Essential Oil from the Leaves of the Dwarf Cashew Tree (Anacardium occidentale L.) in the Amazon Savannah: Physicochemical and Antioxidant Properties as a Food Preservative
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Collection and Identification
2.2. Extraction and Yield of EOLC
2.3. Determination of the Chemical Compounds
2.4. Determination of Antibacterial Activity
2.4.1. Bacterial Strains and Culture Conditions
2.4.2. Agar Diffusion Method
2.4.3. Determination of Minimum Inhibitory Concentration (MIC)
2.5. Toxicity Bioassay Against Artemia salina
2.6. Antioxidant Activity and Total Phenolic Compounds (TPC)
2.6.1. DPPH Radical Scavenger Activity
2.6.2. ABTS Radical Scavenging Activity
2.6.3. Total Phenolic Compounds
2.7. Determination of the Physicochemical Properties of EOLC
2.7.1. Relative Density
2.7.2. Refractive Index
2.7.3. Viscosity
2.7.4. Ethanol Solubility
2.8. Sensory Analysis of Lamb Burgers Incorporated with EOLC
2.9. Statistical Analysis
3. Results and Discussion
3.1. Yield of EOLC
3.2. Chemical Composition of EOLC
3.3. Antibacterial Activity
3.4. Evaluation of EOLC Toxicity in Artemia salina
3.5. Antioxidant Activity
3.6. Assessment of the Physicochemical Characteristics of EOLC
3.7. Sensory Properties of EOLC in Hamburger
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mendes, C.; Costa, J.; Vicente, A.A.; Oliveira, M.B.P.P.; Mafra, I. Cashew Nut Allergy: Clinical Relevance and Allergen Characterisation. Clin. Rev. Allergy Immunol. 2019, 57, 1–22. [Google Scholar] [CrossRef]
- Amaral, R.G.; de Andrade, L.R.M.; Andrade, L.N.; Loureiro, K.C.; Souto, E.B.; Severino, P. Cashew Gum: A Review of Brazilian Patents and Pharmaceutical Applications with a Special Focus on Nanoparticles. Micromachines 2022, 13, 1137. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.Q.; da Costa, Í.C.; Maia da Costa, M.E.H.; Pinto, E.P.; Matos, R.S.; da Fonseca Filho, H.D. Stereometric analysis of Amazon rainforest Anacardium occidentale L. leaves. Planta 2021, 253, 6. [Google Scholar] [CrossRef] [PubMed]
- Zanqui, A.B.; da Silva, C.M.; Ressutte, J.B.; de Morais, D.R.; Santos, J.M.; Eberlin, M.N.; Cardozo-Filho, L.; da Silva, E.A.; Gomes, S.T.M.; Matsushita, M. Extraction and assessment of oil and bioactive compounds from cashew nut (Anacardium occidentale) using pressurized n-propane and ethanol as cosolvent. J. Supercrit. Fluids 2020, 157, 104686. [Google Scholar] [CrossRef]
- Costa, A.R.; Silva, J.R.d.L.; de Oliveira, T.J.S.; da Silva, T.G.; Pereira, P.S.; Borba, E.F.d.O.; de Brito, E.S.; Ribeiro, P.R.V.; Almeida-Bezerra, J.W.; Júnior, J.T.C.; et al. Phytochemical profile of Anacardium occidentale L. (cashew tree) and the cytotoxic and toxicological evaluation of its bark and leaf extracts. S. Afr. J. Bot. 2020, 135, 355–364. [Google Scholar] [CrossRef]
- Sruthi, P.; Naidu, M.M. Cashew nut (Anacardium occidentale L.) testa as a potential source of bioactive compounds: A review on its functional properties and valorization. Food Chem. Adv. 2023, 3, 100390. [Google Scholar] [CrossRef]
- Costa, N.B.d.; Teles, A.M.; Oliveira, M.V.d.S.; Oliveira, É.S.; Mouchrek, A.N. Obtaining the chemical profile of cashew leaf extracts (Anacardium occidentale) from different solventes. Res. Soc. Dev. 2021, 10, e40110817473. [Google Scholar] [CrossRef]
- Cruz Reina, L.J.; Durán-Aranguren, D.D.; Forero-Rojas, L.F.; Tarapuez-Viveros, L.F.; Durán-Sequeda, D.; Carazzone, C.; Sierra, R. Chemical composition and bioactive compounds of cashew (Anacardium occidentale) apple juice and bagasse from Colombian varieties. Heliyon 2022, 8, e09528. [Google Scholar] [CrossRef]
