Volatile Profiling of Tongcheng Xiaohua Tea from Different Geographical Origins: A Multimethod Investigation Using Sensory Analysis, E-Nose, HS-SPME-GC-MS, and Chemometrics
Abstract
1. Introduction
2. Materials and Methods
2.1. Tea Samples
2.2. Sensory Characteristics
2.3. Electronic Nose Analysis
2.4. HS-SPME-GC-MS Analysis
2.5. Qualitative and Quantitative Analysis of Compounds
2.6. Multivariate Data Analysis
3. Results and Discussion
3.1. E-Nose Analysis
3.2. Sensory Evaluation
3.3. Aroma Characteristics of Tongcheng Xiaohua Tea from Different Production Areas
3.4. The Odor Characteristics of Tongcheng Xiaohua Tea from Four Production Areas
3.5. Exploratory Analysis of Volatile Components
3.6. Regional Volatile Biomarkers and Environmental Aroma Modulation
3.7. Quality-Driven Metabolic Differentiation
3.8. Future Perspectives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Göksu Sürücü, C.; Tolun, A.; Halisçelik, O.; Artık, N. Brewing method-dependent changes of volatile aroma constituents of green tea (Camellia sinensis L.). Food Sci. Nutr. 2024, 12, 7186–7201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, C.; Lv, J.; Qiu, G.; Tian, H. Description of key aroma components of green tea and the influence of processing. J. Food Compos. Anal. 2025, 141, 107367. [Google Scholar] [CrossRef]
- He, Y.; Wang, X.; Li, P.; Lv, Y.; Nan, H.; Wen, L.; Wang, Z. Research progress of wine aroma components: A critical review. Food Chem. 2023, 402, 134491. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Zhang, L.; Huang, W.; Lin, F.; Xiao, C.; Zheng, Z.; Huang, Y.; Sun, W. Underlying characteristic aroma of white tea from diverse geographical origins and its prediction. J. Sci. Food Agric. 2025, 105, 4558–4568. [Google Scholar] [CrossRef] [PubMed]
- Piergiovanni, M.; Giliberti, C.; Maffezzoni, C.; Errico, D.; Blandino, M.; Dall’Asta, C.; Mattarozzi, M.; Bianchi, F.; Giannetto, M.; Careri, M. Electronic nose technology for the detection of ergot alkaloid in soft wheat and identification of the relevant volatile compounds by solid phase microextraction/gas chromatography-high resolution Orbitrap-mass spectrometry coupled to chemometrics. Food Chem. 2025, 484, 144455. [Google Scholar] [CrossRef]
- Xi, B.-N.; Zhang, J.-J.; Xu, X.; Li, C.; Shu, Y.; Zhang, Y.; Shi, X.; Shen, Y. Characterization and metabolism pathway of volatile compounds in walnut oil obtained from various ripening stages via HS-GC-IMS and HS-SPME-GC-MS. Food Chem. 2024, 435, 137547. [Google Scholar] [CrossRef]
- Mourão, R.S.; Sanson, A.L.; Martucci, M.E.P. HS-SPME-GC-MS combined with metabolomic approach to discriminate volatile compounds of Brazilian coffee from different geographic origins. Food Biosci. 2023, 56, 103395. [Google Scholar] [CrossRef]
- Perestrelo, R.; Barros, A.S.; Rocha, S.M.; Câmara, J.S. Establishment of the varietal profile of Vitis vinifera L. grape varieties from different geographical regions based on HS-SPME/GC-qMS combined with chemometric tools. Microchem. J. 2014, 116, 107–117. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Nayik, G.A. Machine Learning Algorithms Applied to Semi-Quantitative Data of the Volatilome of Citrus and Other Nectar Honeys with the Use of HS-SPME/GC-MS Analysis, Lead to a New Index of Geographical Origin Authentication. Foods 2023, 12, 509. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, G.; Xie, H.; Zhang, J.; Huang, J.; Liu, Z.; Wang, C. Characterization of the key differential aroma compounds in five dark teas from different geographical regions integrating GC-MS, ROAV and chemometrics approaches. Food Res. Int. 2024, 194, 114928. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Wu, Y.; Qu, F.; Liu, L.; Wang, B.; Wang, P.; Zhang, X. HS-SPME/GC-MS reveals the season effects on volatile compounds of green tea in high-latitude region. Foods 2022, 11, 3016. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Huang, Y.; Li, Z.; Zhao, X.; Huang, H.; Zhong, N.; Zheng, H.; Chen, Q. Difference in aroma components of black teas processed on different dates in the spring season. Foods 2023, 12, 4368. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, F.; Wu, W.; Yu, W.; Zhang, G.; Huang, X.; Hao, Y.; Luo, L. Identification and quality evaluation of Lushan Yunwu tea from different geographical origins based on metabolomics. Food Res. Int. 2024, 186, 114379. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Wang, S.; Dong, Y.; Chen, W.; Wang, Y.; Xu, H.; Zhang, Z.; Fang, Y.; Ju, Y. Targeted metabolomics analysis based on HS-SPME-GC-MS to discriminate geographical origin of ‘Muscat Hamburg’grape and wine. Food Res. Int. 2024, 181, 114120. [Google Scholar] [CrossRef] [PubMed]
- Methodology for Sensory Evaluation of Tea. Standard’s GB/T 23776-2018; State Administration for Market Regulation. Standardization Administration of PRC: Beijing, China, 2018.
