The Beneficial Dietary Effect of Dried Olive Pulp on Some Nutritional Characteristics of Eggs Produced by Mid- and Late-Laying Hens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Design, Animals and Diets
2.3. Determination of Egg Fatty Acid Profile, Cholesterol and Triglyceride Content, Total Phenolics, Oleuropein and Hydroxytyrosol Content, and Health Lipid Indices
2.3.1. Determination of Egg Fat and Fatty Acid Profile
2.3.2. Total Phenolics
2.3.3. Determination of Cholesterol
2.3.4. Determination of Triglycerides
2.3.5. Determination of Oleuropein and Hydroxytyrosol
2.3.6. Determination of Health Lipid Indices
2.4. Statistical Analysis
3. Results
3.1. Egg Cholesterol and Triglyceride Content, Total Phenolics, Oleuropein and Hydroxytyrosol Content, Concentration of Saturated (SFAs), Monounsaturated (MUFAs) and Polyunsaturated (PUFAs) Fatty Acids, and Health Lipid Indices
3.2. Total Fat Content % and Fatty Acid Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef] [PubMed]
- Piscitelli, P.; Colao, A. Editorial: Healthy Foods and Dietary Patterns in Modern Consumer. Front. Nutr. 2023, 10, 1239488. [Google Scholar] [CrossRef]
- World Health Organization (Ed.) Saturated Fatty Acid and Trans-Fatty Acid Intake for Adults and Children: WHO Guideline; World Health Organization: Geneva, Switzerland, 2023; ISBN 978-92-4-007363-0. [Google Scholar]
- Sossidou, E.N.; Dal Bosco, A.; Elson, H.A.; Fontes, C.M.G.A. Pasture-Based Systems for Poultry Production: Implications and Perspectives. World’s Poult. Sci. J. 2011, 67, 47–58. [Google Scholar] [CrossRef]
- Hammershøj, M.; Johansen, N. Review: The Effect of Grass and Herbs in Organic Egg Production on Egg Fatty Acid Composition, Egg Yolk Colour and Sensory Properties. Livest. Sci. 2016, 194, 37–43. [Google Scholar] [CrossRef]
- Fernqvist, F.; Spendrup, S.; Tellström, R. Understanding Food Choice: A Systematic Review of Reviews. Heliyon 2024, 10, e32492. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Latheef, S.; Mani, S.; Samad, H.; Karthik, K.; Tiwari, R.; Khan, R.; Alagawany, M.; Farag, M.; Alam, G.M.; et al. Multiple Beneficial Applications and Modes of Action of Herbs in Poultry Health and Production—A Review. Int. J. Pharmacol. 2015, 11, 152–176. [Google Scholar] [CrossRef]
- Enhancement of Nutraceutical Value of Table Eggs Through Poultry Feeding Strategies. Available online: https://scialert.net/abstract/?doi=ijp.2015.201.212 (accessed on 28 November 2024).
- Omidi, M.; Rahimi, S.; Karimi Torshizi, M.A. Modification of Egg Yolk Fatty Acids Profile by Using Different Oil Sources. Vet. Res. Forum 2015, 6, 137–141. [Google Scholar] [PubMed]
- Swiatkiewicz, S.; Arczewska-Włosek, A.; Szczurek, W.; Calik, J.; Bederska-Łojewska, D.; Orczewska-Dudek, S.; Muszyński, S.; Tomaszewska, E.; Józefiak, D. Algal Oil as Source of Polyunsaturated Fatty Acids in Laying Hens Nutrition: Effect on Egg Performance, Egg Quality Indices and Fatty Acid Composition of Egg Yolk Lipids. Ann. Anim. Sci. 2020, 20, 961–973. [Google Scholar] [CrossRef]
- Orczewska-Dudek, S.; Pietras, M.; Puchała, M.; Nowak, J. Camelina Sativa Oil and Camelina Cake as Sources of Polyunsaturated Fatty Acids in the Diets of Laying Hens: Effect on Hen Performance, Fatty Acid Profile of Yolk Lipids, and Egg Sensory Quality. Ann. Anim. Sci. 2020, 20, 1365–1377. [Google Scholar] [CrossRef]
- Batkowska, J.; Drabik, K.; Brodacki, A.; Czech, A.; Adamczuk, A. Fatty Acids Profile, Cholesterol Level and Quality of Table Eggs from Hens Fed with the Addition of Linseed and Soybean Oil. Food Chem. 2021, 334, 127612. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching Laying Hens Eggs by Feeding Diets with Different Fatty Acid Composition and Antioxidants. Sci. Rep. 2021, 11, 20707. [Google Scholar] [CrossRef]
- Ferlisi, F.; Tang, J.; Cappelli, K.; Trabalza-Marinucci, M. Dietary Supplementation with Olive Oil Co-Products Rich in Polyphenols: A Novel Nutraceutical Approach in Monogastric Animal Nutrition. Front. Vet. Sci. 2023, 10, 1272274. [Google Scholar] [CrossRef] [PubMed]