- de Sousa, D.B.; da Silva, G.S.; Serrano, L.A.L.; Martins, M.V.V.; Rodrigues, T.H.S.; Lima, M.A.S.; Zocolo, G.J. Metabolomic Profile of Volatile Organic Compounds from Leaves of Cashew Clones by HS-SPME/GC-MS for the Identification of Candidates for Anthracnose Resistance Markers. J. Chem. Ecol. 2023, 49, 87–102. [Google Scholar] [CrossRef]
- Kossouoh, C.; Moudachirou, M.; Adjakidje, V.; Chalchat, J.-C.; Figuérédo, G. Essential Oil Chemical Composition of Anacardium occidentale L. Leaves from Benin. J. Essent. Oil Res. 2008, 20, 5–8. [Google Scholar] [CrossRef]
- Maia, J.G.S.; Andrade, E.H.A.; Zoghbi, M.d.G.B. Volatile Constituents of the Leaves, Fruits and Flowers of Cashew (Anacardium occidentale L.). J. Food Compos. Anal. 2000, 13, 227–232. [Google Scholar] [CrossRef]
- Chan, E.; Baba, S.; Chan, H.; Kainuma, M.; Inoue, T.; Wong, S. Ulam herbs: A review on the medicinal properties of Anacardium occidentale and Barringtonia racemosa. J. Appl. Pharm. Sci. 2017, 7, 241–247. [Google Scholar] [CrossRef]
- Salehi, B.; Gültekin-Özgüven, M.; Kırkın, C.; Özçelik, B.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Bezerra, C.F.; Silva, T.G.D.; Coutinho, H.D.M.; Amina, B.; et al. Anacardium Plants: Chemical, Nutritional Composition and Biotechnological Applications. Biomolecules 2019, 9, 465. [Google Scholar] [CrossRef] [PubMed]
- Encarnação, S.; de Mello-Sampayo, C.; Graça, N.A.G.; Catarino, L.; da Silva, I.B.M.; Lima, B.S.; Silva, O.M.D. Total phenolic content, antioxidant activity and pre-clinical safety evaluation of an Anacardium occidentale stem bark Portuguese hypoglycemic traditional herbal preparation. Ind. Crops Prod. 2016, 82, 171–178. [Google Scholar] [CrossRef]
- Salehi, B.; Gültekin-Özgüven, M.; Kirkin, C.; Özçelik, B.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Bezerra, C.F.; da Silva, T.G.; Coutinho, H.D.M.; Amina, B.; et al. Antioxidant, Antimicrobial, and Anticancer Effects of Anacardium Plants: An Ethnopharmacological Perspective. Front. Endocrinol. 2020, 11, 295. [Google Scholar] [CrossRef]
- Ministério da Saúde. RENISUS: Relação Nacional de Plantas Medicinais de Interesse ao SUS; Ministério da Saúde: Brasília, Brasil, 2009.
- Cavalcanti, J.; Resende, M.D.V.; Crisóstomo, J.R.; Barros, L.D.M.; Paiva, J.R. Genetic control of quantitative traits and hybrid breeding strategies for cashew improvement. Crop. Breed. Appl. Biotechnol. 2007, 7, 186–195. [Google Scholar] [CrossRef]
- Contim, L.A.S.; Contim, L.S.R.J.I.S. A tecnologia produtiva do pau-rosa (Aniba rosaeodora Ducke) como aliada ao desenvolvimento sustentável da região amazônica. Rev. Inclusão Soc. 2018, 12, 199–207. [Google Scholar]
- Rodrigues, J.C.W.; Campos, M.C.C.; Bergamin, A.C.; da Silva, M.d.N.S.; Lima, R.A.; Santos, R.V.D. A importância da produção de mudas de essências florestais na região Amazônica: Uma revisão sistemática. Rev. Científica FAEMA 2023, 14, 10–24. [Google Scholar] [CrossRef]
- Marinelli, A.L.; Monteiro, M.R.; Ambrósio, J.D.; Branciforti, M.C.; Kobayashi, M.; Nobre, A.D. Desenvolvimento de compósitos poliméricos com fibras vegetais naturais da biodiversidade: Uma contribuição para a sustentabilidade amazônica. Polímeros 2008, 18, 92–99. [Google Scholar] [CrossRef]
- Koursaoui, L.; Badr, S.; Ghanmi, M.; Jaouadi, I.; Chibani, A.; Chahboun, N.; Aouane, E.M.; Chaouch, A.; Zarrouk, A. Phytochemical analysis, antioxidant and antimicrobial activity of three Eucalyptus species essential oils from the Moroccan Maâmora Forest: Eucalyptus cladocalyx F.Muell, Eucalyptus grandis W.Hill ex Maiden and Eucalyptus botryoides Sm. Chem. Data Collect. 2023, 48, 101101. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, X.; Ou, Z.; Ye, M.; Shi, Y.; Chen, Y.; Zhao, J.; Zheng, D.; Xiang, H. Screening of chemical composition, anti-arthritis, antitumor and antioxidant capacities of essential oils from four Zingiberaceae herbs. Ind. Crops Prod. 2020, 149, 112342. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lao, Y.; Pan, Y.; Chen, Y.; Zhao, H.; Gong, L.; Xie, N.; Mo, C.-H. Synergistic Antimicrobial Effectiveness of Plant Essential Oil and Its Application in Seafood Preservation: A Review. Molecules 2021, 26, 307. [Google Scholar] [CrossRef] [PubMed]