- Li, L.; Li, M.; Liu, Y.; Cui, Q.; Bi, K.; Jin, S.; Wang, Y.; Ning, J.; Zhang, Z. High-sensitivity hyperspectral coupled self-assembled nanoporphyrin sensor for monitoring black tea fermentation. Sens. Actuators B Chem. 2021, 346, 130541. [Google Scholar] [CrossRef]
- Peng, Q.; Li, S.; Zheng, H.; Meng, K.; Jiang, X.; Shen, R.; Xue, J.; Xie, G. Characterization of different grades of Jiuqu hongmei tea based on flavor profiles using HS-SPME-GC-MS combined with E-nose and E-tongue. Food Res. Int. 2023, 172, 113198. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, L.; Bai, F.; Zheng, S.; Yan, J.; Wei, H.; Meng, Q.; Tong, H. Evaluation of chongqing Tuo Tea at different grades: An integrated approach by artificial and intelligent sensory, non-volatile, and volatile compounds analysis. Foods 2024, 13, 865. [Google Scholar] [CrossRef]
- Zhai, X.; Zhang, L.; Granvogl, M.; Ho, C.T.; Wan, X. Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3867–3909. [Google Scholar] [CrossRef]
- Guo, Q.; Adelina, N.M.; Hu, J.; Zhang, L.; Zhao, Y. Comparative analysis of volatile profiles in four pine-mushrooms using HS-SPME/GC-MS and E-nose. Food Control 2022, 134, 108711. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, J.; Wang, Y.; Zhu, T.; Huang, M.; Ye, H.; Wei, J.; Wu, J.; Sun, J.; Li, H. Research on interaction regularities and mechanisms between lactic acid and aroma compounds of Baijiu. Food Chem. 2022, 397, 133765. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, Q.; Jia, M.; Wang, Y.; Zhang, Y.; Jia, X.; Zheng, X.; Wang, H. The Effects of Rock Zones and Tea Tree Varieties on the Growth and Quality of Wuyi Rock Tea Based on the OPLS-DA Model and Machine Learning. Agriculture 2024, 14, 573. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, J.; Pan, Y.; Feng, X.; Yan, A.; Wang, X.; Xiang, L.; Guo, H.; He, L.; Chen, T. Formation of aroma characteristics driven by microorganisms during long-term storage of Liubao tea. Food Chem. 2025, 476, 143400. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, G.; Lin, S.; Liu, Z.; Wang, P.; Li, J.; Zhang, Q.; He, H. Digital evaluation of aroma intensity and odor characteristics of tea with different types—Based on OAV-splitting method. Foods 2022, 11, 2204. [Google Scholar] [CrossRef] [PubMed]
- Flaig, M.; Qi, S.; Wei, G.; Yang, X.; Schieberle, P. Characterization of the key odorants in a high-grade Chinese green tea beverage (Camellia sinensis; Jingshan cha) by means of the sensomics approach and elucidation of odorant changes in tea leaves caused by the tea manufacturing process. J. Agric. Food Chem. 2020, 68, 5168–5179. [Google Scholar] [CrossRef]