- Safwat, G.M.; Kandiel, M.A.; Abozaid, O.A.R.; Arafa, M.M.; Mohamed, S.O. Biochemical Effect of Olive Cake as Feed Additive on Antioxidants and Molecular Expression of FAS, ANS, ACC in Laying Hens. Adv. Anim. Vet. Sci. 2022, 10, 731–738. [Google Scholar] [CrossRef]
- Difonzo, G.; Troilo, M.; Squeo, G.; Pasqualone, A.; Caponio, F. Functional Compounds from Olive Pomace to Obtain High-Added Value Foods—A Review. J. Sci. Food Agric. 2021, 101, 15–26. [Google Scholar] [CrossRef]
- Berbel, J.; Posadillo, A. Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products. Sustainability 2018, 10, 237. [Google Scholar] [CrossRef]
- Papadomichelakis, G.; Pappas, A.C.; Tsiplakou, E.; Symeon, G.K.; Sotirakoglou, K.; Mpekelis, V.; Fegeros, K.; Zervas, G. Effects of Dietary Dried Olive Pulp Inclusion on Growth Performance and Meat Quality of Broiler Chickens. Livest. Sci. 2019, 221, 115–122. [Google Scholar] [CrossRef]
- Saleh, A.; Alzawqari, M. Effects of Replacing Yellow Corn with Olive Cake Meal on Growth Performance, Plasma Lipid Profile, and Muscle Fatty Acid Content in Broilers. Animals 2021, 11, 2240. [Google Scholar] [CrossRef]
- Ibrahim, D.; Moustafa, A.; Shahin, S.E.; Sherief, W.R.I.A.; Abdallah, K.; Farag, M.F.M.; Nassan, M.A.; Ibrahim, S.M. Impact of Fermented or Enzymatically Fermented Dried Olive Pomace on Growth, Expression of Digestive Enzyme and Glucose Transporter Genes, Oxidative Stability of Frozen Meat, and Economic Efficiency of Broiler Chickens. Front. Vet. Sci. 2021, 8, 644325. [Google Scholar] [CrossRef]
- Mahasneh, Z.M.H.; Abdelnour, S.; Ebrahim, A.; Almasodi, A.G.S.; Moustafa, M.; Alshaharni, M.O.; Algopish, U.; Tellez-Isaias, G.; Abd El-Hack, M.E. Olive Oil and Its Derivatives for Promoting Performance, Health, and Struggling Thermal Stress Effects on Broilers. Poult. Sci. 2024, 103, 103348. [Google Scholar] [CrossRef]
- Joven, M.; Pintos, E.; Latorre, M.A.; Suárez-Belloch, J.; Guada, J.A.; Fondevila, M. Effect of Replacing Barley by Increasing Levels of Olive Cake in the Diet of Finishing Pigs: Growth Performances, Digestibility, Carcass, Meat and Fat Quality. Anim. Feed. Sci. Technol. 2014, 197, 185–193. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mourvaki, E.; Cardinali, R.; Servili, M.; Sebastiani, B.; Ruggeri, S.; Mattioli, S.; Taticchi, A.; Esposto, S.; Castellini, C. Effect of Dietary Supplementation with Olive Pomaces on the Performance and Meat Quality of Growing Rabbits. Meat Sci. 2012, 92, 783–788. [Google Scholar] [CrossRef]
- Losacco, C.; Laudadio, V.; Schiavitto, M.; Tufarelli, V. Perspectives and Advantages of Using Olive (Olea Europaea) by-Products as a Dietary Supplement for Rabbit Production and Health. S. Afr. J. Anim. Sci. 2023, 53, 737–754. [Google Scholar] [CrossRef]
- Luciano, G.; Pauselli, M.; Servili, M.; Mourvaki, E.; Serra, A.; Monahan, F.J.; Lanza, M.; Priolo, A.; Zinnai, A.; Mele, M. Dietary Olive Cake Reduces the Oxidation of Lipids, Including Cholesterol, in Lamb Meat Enriched in Polyunsaturated Fatty Acids. Meat Sci. 2013, 93, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Correddu, F.; Caratzu, M.F.; Lunesu, M.F.; Carta, S.; Pulina, G.; Nudda, A. Grape, Pomegranate, Olive, and Tomato By-Products Fed to Dairy Ruminants Improve Milk Fatty Acid Profile without Depressing Milk Production. Foods 2023, 12, 865. [Google Scholar] [CrossRef] [PubMed]
- Tzamaloukas, O.; Neofytou, M.C.; Simitzis, P.E. Application of Olive By-Products in Livestock with Emphasis on Small Ruminants: Implications on Rumen Function, Growth Performance, Milk and Meat Quality. Animals 2021, 11, 531. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Vera, R.R.; Aguilar, C.; Lira, R.; Peña, I.; Fernández, J. Feeding Olive Cake to Ewes Improves Fatty Acid Profile of Milk and Cheese. Anim. Feed. Sci. Technol. 2013, 184, 94–99. [Google Scholar] [CrossRef]
- Chiofalo, B.; Di Rosa, A.R.; Lo Presti, V.; Chiofalo, V.; Liotta, L. Effect of Supplementation of Herd Diet with Olive Cake on the Composition Profile of Milk and on the Composition, Quality and Sensory Profile of Cheeses Made Therefrom. Animals 2020, 10, 977. [Google Scholar] [CrossRef]