- Meenu, M.; Padhan, B.; Patel, M.; Patel, R.; Xu, B. Antibacterial activity of essential oils from different parts of plants against Salmonella and Listeria spp. Food Chem. 2023, 404, 134723. [Google Scholar] [CrossRef]
- Li, Y.-x.; Zhang, C.; Pan, S.; Chen, L.; Liu, M.; Yang, K.; Zeng, X.; Tian, J. Analysis of chemical components and biological activities of essential oils from black and white pepper (Piper nigrum L.) in five provinces of southern China. LWT 2020, 117, 108644. [Google Scholar] [CrossRef]
- Lutz, I.-I.A. Métodos Físico-Químicos Para Análise de Alimentos, 4th ed.; Instituto Adolfo Lutz: São Paulo, Brasil, 2008. [Google Scholar]
- da Silva, T.B.; Menezes, L.R.; Sampaio, M.F.; Meira, C.S.; Guimarães, E.T.; Soares, M.B.; Prata, A.P.; Nogueira, P.C.; Costa, E.V. Chemical composition and anti-Trypanosoma cruzi activity of essential oils obtained from leaves of Xylopia frutescens and X. laevigata (Annonaceae). Nat. Prod. Commun. 2013, 8, 403–406. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Shi, C.; Kang, S. Foodborne Pathogenic Bacteria: Prevalence and Control—Volume I. Foods 2024, 13, 1531. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Li, J.; Hu, J.; Lin, G.; Tan, B.K.; Lin, S. Current Perspectives on Viable but Non-Culturable Foodborne Pathogenic Bacteria: A Review. Foods 2023, 12, 1179. [Google Scholar] [CrossRef]
- de Moraes Pinto, L.A.; Frizzo, A.; Benito, C.E.; da Silva Júnior, R.C.; Alvares, L.K.; Pinto, A.N.; Tellini, C.; de Oliveira Monteschio, J.; Fernandes, J.I.M. Effect of an antimicrobial photoinactivation approach based on a blend of curcumin and Origanum essential oils on the quality attributes of chilled chicken breast. LWT 2023, 176, 114484. [Google Scholar] [CrossRef]
- Meira, S.M.M.; Daroit, D.J.; Helfer, V.E.; Corrêa, A.P.F.; Segalin, J.; Carro, S.; Brandelli, A. Bioactive peptides in water-soluble extracts of ovine cheeses from Southern Brazil and Uruguay. Food Res. Int. 2012, 48, 322–329. [Google Scholar] [CrossRef]
- Ghavam, M. A GC-MC analysis of chemical compounds and identification of the antibacterial characteristics of the essential oil of two species exclusive to Iranian habitats: New chemotypes. PLoS ONE 2022, 17, e0273987. [Google Scholar] [CrossRef] [PubMed]
- Granados, A.D.P.F.; Duarte, M.C.T.; Noguera, N.H.; Lima, D.C.; Rodrigues, R.A.F. Impact of Microencapsulation on Ocimum gratissimum L. Essential Oil: Antimicrobial, Antioxidant Activities, and Chemical Composition. Foods 2024, 13, 3122. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.L.; Simões, R.C.; Rabelo, É.d.M.; Farias, A.L.F.; Rodrigues, A.B.L.; Ramos, R.d.S.; Fernandes, J.B.; Santos, L.d.S.; de Almeida, S.S.M.d.S. Chemical Composition, an Antioxidant, Cytotoxic and Microbiological Activity of the Essential Oil from the Leaves of Aeollanthus suaveolens Mart. ex Spreng. PLoS ONE 2016, 11, e0166684. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Campos, D.C.D.S.; Neves, L.T.B.C.; Flach, A.; Costa, L.A.M.A.; Sousa, B.O.D. Post-acidification and evaluation of anthocyanins stability and antioxidan activity in açai fermented milk and yogurts (Euterpe oleracea Mart.). Rev. Bras. Frutic. 2017, 39, e-871. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Genovese, M.I.; Lannes, S.C.d.S. Comparison of total phenolic content and antiradical capacity of powders and “chocolates” from cocoa and cupuassu. Food Sci. Technol. 2009, 29, 810–814. [Google Scholar] [CrossRef]