- Yu, J.; Ho, C.-T.; Lin, Z.; Zhu, Y.; Feng, Z.; Ni, D.; Zeng, S.; Zeng, X.; Wang, Y.; Ning, J. Sensomics-assisted characterization of key flowery aroma compounds in Lu’an Guapian green tea infusion (Camellia sinensis). J. Agric. Food Chem. 2023, 71, 6120–6132. [Google Scholar] [CrossRef]
- Zhu, J.; Niu, Y.; Xiao, Z. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC× GC-qMS). Food Chem. 2021, 339, 128136. [Google Scholar] [CrossRef]
- Tian, D.; Huang, G.; Deng, X.; Ren, L.; Yu, J.; Huang, Y.; Ma, C.; Zhou, X.; Li, Y.; Li, L. The Aroma Compounds Contributing to the Characteristic Flavour of Ripe Pu-erh Tea and Their Molecular Mechanisms of Interaction with Olfactory Receptors. LWT 2025, 224, 117808. [Google Scholar] [CrossRef]
- Peng, Q.; Li, S.; Shen, R.; Huang, J.; Beatrice, B.M.; Chen, X.; Xie, G. Comparative study of volatile compounds and metabolic pathways of Congou black tea from four regions based on sensory evaluation and HS-SPME/GC-MS. Microchem. J. 2024, 205, 111276. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Liu, X.; Liu, C.; Qian, J.; Yang, J.; Zhou, X.; Jia, Y.; Tang, J.; Zeng, L. Characterization of key odorants in Lingtou Dancong oolong tea and their differences induced by environmental conditions from different altitudes. Metabolites 2022, 12, 1063. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, L.; Huang, Y.; Jia, L.; Wang, J. Characteristic flavor compounds in Guizhou green tea and the environmental factors influencing their formation: Investigation using stable isotopes, electronic nose, and headspace-gas chromatography ion migration spectrometry. LWT 2024, 196, 115887. [Google Scholar] [CrossRef]
- Qi, H.; Ding, S.; Pan, Z.; Li, X.; Fu, F. Characteristic volatile fingerprints and odor activity values in different citrus-tea by HS-GC-IMS and HS-SPME-GC-MS. Molecules 2020, 25, 6027. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Watanabe, N.; Yang, Z. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Crit. Rev. Food Sci. Nutr. 2019, 59, 2321–2334. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-C.; Shamala, L.F.; Yi, X.-K.; Yan, Z.; Wei, S. Analysis of terpene synthase family genes in Camellia sinensis with an emphasis on abiotic stress conditions. Sci. Rep. 2020, 10, 933. [Google Scholar] [CrossRef]
- Winterhalter, P.; Rouseff, R. Carotenoid-Derived Aroma Compounds: An Introduction; ACS Publications: Washington, DC, USA, 2002. [Google Scholar]
- Yang, Z.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Wang, B.; Chen, H.; Qu, F.; Song, Y.; Di, T.; Wang, P.; Zhang, X. Identification of aroma-active components in black teas produced by six Chinese tea cultivars in high-latitude region by GC-MS and GC-O analysis. Eur. Food Res. Technol. 2022, 248, 647–657. [Google Scholar] [CrossRef]