- Chiofalo, V.; Liotta, L.; Lo Presti, V.; Gresta, F.; Di Rosa, A.R.; Chiofalo, B. Effect of Dietary Olive Cake Supplementation on Performance, Carcass Characteristics, and Meat Quality of Beef Cattle. Animals 2020, 10, 1176. [Google Scholar] [CrossRef]
- Nasopoulou, C.; Lytoudi, K.; Zabetakis, I. Evaluation of Olive Pomace in the Production of Novel Broilers With Enhanced In Vitro Antithrombotic Properties. Eur. J. Lipid Sci. Technol. 2018, 120, 1700290. [Google Scholar] [CrossRef]
- Hashish, S.M.; Abd El-Samee, L.D. Olive Cake and Barley Malt Rootlets in Hen Diets to Improve Egg Lipids and Fatty Acids. Rasht Branch. Islam. Azad Univ. Rasht Iran. 2012, 5, 383. [Google Scholar]
- Dedousi, A.; Kritsa, M.-Z.; Đukić Stojčić, M.; Sfetsas, T.; Sentas, A.; Sossidou, E. Production Performance, Egg Quality Characteristics, Fatty Acid Profile and Health Lipid Indices of Produced Eggs, Blood Biochemical Parameters and Welfare Indicators of Laying Hens Fed Dried Olive Pulp. Sustainability 2022, 14, 3157. [Google Scholar] [CrossRef]
- Iannaccone, M.; Ianni, A.; Ramazzotti, S.; Grotta, L.; Marone, E.; Cichelli, A.; Martino, G. Whole Blood Transcriptome Analysis Reveals Positive Effects of Dried Olive Pomace-Supplemented Diet on Inflammation and Cholesterol in Laying Hens. Animals 2019, 9, 427. [Google Scholar] [CrossRef]
- Ochi, E.; Ma, A. Effect of Laying Hen’s Age and Oviposition Time on Egg Cholesterol Contents. Sci. Lett. 2018, 6, 42–46. [Google Scholar]
- Yenilmez, F.; Atay, A. Changes in Egg Production, Egg Quality, Blood and Egg Cholesterol Levels with Age in Layer Hen. Eur. J. Vet. Med. 2023, 3, 6–11. [Google Scholar] [CrossRef]
- Zita, L.; Okrouhlá, M.; Krunt, O.; Kraus, A.; Stádník, L.; Čítek, J.; Stupka, R. Changes in Fatty Acids Profile, Health Indices, and Physical Characteristics of Organic Eggs from Laying Hens at the Beginning of the First and Second Laying Cycles. Animals 2022, 12, 125. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Animal Welfare (AHAW); Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortázar Schmidt, C.; et al. Welfare of Laying Hens on Farm. EFSA J. 2023, 21, e07789. [Google Scholar] [CrossRef]
- Dedousi, A.; Kotzamanidis, C.; Malousi, A.; Giantzi, V.; Sossidou, E. The Influence of Dietary Supplementation with Dried Olive Pulp on Gut Microbiota, Production Performance, Egg Quality Traits, and Health of Laying Hens. Microorganisms 2024, 12, 1916. [Google Scholar] [CrossRef]
- Directive—1999/74—EN–EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/1999/74/oj/eng (accessed on 31 January 2024).
- Nielsen, S.S. (Ed.) Food Analysis Laboratory Manual; Food Science Texts Series; Springer: Boston, MA, USA, 2010; ISBN 978-1-4419-1462-0. [Google Scholar]
- Delegated Regulation—2022/2104—EN-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg_del/2022/2104/oj (accessed on 29 November 2024).
- ISO 18395:2005. Available online: https://www.iso.org/standard/38676.html (accessed on 29 November 2024).
- IOC Standards, Methods and Guides. Available online: https://www.internationaloliveoil.org/what-we-do/chemistry-standardisation-unit/standards-and-methods/ (accessed on 29 November 2024).
- Omri, B.; Chalghoumi, R.; Izzo, L.; Ritieni, A.; Lucarini, M.; Durazzo, A.; Abdouli, H.; Santini, A. Effect of Dietary Incorporation of Linseed Alone or Together with Tomato-Red Pepper Mix on Laying Hens’ Egg Yolk Fatty Acids Profile and Health Lipid Indexes. Nutrients 2019, 11, 813. [Google Scholar] [CrossRef]
- Ulbricht, T.L.; Southgate, D.A. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Ko, E.-Y.; Saini, R.K.; Keum, Y.-S.; An, B.-K. Age of Laying Hens Significantly Influences the Content of Nutritionally Vital Lipophilic Compounds in Eggs. Foods 2021, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Download Previous Versions of JASP. Available online: https://jasp-stats.org/previous-versions/ (accessed on 1 February 2024).
