± 0.4 b | 4.0 ± 0.4 b | 2.4 ± 0.1 c | 2.1 ± 0.0 c |
Water Activity | 0.97 ± 0.0 a | 0.98 ± 0.0 a | 0.98 ± 0.0 a | 0.98 ± 0.0 a | 0.97 ± 0.0 a |
Crumb structure | |||||
Number of cells | 4407 ± 227 a | 4551 ± 311 a | 4378 ± 275 a | 3660 ± 194 b | 3653 ± 299 b |
Cells diameter (mm) | 2.6 ± 0.2 a | 2.4 ± 0.2 b | 2.4 ± 0.2 b | 1.9 ± 0.1 c | 1.8 ± 0.1 c |
Bread Texture | |||||
Hardness (N) | 2.3 ± 0.4 d | 3.3 ± 0.9 cd | 3.6 ± 1.3 cd | 23.5 ± 3.8 b | 29.9 ± 3.5 a |
Staling rate (%) | 3.0 ± 1.0 a | 2.6 ± 0.9 ab | 2.4 ± 0.7 ab | 2.3 ± 0.7 b | 1.1 ± 0.4 c |
Colour difference ΔE with control | |||||
ΔECrust | - | 2.9 ± 1.9 b | 4.7 ± 1.6 ab | 4.8 ± 1.9 ab | 5.1 ± 0.9 a |
ΔECrumb | - | 3.1 ± 1.2 b | 2.5 ± 0.2 b | 15.9 ± 0.8 a | 16.4 ± 0.7 a |
L*crumb | 64.4 ± 2.7 | 66.9 ± 1.7 | 66.6 ± 0.0 | 51.4 ± 0.3 | 51.0 ± 0.3 |
a*crumb | −1.2 ± 0.2 | −1.1 ± 0.1 | −0.9 ± 0.0 | 6.3 ± 0.1 | 6.5 ± 0.1 |
b*crumb | 14.7 ± 1.2 | 16.5 ± 0.8 | 16.4 ± 0.9 | 20.0 ± 0.2 | 20.1 ± 0.1 |
L*crust | 39.5 ± 4.5 | 37.4 ± 2.3 | 38.5 ± 3.5 | 42.5 ± 2.0 | 43.2 ± 1.1 |
a*crust | 15.7 ± 1.3 | 15.3 ± 1.4 | 16.0 ± 0.8 | 13.4 ± 0.3 | 13.8 ± 0.0 |
b*crust | 22.6 ± 4.4 | 22.9 ± 0.6 | 22.8 ± 4.7 | 25.5 ± 1.3 | 25.7 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boudrag, S.; Arendt, E.K.; Segura Godoy, C.; Sahin, A.W.; Nyhan, L.; Cashman, K.D.; Zannini, E. Optimising White Wheat Bread Fortification with Vitamin D3 and Dietary Fibre: Balancing Nutritional Enhancement and Technological Quality. Foods 2025, 14, 2055. https://doi.org/10.3390/foods14122055
Boudrag S, Arendt EK, Segura Godoy C, Sahin AW, Nyhan L, Cashman KD, Zannini E. Optimising White Wheat Bread Fortification with Vitamin D3 and Dietary Fibre: Balancing Nutritional Enhancement and Technological Quality. Foods. 2025; 14(12):2055. https://doi.org/10.3390/foods14122055
Chicago/Turabian StyleBoudrag, Sabrina, Elke K. Arendt, Celia Segura Godoy, Aylin W. Sahin, Laura Nyhan, Kevin D. Cashman, and Emanuele Zannini. 2025. "Optimising White Wheat Bread Fortification with Vitamin D3 and Dietary Fibre: Balancing Nutritional Enhancement and Technological Quality" Foods 14, no. 12: 2055. https://doi.org/10.3390/foods14122055
APA StyleBoudrag, S., Arendt, E. K., Segura Godoy, C., Sahin, A. W., Nyhan, L., Cashman, K. D., & Zannini, E. (2025). Optimising White Wheat Bread Fortification with Vitamin D3 and Dietary Fibre: Balancing Nutritional Enhancement and Technological Quality. Foods, 14(12), 2055. https://doi.org/10.3390/foods14122055