- Xiong, Z.; Feng, W.; Xia, D.; Zhang, J.; Wei, Y.; Li, T.; Huang, J.; Wang, Y.; Ning, J. Distinguishing raw pu-erh tea production regions through a combination of HS-SPME-GC-MS and machine learning algorithms. LWT 2023, 185, 115140. [Google Scholar] [CrossRef]
No. | Compounds | CAS | RI a | Identification Basis b | Semi-Quantitative Concentration (μg/L) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HY-S | HY-P | LM-S | LM-P | SX-S | SX-P | YT-S | YT-P | |||||
1 | Dimethyl sulfide | 75-18-3 | <700 | MS | 25.18 ± 7.03 c | 25.93 ± 7.46 c | 21.29 ± 6.09 c | 33.65 ± 2.17 c | 29.32 ± 4.66 c | 30.24 ± 11.31 c | 68.63 ± 12.25 b | 142.51 ± 8.27 a |
2 | 3-Methyl butanal | 590-86-3 | <700 | MS | 8.69 ± 1.76 a | 4.19 ± 0.62 b | 5.43 ± 1.12 b | 2.05 ± 0.37 c | 5.39 ± 1.01 b | 4.91 ± 1.23 b | 4.51 ± 0.9 b | 5.62 ± 1.34 b |
3 | 2-Methyl butanal | 96-17-3 | <700 | MS | 23.83 ± 4.6 a | 12.66 ± 2.74 bc | 17.56 ± 3.21 b | 2.98 ± 0.71 d | 15.17 ± 2.65 bc | 13.73 ± 4.24 bc | 12.15 ± 2.03 bc | 11.09 ± 2.61 c |
4 | 1-Penten-3-ol | 616-25-1 | <700 | MS | 2.59 ± 0.22 bcd | 4.26 ± 1.08 ab | 3.63 ± 0.82 abc | 0.87 ± 0.07 d | 2.53 ± 0.6 cd | 2.57 ± 0.4 cd | 5.08 ± 1.53 a | 3.76 ± 0.35 bcd |
5 | 1-Pentanol | 71-41-0 | 759 | MS, RI | 14.74 ± 2.67 ab | 16.11 ± 4.1 a | 13.3 ± 3.63 bc | 2.76 ± 0.80 c | 12.56 ± 1.79 ab | 12.35 ± 1.86 ab | 16.41 ± 0.91 a | 17.59 ± 2.16 a |
6 | 4-Methyl-3-penten-2-one | 141-79-7 | 794 | MS, RI | 3.21 ± 0.79 d | n.d. c | 5.10 ± 0.50 c | 1.35 ± 0.41 e | n.d. | n.d. | 6.88 ± 0.86 b | 8.58 ± 1.65 a |
7 | Hexanal | 66-25-1 | 799 | MS, RI | 25.45 ± 2.86 b | 25.34 ± 5.42 b | 24.41 ± 5.5 b | 7.19 ± 1.57 d | 16.08 ± 2.35 c | 16.88 ± 3.44 c | 25.52 ± 3.68 b | 36.45 ± 2.61 a |
8 | 1-ethyl-1H-pyrrole | 617-92-5 | 803 | MS, RI | 0.52 ± 0.10 d | 0.71 ± 0.06 d | 1.51 ± 0.09 c | 0.50 ± 0.10 d | 0.47 ± 0.06 d | 0.98 ± 0.24 | 5.2 ± 0.69 b | 6.52 ± 0.03 a |
9 | (Z)-3-Hexen-1-ol | 928-97-2 | 843 | MS, RI | 8.15 ± 1.49 ab | 6.65 ± 1.61 ab | 17.06 ± 4.3 a | 2.99 ± 0.72 b | 6.97 ± 0.18 ab | 24.57 ± 5.68 a | 13.59 ± 2.85 ab | 14.09 ± 4.29 ab |
10 | Ethylbenzene | 100-41-4 | 848 | MS, RI | 2.28 ± 0.46 b | 3.35 ± 1.86 b | 2.59 ± 2.64 b | 1.41 ± 1.93 b | 0.49 ± 0.85 b | 0.87 ± 0.35 b | 7.67 ± 1.5 a | 8.82 ± 3.73 a |
11 | p-Xylene | 106-42-3 | 858 | MS, RI | 16.14 ± 3.21 a | 12.38 ± 3.06 ab | 9.65 ± 0.16 bc | 5.43 ± 0.8 c | 5.54 ± 1.77 c | 10.69 ± 3.29 abc | 12.78 ± 3.33 ab | 11.66 ± 3.49 ab |
12 | 2-Methyl-1-butyl acetate | 624-41-9 | 869 | MS, RI | 0.54 ± 0.05 b | 1.10 ± 0.12 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
13 | Heptanal | 111-71-7 | 892 | MS, RI | 7.05 ± 1.87 b | 12.43 ± 0.4 a | 7.46 ± 1.14 b | 2.39 ± 0.26 c | 7.00 ± 0.63 b | 7.48 ± 0.89 b | 5.59 ± 0.81 b | 7.34 ± 1.57 b |