- Fan, Z. Effects of Dietary Tea Polyphenols on Epigallocatechin Gallate, Catechin, Egg Quality and Production of Gallus Domestiaus. Int. J. Agric. Biol. 2021, 25, 139–145. [Google Scholar] [CrossRef]
- Herranz, B.; Romero, C.; Sánchez-Román, I.; López-Torres, M.; Viveros, A.; Arija, I.; Álvarez, M.D.; de Pascual-Teresa, S.; Chamorro, S. Enriching Eggs with Bioactive Compounds through the Inclusion of Grape Pomace in Laying Hens Diet: Effect on Internal and External Egg Quality Parameters. Foods 2024, 13, 1553. [Google Scholar] [CrossRef] [PubMed]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Nieto, G.; Pateiro, M.; Lorenzo, J.M. Phenolic Compounds Obtained from Olea Europaea By-Products and Their Use to Improve the Quality and Shelf Life of Meat and Meat Products—A Review. Antioxidants 2020, 9, 1061. [Google Scholar] [CrossRef]
- Bešlo, D.; Golubić, N.; Rastija, V.; Agić, D.; Karnaš, M.; Šubarić, D.; Lučić, B. Antioxidant Activity, Metabolism, and Bioavailability of Polyphenols in the Diet of Animals. Antioxidants 2023, 12, 1141. [Google Scholar] [CrossRef]
- Qiao, J.; Kong, X.; Kong, A.; Han, M. Pharmacokinetics and Biotransformation of Tea Polyphenols. Curr. Drug Metab. 2014, 15, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Serra, V.; Salvatori, G.; Pastorelli, G. Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products. Animals 2021, 11, 401. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Lioliopoulou, S.; Nenadis, N.; Panitsidis, I.; Pyrka, I.; Kalogeropoulou, A.G.; Symeon, G.K.; Skaltsounis, A.-L.; Stathopoulos, P.; Stylianaki, I.; et al. Effects of Enriched-in-Oleuropein Olive Leaf Extract Dietary Supplementation on Egg Quality and Antioxidant Parameters in Laying Hens. Foods 2023, 12, 4119. [Google Scholar] [CrossRef]
- Kuang, H.; Yang, F.; Zhang, Y.; Wang, T.; Chen, G. The Impact of Egg Nutrient Composition and Its Consumption on Cholesterol Homeostasis. Cholesterol 2018, 2018, 6303810. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; Salem, H.M.; Khafaga, A.F.; Soliman, S.M.; El-Saadony, M.T. Impacts of Polyphenols on Laying Hens’ Productivity and Egg Quality: A Review. J. Anim. Physiol. Anim. Nutr. 2023, 107, 928–947. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Halter, B.; Liu, D.; Gilbert, E.R.; Cline, M.A. Dietary Flavonoids as Modulators of Lipid Metabolism in Poultry. Front. Physiol. 2022, 13, 863860. [Google Scholar] [CrossRef] [PubMed]
- Laudadio, V.; Ceci, E.; Lastella, N.M.B.; Tufarelli, V. Dietary High-Polyphenols Extra-Virgin Olive Oil Is Effective in Reducing Cholesterol Content in Eggs. Lipids Health Dis. 2015, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Selim, S.; Hussein, E. Production Performance, Egg Quality, Blood Biochemical Constituents, Egg Yolk Lipid Profile and Lipid Peroxidation of Laying Hens Fed Sugar Beet Pulp. Food Chem. 2020, 310, 125864. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, Q.; Lin, P.; Li, C.; Lu, Y.; Daijun, S. The Effect of Supplementing Tea Polyphenols in Diet of Laying Hens on Yolk Cholesterol Content and Production Performance. Braz. J. Poult. Sci. 2021, 23, eRBCA. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.-M.E.; Shehata, A.M.; Alzahrani, S.O.; Shafi, M.E.; Mesalam, N.M.; Taha, A.E.; Swelum, A.A.; Arif, M.; Fayyaz, M.; Abd El-Hack, M.E. The Role of Polyphenols in Poultry Nutrition. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1851–1866. [Google Scholar] [CrossRef]
- Desbruslais, A.; Wealleans, A.; Gonzalez-Sanchez, D.; di Benedetto, M. Dietary Fibre in Laying Hens: A Review of Effects on Performance, Gut Health and Feather Pecking. World’s Poult. Sci. J. 2021, 77, 797–823. [Google Scholar] [CrossRef]
- Mukhtar, N.; Mehmood, R.; Khan, S.; Ashrif, N.; Mirza, M. JWPR Journal of World’ s Poultry Research Effect of Psyllium Husk Fiber on Growth Performance, Egg Quality Traits and Lipid Profile in Layers under High Ambient Temperature. J. World Poult. Res. 2017, 7, 15–22. [Google Scholar]
- Tatiana, P.; Cornescu, G.-M.; Sărăcilă, M.; Mariana, R.; Beia, S. Effects of High Fiber Ingredients with Enzyme/Phytoadditive Addition on Laying Hens Productive Performances, Egg Nutritional Quality and Intestinal Morphology. Arch. Zootech. 2021, 24, 6–23. [Google Scholar] [CrossRef]
- Hassan, M.M.; Morsy, A.S.; Hasan, A.M. Egg yolk cholesterol and productive performance of laying hens influenced by dietary crude fiber levels under drinking natural saline water. J. Anim. Poult. Prod. 2013, 4, 161–176. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Zhou, S.; Fu, Y.; Yang, Q.; Li, Y. Effects of Quercetin and Daidzein on Egg Quality, Lipid Metabolism, and Cecal Short-Chain Fatty Acids in Layers. Front. Vet. Sci. 2023, 10, 1301542. [Google Scholar] [CrossRef] [PubMed]