- Alarcón, M.E.T.; Conde, C.G.; León, G.M. Extracción, caracterización y actividad antioxidante del aceite esencial de Eucalyptus globulus Labill. Rev. Cuba. Farm. 2019, 52, e266. [Google Scholar]
- Ruiz-Gonzalez, N.; Lopez-Malo, A.; Palou, E.; Ramirez-Corona, N.; Jimenez-Munguia, M.T. Antimicrobial Activity and Physicochemical Characterization of Oregano, Thyme and Clove Leave Essential Oils, Nonencapsulated and Nanoencapsulated, Using Emulsification. Appl. Food Biotechnol. 2019, 6, 237–246. [Google Scholar] [CrossRef]
- Kempinski, E.M.B.C.; Vital, A.C.P.; Monteschio, J.d.O.; Alexandre, S.; Nascimento, K.F.; Madrona, G.S.; Mikcha, J.M.G.; Prado, I.N.d. Development and quality evaluation of infant food with oregano essential oil for children diagnosed with cerebral palsy. LWT 2017, 84, 579–585. [Google Scholar] [CrossRef]
- Pennisi Forell, S.C.; Ranalli, N.; Zaritzky, N.E.; Andrés, S.C.; Califano, A.N. Effect of type of emulsifiers and antioxidants on oxidative stability, colour and fatty acid profile of low-fat beef burgers enriched with unsaturated fatty acids and phytosterols. Meat Sci. 2010, 86, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Ghabraie, M.; Vu, K.D.; Tata, L.; Salmieri, S.; Lacroix, M. Antimicrobial effect of essential oils in combinations against five bacteria and their effect on sensorial quality of ground meat. LWT-Food Sci. Technol. 2016, 66, 332–339. [Google Scholar] [CrossRef]
- Leite, S.M.B.; da Silva Assunção, E.M.; Alves, A.; de Souza Maciel, E.; de Moraes Pinto, L.A.; Kaneko, I.N.; Guerrero, A.; Correa, A.P.F.; Müller Fernandes, J.I.; Lopes, N.P.; et al. Incorporation of copaiba and oregano essential oils on the shelf life of fresh ground beef patties under display: Evaluation of their impact on quality parameters and sensory attributes. PLoS ONE 2022, 17, e0272852. [Google Scholar] [CrossRef]
- Moronkola, D.O.; Kasali, A.A.; Ekundayo, O. Composition of the Limonene Dominated Leaf Essential Oil of Nigerian Anacardium occidentale. J. Essent. Oil Res. 2007, 19, 351–353. [Google Scholar] [CrossRef]
- Montanari, R.M.; Barbosa, L.C.; Demuner, A.J.; Silva, C.J.; Andrade, N.J.; Ismail, F.M.; Barbosa, M.C. Exposure to Anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells. Molecules 2012, 17, 9728–9740. [Google Scholar] [CrossRef]
- Kholiya, S.; Punetha, A.; Cha uhan, A.; Kt, V.; Kumar, D.; Upadhyay, R.K.; Padalia, R.C. Essential oil yield and composition of Ocimum basilicum L. at different phenological stages, plant density and post-harvest drying methods. S. Afr. J. Bot. 2022, 151, 919–925. [Google Scholar] [CrossRef]
- Kumar, A.; Lal, R.K. The consequence of genotype × environment interaction on high essential oil yield and its composition in clove basil (Ocimum gratissimum L.). Acta Ecol. Sin. 2022, 42, 633–640. [Google Scholar] [CrossRef]
- Mei, X.-Y.; Kitamura, Y.; Takizawa, K.; Kikuchi, A.; Watanabe, K. Pretreatment and distilling processes of Eucalyptus globulus leaves for enhancing essential oil production. Biomass Convers. Biorefinery 2014, 4, 285–292. [Google Scholar] [CrossRef]
- Pathan, A.K.; Bond, J.; Gaskin, R.E. Sample preparation for scanning electron microscopy of plant surfaces—Horses for courses. Micron 2008, 39, 1049–1061. [Google Scholar] [CrossRef]
- Monteschio, J.d.O.; de Vargas Junior, F.M.; Alves da Silva, A.L.; das Chagas, R.A.; Fernandes, T.; Leonardo, A.P.; Kaneko, I.N.; de Moraes Pinto, L.A.; Guerrero, A.; de Melo Filho, A.A.; et al. Effect of copaíba essential oil (Copaifera officinalis L.) as a natural preservative on the oxidation and shelf life of sheep burgers. PLoS ONE 2021, 16, e0248499. [Google Scholar] [CrossRef] [PubMed]