14 | α-Pinene | 80-56-8 | 925 | MS, RI | 34.39 ± 11.04 b | 100.17 ± 1.11 a | n.d. | n.d. | 22.01 ± 4.24 c | 23.21 ± 6.43 c | 1.27 ± 0.23 d | n.d. |
15 | Benzaldehyde | 100-52-7 | 958 | MS, RI | 6.14 ± 1.86 ab | 5.67 ± 0.85 ab | 8.36 ± 2.26 a | 1.13 ± 0.25 c | 4.42 ± 0.83 b | 4.83 ± 1.76 b | 6.68 ± 2.24 ab | 5.59 ± 0.95 ab |
16 | 1-Heptanol | 111-70-6 | 962 | MS, RI | 1.95 ± 0.32 b | 3.90 ± 0.29 a | n.d. | n.d. | n.d. | n.d. | n.d. | 1.89 ± 0.38 b |
17 | 1-Octen-3-ol | 3391-86-4 | 972 | MS, RI | 2.80 ± 0.36 de | 3.67 ± 0.68 cd | 4.31 ± 0.43 abc | 0.65 ± 0.19f | 3.96 ± 0.42 bc | 2.45 ± 0.34 e | 5.14 ± 0.61 a | 4.71 ± 0.93 ab |
18 | Ethyl hexanoate | 123-66-0 | 990 | MS, RI | 2.10 ± 0.12 e | 3.80 ± 0.37 d | 5.53 ± 0.48 c | 1.33 ± 0.41 e | 4.53 ± 0.6 cd | 8.46 ± 1.68 b | 11.48 ± 1.28 a | 5.65 ± 0.86 c |
19 | (Z)-3-Hexenol acetate | 3681-71-8 | 997 | MS, RI | 1.40 ± 0.07 b | n.d. | n.d. | 1.29 ± 0.15 b | 0.89 ± 0.02 b | 12.11 ± 1.02 a | 15.13 ± 1.65 a | 10.56 ± 11.39 a |
20 | 3-Carene | 13466-78-9 | 1002 | MS, RI | n.d. | n.d. | n.d. | n.d. | 10.39 ± 2.17 b | 15.02 ± 0.61 a | n.d. | n.d. |
21 | Hexyl acetate | 142-92-7 | 1005 | MS, RI | 1.38 ± 0.23 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
22 | o-Cymene | 527-84-4 | 1018 | MS, RI | 1.58 ± 0.47 b | 5.55 ± 1.82 a | 2.16 ± 0.12 b | n.d. | 1.16 ± 0.42 bc | 1.76 ± 0.17 b | n.d. | n.d. |
23 | D-Limonene | 5989-27-5 | 1023 | MS, RI | n.d. | 50.03 ± 11.62 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
24 | Benzeneacetaldehyde | 122-78-1 | 1036 | MS, RI | 1.74 ± 0.25 b | 2.17 ± 0.17 a | 1.26 ± 0.22 c | 0.46 ± 0.06 d | 1.24 ± 0.39 c | n.d. | n.d. | n.d. |
25 | (E,E)-3,5-Octadien-2-one | 30086-02-3 | 1064 | MS, RI | 3.40 ± 0.90 cd | 7.22 ± 1.56 b | 9.87 ± 1.71 a | 1.45 ± 0.38 de | 3.92 ± 0.99 c | n.d. | 1.76 ± 0.47 de | 7.21 ± 1.76 b |
26 | (E)-Linalool oxide (furanoid) | 34995-77-2 | 1066 | MS, RI | 16.83 ± 2.62 b | 15.03 ± 6.64 b | 15.37 ± 2.57 b | 4.65 ± 1.14 d | 12.72 ± 1.11 bc | 10.46 ± 3.69 bcd | 23.44 ± 4.25 a | 6.59 ± 0.24 cd |
27 | Linalool | 78-70-6 | 1097 | MS, RI | 49.32 ± 11.49 bc | 57.23 ± 3.74 bc | 53.09 ± 3.55 bc | 18.96 ± 2.48 d | 45.8 ± 3.03 c | 69.49 ± 19.77 ab | 65.38 ± 9.84 abc | 79.74 ± 15.56 a |
28 | Nonanal | 124-19-6 | 1101 | MS, RI | 18.59 ± 3.29 a | 23.88 ± 3.02 a | 22.43 ± 4.03 a | 4.96 ± 1.85 b | 15.49 ± 2.21 a | 15.95 ± 6.48 a | 20.57 ± 5.73 a | 18.42 ± 5.43 a |
29 | Phenylethyl Alcohol | 22258 | 1107 | MS, RI | 2.35 ± 0.42 d | 7.40 ± 0.46 a | 3.63 ± 0.97 c | 2.86 ± 0.44 cd | 5.51 ± 0.39 b | 6.21 ± 1.07 b | 3.60 ± 0.51 c | 3.31 ± 0.35 cd |
30 | Fenchol | 1632-73-1 | 1117 | MS, RI | 2.45 ± 0.15 a | 2.06 ± 0.11 b | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