- Han, G.P.; Kim, D.Y.; Kim, K.H.; Kim, J.H.; Kil, D.Y. Effect of Dietary Concentrations of Metabolizable Energy and Neutral Detergent Fiber on Productive Performance, Egg Quality, Fatty Liver Incidence, and Hepatic Fatty Acid Metabolism in Aged Laying Hens. Poult. Sci. 2023, 102, 102497. [Google Scholar] [CrossRef]
- Walugembe, M.; Hsieh, J.C.F.; Koszewski, N.J.; Lamont, S.J.; Persia, M.E.; Rothschild, M.F. Effects of Dietary Fiber on Cecal Short-Chain Fatty Acid and Cecal Microbiota of Broiler and Laying-Hen Chicks. Poult. Sci. 2015, 94, 2351–2359. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Qi, G.; Wang, J.; Zhang, H.; Qiu, K.; Wu, S. Intestinal Microbiota of Layer Hens and Its Association with Egg Quality and Safety. Poult. Sci. 2022, 101, 102008. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, L.; Coretti, L.; Dipineto, L.; Bovera, F.; Menna, F.; Chiariotti, L.; Nizza, A.; Lembo, F.; Fioretti, A. Insect-Based Diet, a Promising Nutritional Source, Modulates Gut Microbiota Composition and SCFAs Production in Laying Hens. Sci. Rep. 2017, 7, 16269. [Google Scholar] [CrossRef]
- Nogueira, C.M.; Zapata, J.F.F.; Fuentes, M.F.F.; Freitas, E.R.; Craveiro, A.A.; Aguiar, C.M. The Effect of Supplementing Layer Diets with Shark Cartilage or Chitosan on Egg Components and Yolk Lipids. Br. Poult. Sci. 2003, 44, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Johansson, A. Effects of Genotype, Age and Feed on the Fat Components of Egg Yolk. Available online: https://stud.epsilon.slu.se/2199/ (accessed on 29 November 2024).
- Biesiada-Drzazga, B.B.; Banaszewska, D.; Kaim-Mirowski, S.B. Analysis of Selected External and Internal Characteristics of the Eggs of Hy-Line Brown Hens in Relation to Their Age. Anim. Sci. Genet. 2022, 18, 45–56. [Google Scholar]
- Peng, M.; Tavaniello, S.; Banaszak, M.; Wlaźlak, S.; Palazzo, M.; Grassi, G.; Maiorano, G. Comparison of Fatty Acid Profile in Egg Yolk from Late-Age Hens Housed in Enriched Cages and in a Free Range System. Animals 2024, 14, 1099. [Google Scholar] [CrossRef]
- Zemková, Ľ.; Simeonovová, J.; Lichovníková, M.; Somerlíková, K. The Effects of Housing Systems and Age of Hens on the Weight and Cholesterol Concentration of the Egg. Czech J. Anim. Sci. 2007, 52, 110–115. [Google Scholar] [CrossRef]
- Dung, N.N.X.; Manh, L.H. Evaluation of Quality Traits, Chemical Composition and Egg Yolk Lipid Components of Noi Lai Chicken. Can. Tho Univ. J. Sci. 2016, 03, 14. [Google Scholar] [CrossRef]
- Radanović, A.; Kralik, G.; Drenjančević, I.; Galović, O.; Košević, M.; Kralik, Z. N-3 PUFA Enriched Eggs as a Source of Valuable Bioactive Substances. Foods 2023, 12, 4202. [Google Scholar] [CrossRef]
- Lešić, T.; Kresic, G.; Cvetnic, L.; Petrović, M.; Pleadin, J. The Influence of Hen Age on Fatty Acid Composition of Commercial Eggs. Croat. J. Food Sci. Technol. 2017, 9, 158–167. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Muszyński, S.; Arczewska-Włosek, A.; Domaradzki, P.; Pyz-Łukasik, R.; Donaldson, J.; Świątkiewicz, S. Cholesterol Content, Fatty Acid Profile and Health Lipid Indices in the Egg Yolk of Eggs from Hens at the End of the Laying Cycle, Following Alpha-Ketoglutarate Supplementation. Foods 2021, 10, 596. [Google Scholar] [CrossRef] [PubMed]
- Xiao, N.; Zhao, Y.; Yao, Y.; Wu, N.; Xu, M.; Du, H.; Tu, Y. Biological Activities of Egg Yolk Lipids: A Review. J. Agric. Food Chem. 2020, 68, 1948–1957. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H. Effects of Dietary Fats on Blood Lipids: A Review of Direct Comparison Trials. Open Heart 2018, 5, e000871. [Google Scholar] [CrossRef] [PubMed]
- Orville, B.; Ramos, A.; Ebron, A. Fat Content, Fatty Acid Composition, and Fatty Acid-Based Nutritional Indices/Ratios of Egg Yolks from Different Poultry Species and Breeds. Philipp. J. Sci. 2023, 152. [Google Scholar] [CrossRef]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty Acid Profiles and Health Lipid Indices in the Breast Muscles of Local Polish Goose Varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Khan, A.; Khan, S.A.; Beg, M.A.; Ali, A.; Damanhouri, G. Comparative Study of Fatty-Acid Composition of Table Eggs from the Jeddah Food Market and Effect of Value Addition in Omega-3 Bio-Fortified Eggs. Saudi J. Biol. Sci. 2017, 24, 929–935. [Google Scholar] [CrossRef]
- 17th European Symposium on the Quality of Poultry Meat and XIth European Symposium on the Quality of Eggs and Egg Products. Available online: https://www.wpsa.com/index.php/publications/wpsa-proceedings/2005/17th-eggmeat?start=80 (accessed on 29 November 2024).