- Khodaei, N.; Nguyen, M.M.; Mdimagh, A.; Bayen, S.; Karboune, S. Compositional diversity and antioxidant properties of essential oils: Predictive models. LWT 2021, 138, 110684. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.O.; Camilo, C.J.; Ribeiro, D.A.; Macedo, J.G.F.; Nonato, C.F.A.; Rodrigues, F.F.G.; Martins da Costa, J.G.; Souza, M.M.A. Chemical composition variation of essential oils of Copaifera langsdorffii Desf. from different vegetational formations. Nat. Prod. Res. 2023, 37, 3525–3530. [Google Scholar] [CrossRef]
- Badalamenti, N.; Bruno, M.; Gagliano Candela, R.; Maggi, F. Chemical composition of the essential oil of Elaeoselinum asclepium (L.) Bertol subsp. Meoides (Desf.) Fiori (Umbelliferae) Collect. Wild Cent. Sicily Its Antimicrob. activity. Nat. Prod. Res. 2022, 36, 789–797. [Google Scholar] [CrossRef]
- Aydin, E.; Türkez, H.; Taşdemir, S. Anticancer and antioxidant properties of terpinolene in rat brain cells. Arh. Hig. Rada Toksikol. 2013, 64, 415–424. [Google Scholar] [CrossRef]
- Turkez, H.; Aydın, E.; Geyikoglu, F.; Cetin, D. Genotoxic and oxidative damage potentials in human lymphocytes after exposure to terpinolene in vitro. Cytotechnology 2015, 67, 409–418. [Google Scholar] [CrossRef]
- Alia, A.; Shukri, M.; Razal, M. Antimicrobial potency of essential oil from cashew (Anacardium occidentale Linn.) clones. J. Trop. Agric. Food Sci. 2016, 44, 73–80. [Google Scholar]
- Rocha, P.M.d.M.; Rodilla, J.M.; Díez, D.; Elder, H.; Guala, M.S.; Silva, L.A.; Pombo, E.B. Synergistic antibacterial activity of the essential oil of aguaribay (Schinus molle L.). Molecules 2012, 17, 12023–12036. [Google Scholar] [CrossRef]
- Fancello, F.; Petretto, G.L.; Zara, S.; Sanna, M.L.; Addis, R.; Maldini, M.; Foddai, M.; Rourke, J.P.; Chessa, M.; Pintore, G. Chemical characterization, antioxidant capacity and antimicrobial activity against food related microorganisms of Citrus limon var. pompia leaf essential oil. LWT-Food Sci. Technol. 2016, 69, 579–585. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, B.; Flotats, X. Citrus essential oils and their influence on the anaerobic digestion process: An overview. Waste Manag. 2014, 34, 2063–2079. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, E.O.; Vieira, M.A.R.; Ferreira, M.I.; Fernandes Junior, A.; Marques, M.O.M.; Minatel, I.O.; Albano, M.; Sambo, P.; Lima, G.P.P. Seasonality effects on chemical composition, antibacterial activity and essential oil yield of three species of Nectandra. PLoS ONE 2018, 13, e0204132. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Amarante, C.B.d.; Müller, A.H.; Póvoa, M.M.; Dolabela, M.F. Estudo fitoquímico biomonitorado pelos ensaios de toxicidade frente à Artemia salina e de atividade antiplasmódica do caule de aninga (Montrichardia linifera). Acta Amaz. 2011, 41, 431–434. [Google Scholar] [CrossRef]
- de Moraes, A.A.B.; Ferreira, O.O.; da Costa, L.S.; Almeida, L.Q.; Varela, E.L.P.; Cascaes, M.M.; de Jesus Pereira Franco, C.; Percário, S.; Nascimento, L.D.D.; de Oliveira, M.S.; et al. Phytochemical Profile, Preliminary Toxicity, and Antioxidant Capacity of the Essential Oils of Myrciaria floribunda (H. West ex Willd.) O. Berg. and Myrcia sylvatica (G. Mey) DC. (Myrtaceae). Antioxidants 2022, 11, 2076. [Google Scholar] [CrossRef]
- Cascaes, M.M.; De Moraes, Â.A.B.; Cruz, J.N.; Franco, C.J.P.; RC, E.S.; Nascimento, L.D.D.; Ferreira, O.O.; Anjos, T.O.D.; de Oliveira, M.S.; Guilhon, G.; et al. Phytochemical Profile, Antioxidant Potential and Toxicity Evaluation of the Essential Oils from Duguetia and Xylopia Species (Annonaceae) from the Brazilian Amazon. Antioxidants 2022, 11, 1709. [Google Scholar] [CrossRef]