31 | 1-Nonanol | 143-08-8 | 1172 | MS, RI | 1.44 ± 0.36 b | 1.53 ± 0.27 b | 1.08 ± 0.27 b | 1.16 ± 0.26 b | 1.27 ± 0.06 b | n.d. | 1.59 ± 0.48 b | 2.57 ± 0.24 a |
32 | (3R,6S)-2,2,6-Trimethyl-6-vinyltetrahydro-2H-pyran-3-ol | 39028-58-5 | 1173 | MS, RI | 4.56 ± 1.13 cd | 6.38 ± 0.65 bc | 6.88 ± 0.49 b | 1.07 ± 0.31 e | 4.01 ± 1.29 d | 8.88 ± 1.63 a | 10.34 ± 1.53 a | 5.89 ± 1.31 bcd |
33 | Terpinen-4-ol | 562-74-3 | 1180 | MS, RI | 2.22 ± 0.32 a | 1.23 ± 0.20 b | n.d. | n.d. | 0.53 ± 0.04 c | n.d. | n.d. | n.d. |
34 | (Z)-3-Hexenyl butanoate | 16491-36-4 | 1183 | MS, RI | 5.89 ± 0.21 d | 5.16 ± 0.68 de | 8.79 ± 1.37 c | 2.75 ± 0.64 e | 7.38 ± 0.43 cd | 16.65 ± 1.3 a | 14.59 ± 2.49 ab | 12.93 ± 3.01 b |
35 | Methyl salicylate | 119-36-8 | 1191 | MS, RI | 4.86 ± 0.11 b | 4.95 ± 0.40 b | 5.10 ± 0.75 b | 1.95 ± 0.35 cd | 4.13 ± 0.42 b | 5.45 ± 0.92 bc | 7.52 ± 2.53 a | 6.05 ± 1.52 bc |
36 | α-Terpineol | 98-55-5 | 1194 | MS, RI | 7.20 ± 0.93 a | 3.51 ± 0.17 b | 2.99 ± 0.20 b | 1.09 ± 0.14 cd | 2.71 ± 0.17 b | n.d. | 2.07 ± 1.18 bc | n.d. |
37 | Safranal | 116-26-7 | 1197 | MS, RI | 0.84 ± 0.21 cd | 2.15 ± 0.44 a | 0.61 ± 0.16 d | n.d. | 0.48 ± 0.06 d | n.d. | 1.11 ± 0.21 bc | 1.38 ± 0.23 b |
38 | Decanal | 112-31-2 | 1204 | MS, RI | 1.61 ± 0.19 cd | 1.87 ± 0.17 bc | 2.38 ± 0.61 ab | 0.79 ± 0.21 e | 1.13 ± 0.15 de | 1.90 ± 0.27 bc | 2.15 ± 0.45 bc | 2.94 ± 0.52 a |
39 | β-Cyclocitral | 432-25-7 | 1218 | MS, RI | n.d. | n.d. | n.d. | n.d. | 5.66 ± 1.42 b | 6.47 ± 0.42 a | n.d. | n.d. |
40 | Methyl nonanoate | 1731-84-6 | 1222 | MS, RI | n.d. | n.d. | 1.14 ± 0.17 | n.d. | n.d. | n.d. | n.d. | n.d. |
41 | (Z)-3-Hexenyl isovalerate | 35154-45-1 | 1234 | MS, RI | n.d. | n.d. | 3.61 ± 0.63 b | 0.59 ± 0.17 d | 1.5 ± 0.08 c | 3.34 ± 0.45 b | 2.94 ± 1.01 b | 4.64 ± 0.01 a |
42 | Hexyl 2-methylbutyrate | 10032-15-2 | 1235 | MS, RI | 4.33 ± 0.95 a | 4.12 ± 1.05 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
43 | Geraniol | 106-24-1 | 1249 | MS, RI | 24.85 ± 4.19 b | 24.36 ± 2.05 b | 20.24 ± 0.96 b | 9.97 ± 2.98 c | 25.33 ± 3.74 b | 37.78 ± 8.25 a | 23.16 ± 5.36 b | 28.68 ± 3.64 b |
44 | Indole | 120-72-9 | 1289 | MS, RI | 3.37 ± 0.63 d | 7.20 ± 0.82 c | 2.74 ± 0.76 d | 2.51 ± 0.58 d | 3.62 ± 0.17 d | 6.27 ± 1.55 c | 9.83 ± 1.4 b | 15.63 ± 2.85 a |
45 | α-Terpinyl acetate | 80-26-2 | 1346 | MS, RI | 1.05 ± 0.1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
46 | α-Cubebene | 17699-14-8 | 1349 | MS, RI | 0.69 ± 0.16 c | 1.5 ± 0.21 b | 1.32 ± 0.25 b | n.d. | n.d. | 4.06 ± 0.58 a | n.d. | n.d. |
47 | (Z)-3-Hexenyl hexanoate | 31501-11-8 | 1379 | MS, RI | 8.97 ± 0.82 cd | 8.39 ± 0.53 cd | 8.43 ± 1.83 cd | 5.64 ± 0.58 d | 11.74 ± 0.86 c | 27.00 ± 2.39 a | 30.28 ± 3.62 a | 19.52 ± 3.95 b |