- Petrović, M.; Gačić, M.; Karačić, V.; Gottstein, Z.; Mazija, H.; Medić, H. Enrichment of Eggs in N-3 Polyunsaturated Fatty Acids by Feeding Hens with Different Amount of Linseed Oil in Diet. Food Chem. 2012, 135, 1563–1568. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.; Matos, E.; Ramos, R.; Campos, I.; Valente, L. A Blend of Land Animal Fats Can Replace up to 75% Fish Oil without Affecting Growth and Nutrient Utilization of European Seabass. Aquaculture 2018, 487, 22–31. [Google Scholar] [CrossRef]
- Yurchenko, S.; Sats, A.; Tatar, V.; Kaart, T.; Mootse, H.; Jõudu, I. Fatty Acid Profile of Milk from Saanen and Swedish Landrace Goats. Food Chem. 2018, 254, 326–332. [Google Scholar] [CrossRef]
- Watson, T.; Shantsila, E.; Lip, G.Y.H. Mechanisms of Thrombogenesis in Atrial Fibrillation: Virchow’s Triad Revisited. Lancet 2009, 373, 155–166. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs: II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Cullere, M.; Pellattiero, E.; Sartori, A.; Marangon, A.; Bondesan, V. Is the Farming Method (Cage, Barn, Organic) a Relevant Factor for Marketed Egg Quality Traits? Livest. Sci. 2021, 246, 104453. [Google Scholar] [CrossRef]
- Chiofalo, B.; Luigi, L.; Zumbo, A.; Chiofalo, V. Administration of Olive Cake for Ewe Feeding: Effect on Milk Yield and Composition. Small Rumin. Res. Small Rumin. Res. 2004, 55, 169–176. [Google Scholar] [CrossRef]
- Oloyo, R. Effect of Age on Total Lipid and Cholesterol of Hen Eggs. Indian. J. Anim. Sci. 2003, 73, 93–95. [Google Scholar]
- El-Moneim, A.E.A.; Sabic, E.M. Beneficial Effect of Feeding Olive Pulp and Aspergillus Awamori on Productive Performance, Egg Quality, Serum/Yolk Cholesterol and Oxidative Status in Laying Japanese Quails. J. Anim. Feed. Sci. 2019, 28, 52–61. [Google Scholar] [CrossRef]
- Latour, M.A.; Peebles, E.D.; Doyle, S.M.; Pansky, T.; Smith, T.W.; Boyle, C.R. Broiler Breeder Age and Dietary Fat Influence the Yolk Fatty Acid Profiles of Fresh Eggs and Newly Hatched Chicks. Poult. Sci. 1998, 77, 47–53. [Google Scholar] [CrossRef] [PubMed]
Parameter | Group | WK39 | WK59 | Group Mean | p | ||
---|---|---|---|---|---|---|---|
Group | Age | Group × Age | |||||
Total Phenolics (ppm) | CON | 55.14 ± 2.18 aA | 96.87 ± 2.29 B | 76.00 ± 1.58 | 0.120 | <0.001 | 0.004 |
OP4 | 60.32 ± 2.18 abA | 100.31 ± 2.29 B | 80.31 ± 1.58 | ||||
OP6 | 66.11 ± 2.18 bA | 93.47 ± 2.29 B | 79.79 ± 1.58 | ||||
Age mean | 60.52 ± 1.26 A | 96.88 ± 1.32 B | |||||
Cholesterol (ppm) | CON | 2487.00 ± 84.56 A | 3414.44 ± 89.13 aB | 2950.72± 61.43 a | 0.005 | <0.001 | 0.537 |
OP4 | 2288.00 ± 84.56 A | 3063.33 ± 89.13 bB | 2675.68 ± 61.43 b | ||||
OP6 | 2231.00 ± 84.56 A | 3187.78 ± 89.13 bB | 2709.39 ± 61.43 b | ||||
Age mean | 2335.33 ± 48.82 A | 3221.85 ± 51.46 B | |||||
Triglycerides (%) | CON | 8.45 ± 0.12 | 8.00 ± 0.12 | 8.23 ± 0.09 | 0.597 | 0.022 | 0.226 |
OP4 | 8.12 ± 0.12 | 8.09 ± 0.12 | 8.10 ± 0.09 | ||||