- Ntungwe, N.E.; Domínguez-Martín, E.M.; Roberto, A.; Tavares, J.; Isca, V.M.S.; Pereira, P.; Cebola, M.J.; Rijo, P. Artemia species: An Important Tool to Screen General Toxicity Samples. Curr. Pharm. Des. 2020, 26, 2892–2908. [Google Scholar] [CrossRef]
- Adams, T.B.; Gavin, C.L.; McGowen, M.M.; Waddell, W.J.; Cohen, S.M.; Feron, V.J.; Marnett, L.J.; Munro, I.C.; Portoghese, P.S.; Rietjens, I.M.C.M.; et al. The FEMA GRAS assessment of aliphatic and aromatic terpene hydrocarbons used as flavor ingredients. Food Chem. Toxicol. 2011, 49, 2471–2494. [Google Scholar] [CrossRef]
- Stevanovic, Z.D.; Sieniawska, E.; Glowniak, K.; Obradovic, N.; Pajic-Lijakovic, I. Natural Macromolecules as Carriers for Essential Oils: From Extraction to Biomedical Application. Front. Bioeng. Biotechnol. 2020, 8, 563. [Google Scholar] [CrossRef]
- Fernández-López, J.; Viuda-Martos, M. Introduction to the Special Issue: Application of Essential Oils in Food Systems. Foods 2018, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Önder, S.; Periz, Ç.D.; Ulusoy, S.; Erbaş, S.; Önder, D.; Tonguç, M. Chemical composition and biological activities of essential oils of seven Cultivated Apiaceae species. Sci. Rep. 2024, 14, 10052. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, O.O.; Franco, C.J.P.; Varela, E.L.P.; Silva, S.G.; Cascaes, M.M.; Percário, S.; de Oliveira, M.S.; Andrade, E.H.A. Chemical Composition and Antioxidant Activity of Essential Oils from Leaves of Two Specimens of Eugenia florida DC. Molecules 2021, 26, 5848. [Google Scholar] [CrossRef] [PubMed]
- Eryigit, T.; Yildirim, B.; Ekici, K.; Çirka, M. Chemical Composition, Antimicrobial and Antioxidant Properties of Schinus molle L. Essential Oil from Turkey. J. Essent. Oil Bear. Plants 2017, 20, 570–577. [Google Scholar] [CrossRef]
- Lu, Q.; Huang, N.; Peng, Y.; Zhu, C.; Pan, S. Peel oils from three Citrus species: Volatile constituents, antioxidant activities and related contributions of individual components. J. Food Sci. Technol. 2019, 56, 4492–4502. [Google Scholar] [CrossRef]
- Dayal, B.; Kulkarni, A.; Lea, M.; Kaur, G.; Karani, W.; Singh, J. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. Asian J. Org. Med. Chem. 2024, 8, 29–34. [Google Scholar] [CrossRef]
- Guo, Y.; Pizzol, R.; Gabbanini, S.; Baschieri, A.; Amorati, R.; Valgimigli, L. Absolute Antioxidant Activity of Five Phenol-Rich Essential Oils. Molecules 2021, 26, 5237. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Muanda, F.N.; Soulimani, R.; Diop, B.; Dicko, A. Study on chemical composition and biological activities of essential oil and extracts from Stevia rebaudiana Bertoni leaves. LWT-Food Sci. Technol. 2011, 44, 1865–1872. [Google Scholar] [CrossRef]
- Kačániová, M.; Galovičová, L.; Ivanišová, E.; Vukovic, N.L.; Štefániková, J.; Valková, V.; Borotová, P.; Žiarovská, J.; Terentjeva, M.; Felšöciová, S.; et al. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods 2020, 9, 282. [Google Scholar] [CrossRef]
- Zengin, H.; Baysal, A.H. Antibacterial and Antioxidant Activity of Essential Oil Terpenes against Pathogenic and Spoilage-Forming Bacteria and Cell Structure-Activity Relationships Evaluated by SEM Microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Abdo, A.A.A.; Shu, Y.; Zhang, Z.; Liang, T. The Extraction and Impact of Essential Oils on Bioactive Films and Food Preservation, with Emphasis on Antioxidant and Antibacterial Activities—A Review. Foods 2023, 12, 4169. [Google Scholar] [CrossRef] [PubMed]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Kassi, A.B.B.; Soro, Y.; Koffi, E.N.d.; Sorho, S. Physicochemical study of kernel oils from ten varieties of Mangifera indica (Anacardiaceae) cultivated in Cote dIvoire. Afr. J. Food Sci. 2019, 13, 135–142. [Google Scholar] [CrossRef]