48 | (Z)-3-Hexenyl (Z)-3-hexenoate | 61444-38-0 | 1382 | MS, RI | n.d. | n.d. | 1.14 ± 0.24 bc | 0.86 ± 0.09 c | n.d. | 1.57 ± 0.32 b | 3.02 ± 0.79 a | 2.69 ± 0.54 a |
49 | Hexyl hexanoate | 6378-65-0 | 1384 | MS, RI | 1.29 ± 0.20 a | 0.99 ± 0.09 b | n.d. | n.d. | 1.36 ± 0.12 a | n.d. | n.d. | n.d. |
50 | (Z)-Jasmone | 488-10-8 | 1392 | MS, RI | 8.18 ± 1.2 c | 12.19 ± 2.13 bc | 17.77 ± 3.62 b | 7.33 ± 0.9 c | 6.69 ± 1.02 c | 13.16 ± 3.55 bc | 27.41 ± 3.63 a | 27.6 ± 8.55 a |
51 | Longifolene | 475-20-7 | 1413 | MS, RI | 1.26 ± 0.29 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
52 | Cedrene | 11028-42-5 | 1419 | MS, RI | 1.97 ± 0.41 a | 1.16 ± 0.03 b | n.d. | n.d. | 0.68 ± 0.04 c | n.d. | n.d. | n.d. |
53 | Caryophyllene | 87-44-5 | 1422 | MS, RI | 0.78 ± 0.21 c | 0.53 ± 0.75 cd | 1.28 ± 0.07 b | 3.69 ± 0.12 a | 3.41 ± 0.1 a | |||
54 | α-Ionone | 127-41-3 | 1422 | MS, RI | 1.88 ± 0.29 d | 2.95 ± 0.12 bc | 2.62 ± 0.48 d | 0.83 ± 0.15 e | 1.53 ± 0.01 d | 1.57 ± 0.28 d | 3.83 ± 0.26 a | 3.29 ± 0.22 b |
55 | (E)-6,10-dimethyl-5,9-Undecadien-2-one | 3796-70-1 | 1447 | MS, RI | 1.54 ± 0.13 bc | 1.87 ± 0.34 b | 2.78 ± 0.53 a | 0.72 ± 0.13 c | 1.57 ± 0.2 bc | 1.07 ± 0.95 bc | 3.31 ± 0.45 a | 2.75 ± 0.47 a |
56 | (Z)-β-Farnesene | 28973-97-9 | 1452 | MS, RI | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.71 ± 0.18 | n.d. |
57 | Humulene | 6753-98-6 | 1458 | MS, RI | n.d. | 0.55 ± 0.09 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
58 | β-Ionone | 79-77-6 | 1478 | MS, RI | 5.17 ± 0.71 bc | 5.59 ± 0.48 b | 9.05 ± 0.66 a | 1.74 ± 0.05 d | 4.42 ± 0.32 bc | 3.55 ± 0.41 c | 5.97 ± 1.19 b | 5.69 ± 1.11 b |
59 | (Z)-Muurola-4(15),5-diene | 157477-72-0 | 1494 | MS, RI | n.d. | n.d. | n.d. | n.d. | n.d. | 1.81 ± 0.1 | n.d. | n.d. |
60 | α-Muurolene | 10208-80-7 | 1500 | MS, RI | 1.10 ± 0.12 b | 1.27 ± 0.08 b | 1.28 ± 0.20 b | n.d. | 0.74 ± 0.15 c | 2.27 ± 0.53 a | n.d. | n.d. |
61 | α-Farnesene | 502-61-4 | 1504 | MS, RI | n.d. | 1.36 ± 0.14 b | n.d. | n.d. | n.d. | n.d. | 1.52 ± 0.08 a | n.d. |
62 | (Z)-Calamenene | 483-77-2 | 1523 | MS, RI | 2.10 ± 0.36 d | 4.57 ± 1.06 b | 3.79 ± 0.88 bc | n.d. | 2.61 ± 0.31 cd | 12.05 ± 0.94 a | 3.29 ± 0.33 c | 3.34 ± 0.45 c |
63 | Cubenene | 29837-12-5 | 1534 | MS, RI | n.d. | 0.82 ± 0.01 b | n.d. | n.d. | 0.54 ± 0 b | 2.27 ± 0.33 a | 0.78 ± 0.13 b | n.d. |
64 | Nerolidol | 142-50-7 | 1560 | MS, RI | 1.00 ± 0.11 c | 4.49 ± 1.16 b | n.d. | n.d. | 0.75 ± 0.17 c | 0.86 ± 0.1 c | 7.86 ± 1.01 a | 6.82 ± 1.75 a |
65 | Cubenol | 21284-22-0 | 1645 | MS, RI | 0.67 ± 0.1 b | 0.74 ± 0.13 b | 1.09 ± 0.12 ab | n.d. | n.d. | 2.47 ± 0.72 a | n.d. | n.d. |
66 | Phytol | 150-86-7 | 2108 | MS, RI | 0.56 ± 0.15 b | 1.14 ± 0.23 a | 1.20 ± 0.23 a | n.d. | n.d. | n.d. | n.d. | n.d. |