OP6 | 8.29 ± 0.12 | 8.08 ± 0.12 | 8.18 ± 0.09 | ||||
Age mean | 8.29 ± 0.07 A | 8.06 ± 0.07 B | |||||
Oleuropein (ppm) | CON | 20.96 ± 0.42 | 19.90 ± 0.45 | 20.43 ± 0.31 | 0.948 | 0.002 | 0.956 |
OP4 | 21.10 ± 0.42 | 20.04 ± 0.45 | 20.57 ± 0.31 | ||||
OP6 | 21.15 ± 0.42 | 19.87 ± 0.45 | 20.51 ± 0.31 | ||||
Age mean | 21.07 ± 0.25 A | 19.94 ± 0.26 B | |||||
SFAs (g100 g Fat) | CON | 32.24 ± 0.28 | 31.58 ± 0.29 | 31.91 ± 0.20 | 0.578 | <0.001 | 0.145 |
OP4 | 32.84 ± 0.28 A | 31.36 ± 0.29 B | 32.10 ± 0.20 | ||||
OP6 | 33.07 ± 0.28 A | 31.32 ± 0.29 B | 32.20 ± 0.20 | ||||
Age mean | 32.72 ± 0.16 A | 31.42 ± 0.17 B | |||||
MUFAs (g/100 g Fat) | CON | 56.71 ± 0.28 a | 55.81 ± 0.29 a | 56.26 ± 0.20 a | <0.001 | <0.001 | <0.001 |
OP4 | 56.35 ± 0.28 aA | 57.68 ± 0.29 bB | 57.01 ± 0.20 b | ||||
OP6 | 54.06 ± 0.28 bA | 57.45 ± 0.29 bB | 55.75 ± 0.20 a | ||||
Age mean | 55.71 ± 0.16 A | 56.98 ± 0.17 B | |||||
PUFAs (gr100 g Fat) | CON | 11.05 ± 0.34 aA | 12.61 ± 0.35 aB | 11.83 ± 0.24 a | 0.003 | 0.933 | <0.001 |
OP4 | 10.81 ± 0.34 a | 10.96 ± 0.35 b | 10.89 ± 0.24 b | ||||
OP6 | 12.86 ± 0.34 bA | 11.23 ± 0.35 abB | 12.05 ± 0.24 a | ||||
Age mean | 11.58 ± 0.19 | 11.60 ± 0.20 | |||||
PUFAs/SFAs | CON | 0.34 ± 0.01 abA | 0.40 ± 0.01 B | 0.37 ± 0.01 a | 0.018 | 0.147 | 0.004 |
OP4 | 0.33 ± 0.01 a | 0.35 ± 0.01 | 0.34 ± 0.01 b | ||||
OP6 | 0.39 ± 0.01 b | 0.36 ± 0.01 | 0.38 ± 0.01 a | ||||
Age mean | 0.35 ± 0.01 | 0.37 ± 0.01 | |||||
n6 PUFAs | CON | 10.57 ± 0.31 a | 11.63 ± 0.33 a | 11.10 ± 0.23 a | 0.002 | 0.215 | <0.001 |
OP4 | 10.27 ± 0.31 a | 10.13 ± 0.33 b | 10.20 ± 0.23 b | ||||
OP6 | 12.31 ± 0.31 bA | 10.41 ± 0.33 abB | 11.36 ± 0.23 a | ||||
Age mean | 11.05 ± 0.18 | 10.72 ± 0.19 | |||||
n3 PUFAs | CON | 0.43 ± 0.02 A | 0.85 ± 0.03 aB | 0.64 ± 0.02 | 0.100 | <0.001 | 0.001 |
OP4 | 0.46 ± 0.02 A | 0.72 ± 0.03 bB | 0.59 ± 0.02 | ||||
OP6 | 0.47 ± 0.02 A | 0.72 ± 0.03 bB | 0.60 ± 0.02 | ||||
Age mean | 0.45 ± 0.01 A | 0.77 ± 0.01 B | |||||
n6 PUFAs/n3 PUFAs | CON | 24.97 ± 0.59 abA | 13.65 ± 0.62 B | 19.31 ± 0.43 ab | 0.003 | <0.001 | 0.003 |
OP4 | 22.52 ± 0.59 aA | 14.27 ± 0.62 B | 18.40 ± 0.43 a | ||||
OP6 | 26.77 ± 0.59 bA | 14.37 ± 0.62 B | 20.57 ± 0.43 b | ||||
Age mean | 24.75 ± 0.34 A | 14.09 ± 0.36 B | |||||
AI | CON | 0.49 ± 0.006 | 0.48 ± 0.007 | 0.49 ± 0.005 | 0.590 | <0.001 | 0.135 |
OP4 | 0.51 ± 0.006 A | 0.47 ± 0.007 B | 0.49 ± 0.005 | ||||
OP6 | 0.51 ± 0.006 A | 0.47 ± 0.007 B | 0.49 ± 0.005 | ||||
Age mean | 0.50 ± 0.004 A | 0.47 ± 0.004 B | |||||
TI | CON | 0.92 ± 0.01 A | 0.86 ± 0.01 B | 0.89 ± 0.01 | 0.445 | <0.001 | 0.375 |
OP4 | 0.94 ± 0.01 A | 0.86 ± 0.01 B | 0.90 ± 0.01 | ||||
OP6 | 0.95 ± 0.01 A | 0.86 ± 0.01 B | 0.91 ± 0.01 | ||||
Age mean | 0.94 ± 0.01 A | 0.86 ± 0.01 B | |||||
h/H | CON | 2.35 ± 0.03 A | 2.50 ± 0.03 B | 2.43 ± 0.02 | 0.257 | <0.001 | 0.727 |
OP4 | 2.27 ± 0.03 A | 2.47 ± 0.03 B | 2.37 ± 0.02 | ||||