- Alma, M.H.; Nitz, S.; Kollmannsberger, H.; Digrak, M.; Efe, F.T.; Yilmaz, N. Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera L.). J. Agric. Food Chemestry 2004, 52, 3911–3914. [Google Scholar] [CrossRef]
- Dávila-Rodríguez, M.; López-Malo, A.; Palou, E.; Ramírez-Corona, N.; Jiménez-Munguía, M.T. Essential oils microemulsions prepared with high-frequency ultrasound: Physical properties and antimicrobial activity. J. Food Sci. Technol. 2020, 57, 4133–4142. [Google Scholar] [CrossRef]
- de Mello, J.C.P.; Schenkel, E.; Gosmann, G.; Mentz, L.; Petrovick, P. Farmacognosia da Planta ao Medicamento; UFRGS: Porto Alegre, Brazil, 1999. [Google Scholar]
- Vârban, D.; Zăhan, M.; Pop, C.R.; Socaci, S.; Ștefan, R.; Crișan, I.; Bota, L.E.; Miclea, I.; Muscă, A.S.; Deac, A.M.; et al. Physicochemical Characterization and Prospecting Biological Activity of Some Authentic Transylvanian Essential Oils: Lavender, Sage and Basil. Metabolites 2022, 12, 962. [Google Scholar] [CrossRef]
- Ramírez-Navas, J. Introducción a la Reología de Alimentos. Rev. ReCiTeIA 2006, 6, 1–46. [Google Scholar]
- Silva, S.M.; Abe, S.Y.; Murakami, F.S.; Frensch, G.; Marques, F.A.; Nakashima, T. Essential Oils from Different Plant Parts of Eucalyptus cinerea F. Muell. ex Benth. (Myrtaceae) as a Source of 1,8-Cineole and Their Bioactivities. Pharmaceuticals 2011, 4, 1535–1550. [Google Scholar] [CrossRef]
- Tomaino, A.; Cimino, F.; Zimbalatti, V.; Venuti, V.; Sulfaro, V.; De Pasquale, A.; Saija, A. Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chem. 2005, 89, 549–554. [Google Scholar] [CrossRef]
- Boskovic, M.; Djordjevic, J.; Ivanovic, J.; Janjic, J.; Zdravkovic, N.; Glisic, M.; Glamoclija, N.; Baltic, B.; Djordjevic, V.; Baltic, M. Inhibition of Salmonella by thyme essential oil and its effect on microbiological and sensory properties of minced pork meat packaged under vacuum and modified atmosphere. Int. J. Food Microbiol. 2017, 258, 58–67. [Google Scholar] [CrossRef]
- Lages, L.Z.; Radünz, M.; Gonçalves, B.T.; Silva da Rosa, R.; Fouchy, M.V.; de Cássia dos Santos da Conceição, R.; Gularte, M.A.; Barboza Mendonça, C.R.; Gandra, E.A. Microbiological and sensory evaluation of meat sausage using thyme (Thymus vulgaris, L.) essential oil and powdered beet juice (Beta vulgaris L., Early Wonder cultivar). LWT 2021, 148, 111794. [Google Scholar] [CrossRef]
No. | Constituents | RI 1 | RI 2 | EOLC (%) | Molecular Formula |
---|---|---|---|---|---|
Monoterpenes hydrocarbons | 85.26 | ||||
1 | β-Pinene | 972 | 974 | 2.29 | C10H16 |
2 | p-Mentha-2,4(8)-diene | 1081 | 1085 | 2.76 | C10H16 |
3 | Terpinolene | 1093 | 1086 | 80.21 | C10H16 |
Oxygenated monoterpenes | 2.16 | ||||
4 | β-Terpineol | 1148 | 1140 | 0.63 | C10H18O |
5 | trans-Sabinene hydrate acetate | 1248 | 1253 | 0.22 | C12H20O2 |
6 | cis-Chrysanthenyl acetate | 1262 | 1261 | 0.92 | C12H18O2 |
7 | p-Mentha-1,4-dien-7-ol | 1325 | 1325 | 0.39 | C10H16O |
Sesquiterpenes hydrocarbons | 2.21 | ||||
8 | β-Copaene | 1437 | 1430 | 0.3 | C15H24 |
9 | Germacrene D | 1482 | 1480 | 0.38 | C15H24 |
10 | α-Muurolene | 1501 | 1500 | 0.18 | C15H24 |
11 | E-γ-Bisabolene | 1520 | 1528 | 0.13 | C15H24 |
12 | α-Cadinene | 1541 | 1537 | 0.33 | C15H24 |
13 | Selina-3,7(11)-diene | 1547 | 1545 | 0.25 | C15H24 |
14 | Germacrene B | 1558 | 1559 | 0.64 | C15H24 |
Oxygenated sesquiterpenes | 6.71 | ||||
15 | Palustrol | 1566 | 1567 | 0.16 | C15H26O |
16 | Spathulenol | 1572 | 1577 | 0.65 | C15H24O |
17 | Caryophyllene oxide | 1581 | 1582 | 0.26 | C15H24O |
18 | Globulol | 1586 | 1590 | 0.84 | C15H26O |
19 | Ledol | 1605 | 1602 | 0.24 | C15H26O |
20 | Di-epi-1,10-Cubenol | 1610 | 1618 | 0.22 | C15H26O |
21 | 1-epi-Cubenol | 1629 | 1627 | 0.43 | C15H26O |