Compounds | OT (μg/L) | HY-S | HY-P | LM-S | LM-P | SX-S | SX-P | YT-S | YT-P |
---|---|---|---|---|---|---|---|---|---|
Dimethyl sulfide | 0.3 | 84 | 86 | 71 | 112 | 98 | 101 | 229 | 475 |
β-Ionone | 0.021 | 246 | 266 | 431 | 83 | 211 | 169 | 284 | 271 |
Linalool | 0.6 | 82 | 95 | 88 | 32 | 76 | 116 | 109 | 133 |
(Z)-Jasmone | 0.26 | 31 | 47 | 68 | 28 | 26 | 51 | 105 | 106 |
α-Pinene | 5.3 | 6 | 19 | n.d. | n.d. | 4 | 4 | <1 | n.d. |
Geraniol | 3.2 | 8 | 8 | 6 | 3 | 8 | 12 | 7 | 9 |
3-Methyl butanal | 0.5 | 17 | <1 | <1 | <1 | 1 | 1 | <1 | 3 |
2-Methyl butanal | 1.5 | 16 | <1 | 1 | <1 | 2 | <1 | 1 | 4 |
Hexanal | 2.4 | 11 | 11 | 10 | 3 | 7 | 7 | 11 | 15 |
Heptanal | 6.1 | 1 | 2 | 1 | <1 | 1 | 1 | <1 | 1 |
(E,E)-3,5-Octadien-2-one | 0.5 | 7 | 14 | 20 | 3 | 8 | n.d. | 4 | 14 |
α-Terpineol | 4.08 | 2 | <1 | <1 | <1 | <1 | n.d. | 1 | n.d. |
Indole | 11 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 1 |
α-Ionone | 0.3 | 6 | 10 | 9 | 3 | 5 | 5 | 13 | 11 |
Decanal | 0.1 | 16 | 19 | 24 | 8 | 11 | 19 | 21 | 29 |
Nonanal | 2.8 | 7 | 9 | 8 | 2 | 6 | 6 | 7 | 7 |
β-Cyclocitral | 3 | n.d. | n.d. | n.d. | n.d. | 2 | 2 | n.d. | n.d. |
(Z)-3-Hexen-1-ol | 2 | 2 | 4 | <1 | 2 | 6 | 3 | 3 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, G.; Bi, C.; Ji, A.; Hu, J.; Zhang, Y.; Yang, L.; Wu, S.; Shen, Z.; Zhou, Z.; Li, X.; et al. Volatile Profiling of Tongcheng Xiaohua Tea from Different Geographical Origins: A Multimethod Investigation Using Sensory Analysis, E-Nose, HS-SPME-GC-MS, and Chemometrics. Foods 2025, 14, 1996. https://doi.org/10.3390/foods14111996
Jin G, Bi C, Ji A, Hu J, Zhang Y, Yang L, Wu S, Shen Z, Zhou Z, Li X, et al. Volatile Profiling of Tongcheng Xiaohua Tea from Different Geographical Origins: A Multimethod Investigation Using Sensory Analysis, E-Nose, HS-SPME-GC-MS, and Chemometrics. Foods. 2025; 14(11):1996. https://doi.org/10.3390/foods14111996
Chicago/Turabian StyleJin, Ge, Chenyue Bi, Anqi Ji, Jieyi Hu, Yuanrong Zhang, Lumin Yang, Sunhao Wu, Zhaoyang Shen, Zhou Zhou, Xiao Li, and et al. 2025. "Volatile Profiling of Tongcheng Xiaohua Tea from Different Geographical Origins: A Multimethod Investigation Using Sensory Analysis, E-Nose, HS-SPME-GC-MS, and Chemometrics" Foods 14, no. 11: 1996. https://doi.org/10.3390/foods14111996
APA StyleJin, G., Bi, C., Ji, A., Hu, J., Zhang, Y., Yang, L., Wu, S., Shen, Z., Zhou, Z., Li, X., Qin, H., Mu, D., Hou, R., & Wu, Y. (2025). Volatile Profiling of Tongcheng Xiaohua Tea from Different Geographical Origins: A Multimethod Investigation Using Sensory Analysis, E-Nose, HS-SPME-GC-MS, and Chemometrics. Foods, 14(11), 1996. https://doi.org/10.3390/foods14111996