22 | epi-α-Cadinol | 1644 | 1638 | 0.17 | C15H26O |
23 | α-Cadinol | 1657 | 1652 | 0.74 | C15H26O |
24 | Intermedeol | 1666 | 1665 | 0.17 | C15H26O |
25 | Eudesm-7(11)-en-4-ol | 1699 | 1700 | 0.79 | C15H26O |
26 | (2E,6Z)-Farnesol | 1717 | 1714 | 1.18 | C15H26O |
27 | Guaiol acetate | 1729 | 1725 | 0.86 | C17H28O2 |
Others | 3.66 | ||||
28 | Hexan-1-ol | 851 | 863 | 3.1 | C6H14O |
29 | Hexenyl-3-methyl butanoate | 1238 | 1232 | 0.28 | C11H20O2 |
30 | cis-3-Hexenyl valerate | 1285 | 1279 | 0.28 | C11H20O2 |
Total | 100 |
Tested Bacteria | IZ * | Chloramphenicol (IZ *) | MIC (mg/mL) |
---|---|---|---|
Staphylococcus aureus | 18.66 a ± 0.57 | 29.01 c ± 0.01 | 0.24 d ± 0.01 |
Listeria monocytogenes | 21.50 a ± 2.29 | 38.01 a ± 0.01 | 0.56 c ± 0.05 |
Bacillus cereus | 15.33 b ± 0.28 | 29.01 c ± 0.01 | 0.31 d ± 0.01 |
Salmonella enteritidis | 11.66 c ± 0.57 | 34.01 b ± 0.01 | 1.00 b ± 0.10 |
Escherichia coli | 11.33 c ± 0.57 | 29.01 c ± 0.01 | 1.52 a ± 0.04 |
Antioxidant Activity | Total Phenolic Compounds (mg EAG/g) | |
---|---|---|
DPPH (µmol Trolox mL−1) | ABTS (mM TE) | |
1.96 ±1.07 | 1.41 ± 0.04 | 0.38 ± 0.58 |
Parameter | EOLC |
---|---|
Density (g/mL) | 0.84 ± 0.01 |
Refractive index 20 °C | 1.49 ± 0.01 |
Refractive index 25 °C | 1.50 ± 0.01 |
Viscosity (mm2/s) 20 °C | 1.83 ± 0.10 |
Viscosity (mm2/s) 25 °C | 1.67 ± 0.01 |
Solubility | Positive |
Treatments | ||||
---|---|---|---|---|
CON 1 | BHT 2 | EO-0.05% 3 | EO-0.1% 4 | |
Color | 5.45 ± 2.08 | 6.65 ± 1.66 | 6.75 ± 1.88 | 5.80 ± 2.09 |
Appearance | 5.55 ± 2.46 | 6.65 ± 1.59 | 6.65 ± 2.00 | 6.20 ± 2.11 |
Odor | 4.95 b ± 2.48 | 5.95 ab ± 2.25 | 7.10 a ± 1.58 | 4.95 b ± 2.43 |
Flavor | 4.05 b ± 2.54 | 7.05 a ± 1.57 | 7.20 a ± 1.36 | 4.20 b ± 2.39 |
Tenderness | 6.70 ± 1.94 | 7.20 ± 1.64 | 7.55 ± 1.53 | 6.90 ± 1.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, M.C.d.O.; Assuncão, E.M.d.S.; Barbosa, S.S.; Tenente, E.I.L.; de Souza, A.P.; dos Santos, R.V.M.; Correa, A.P.F.; Pinto, L.A.d.M.; Tuler, A.C.; dos Santos Campos, D.C.; et al. Essential Oil from the Leaves of the Dwarf Cashew Tree (Anacardium occidentale L.) in the Amazon Savannah: Physicochemical and Antioxidant Properties as a Food Preservative. Foods 2025, 14, 1954. https://doi.org/10.3390/foods14111954
Moura MCdO, Assuncão EMdS, Barbosa SS, Tenente EIL, de Souza AP, dos Santos RVM, Correa APF, Pinto LAdM, Tuler AC, dos Santos Campos DC, et al. Essential Oil from the Leaves of the Dwarf Cashew Tree (Anacardium occidentale L.) in the Amazon Savannah: Physicochemical and Antioxidant Properties as a Food Preservative. Foods. 2025; 14(11):1954. https://doi.org/10.3390/foods14111954
Chicago/Turabian StyleMoura, Maria Clarisnete de Oliveira, Esther Morais da Silva Assuncão, Salatiel Silva Barbosa, Edu Istarley Lourenço Tenente, Alessandro Pereira de Souza, Rajá Vidya Moreira dos Santos, Ana Paula Folmer Correa, Laura Adriane de Moraes Pinto, Amélia Carlos Tuler, Daniela Cavalcante dos Santos Campos, and et al. 2025. "Essential Oil from the Leaves of the Dwarf Cashew Tree (Anacardium occidentale L.) in the Amazon Savannah: Physicochemical and Antioxidant Properties as a Food Preservative" Foods 14, no. 11: 1954. https://doi.org/10.3390/foods14111954
APA StyleMoura, M. C. d. O., Assuncão, E. M. d. S., Barbosa, S. S., Tenente, E. I. L., de Souza, A. P., dos Santos, R. V. M., Correa, A. P. F., Pinto, L. A. d. M., Tuler, A. C., dos Santos Campos, D. C., Vital, M. J. S., Filho, A. A. d. M., & Monteschio, J. d. O. (2025). Essential Oil from the Leaves of the Dwarf Cashew Tree (Anacardium occidentale L.) in the Amazon Savannah: Physicochemical and Antioxidant Properties as a Food Preservative. Foods, 14(11), 1954. https://doi.org/10.3390/foods14111954