OP6 | 2.30 ± 0.03 A | 2.49 ± 0.03 B | 2.39 ± 0.02 | ||||
Age mean | 2.30 ± 0.02 A | 2.49 ± 0.02 B |
Parameter | Group | WK39 | WK59 | Group Mean | p | ||
---|---|---|---|---|---|---|---|
Group | Age | Group × Age | |||||
Fat % | CON | 8.80 ± 0.18 A | 9.57 ± 0.19 B | 9.18 ± 0.13 | 0.897 | <0.001 | 0.264 |
OP4 | 8.50 ± 0.18 A | 9.77 ± 0.19 B | 9.14 ± 0.13 | ||||
OP6 | 8.86 ± 0.18 A | 9.59 ± 0.19 B | 9.22 ± 0.13 | ||||
Age mean | 8.72 ± 0.10 A | 9.64 ± 0.11 B | |||||
Fatty acids (gr/100 g fat) | |||||||
Myristic acid (C14:0) | CON | 0.390 ± 0.007 | 0.411 ± 0.007 | 0.401 ± 0.005 | 0.382 | 0.528 | 0.063 |
OP4 | 0.407 ± 0.007 | 0.394 ± 0.007 | 0.401 ± 0.005 | ||||
OP6 | 0.391 ± 0.007 | 0.393 ± 0.007 | 0.392 ± 0.005 | ||||
Age mean | 0.396 ± 0.004 | 0.400 ± 0.004 | |||||
Myristoleic acid (C14:1) | CON | 0.095 ± 0.004 ab | 0.089 ± 0.004 | 0.092 ± 0.003 ab | 0.012 | 0.084 | 0.076 |
OP4 | 0.107 ± 0.004 a | 0.091 ± 0.004 | 0.099 ± 0.003 a | ||||
OP6 | 0.084 ± 0.004 b | 0.088 ± 0.004 | 0.086 ± 0.003 b | ||||
Age mean | 0.095 ± 0.002 | 0.089 ± 0.003 | |||||
Palmitic acid (C16:0) | CON | 26.172 ± 0.229 A | 25.078 ± 0.242 B | 25.625 ± 0.167 | 0.437 | <0.001 | 0.650 |
OP4 | 26.687 ± 0.229 A | 25.163 ± 0.242 B | 25.925 ± 0.167 | ||||
OP6 | 26.518 ± 0.229 A | 25.130 ± 0.242 B | 25.824 ± 0.167 | ||||
Age mean | 26.459 ± 0.132 A | 25.124 ± 0.140 B | |||||
Palmitoleic acid (C16:1) | CON | 4.604 ± 0.099 abA | 3.740 ± 0.105 aB | 4.172 ± 0.072 a | <0.001 | 0.003 | <0.001 |
OP4 | 4.841 ± 0.099 b | 4.781 ± 0.105 b | 4.811 ± 0.072 b | ||||
OP6 | 4.257 ± 0.099 a | 4.397 ± 0.105 b | 4.327 ± 0.072 a | ||||
Age mean | 4.567 ± 0.057 A | 4.306 ± 0.061 B | |||||
Heptadecanoic acid (C17:0) | CON | 0.084 ± 0.004 aA | 0.149 ± 0.004 aB | 0.116 ± 0.003 a | <0.001 | <0.001 | <0.001 |
OP4 | 0.077 ± 0.004 aA | 0.119 ± 0.004 bB | 0.098 ± 0.003 b | ||||
OP6 | 0.102 ± 0.004 bA | 0.130 ± 0.004 bB | 0.116 ± 0.003 a | ||||
Age mean | 0.088 ± 0.002 A | 0.133 ± 0.002 B | |||||
Cis-10-Heptadecenoic acid (C17:1) | CON | ND* | 0.144 ± 0.003 a | 0.072 ± 0.002 a | <0.001 | <0.001 | <0.001 |
OP4 | ND | 0.119 ± 0.003 b | 0.059 ± 0.002 b | ||||
OP6 | ND | 0.130 ± 0.003 b | 0.065 ± 0.002 b | ||||
Age mean | ND | 0.131 ± 0.002 | |||||
Stearic acid (C18:0) | CON | 5.550 ± 0.093 a | 5.879 ± 0.099 | 5.714 ± 0.068 | 0.169 | 0.640 | 0.001 |
OP4 | 5.631 ± 0.093 a | 5.620 ± 0.099 | 5.625 ± 0.068 | ||||
OP6 | 6.024 ± 0.093 bA | 5.596 ± 0.099 B | 5.810 ± 0.068 | ||||
Age mean | 5.735 ± 0.054 | 5.698 ± 0.057 | |||||
Elaidic acid (C18:1n9t) | CON | 0.079 ± 0.003 A | 0.061 ± 0.003 B | 0.070 ± 0.002 | 0.568 | <0.001 | 0.224 |
OP4 | 0.076 ± 0.003 A | 0.058 ± 0.003 B | 0.067 ± 0.002 | ||||
OP6 | 0.083 ± 0.003 A | 0.056 ± 0.003 B | 0.069 ± 0.002 | ||||
Age mean | 0.079 ± 0.002 A | 0.058 ± 0.002 B | |||||
Oleic acid (C18:1n9c) | CON | 51.602 ± 0.282 a | 51.678 ± 0.297 | 51.640 ± 0.205 ab | 0.018 | <0.001 | <0.001 |
OP4 | 50.992 ± 0.282 aA | 52.551 ± 0.297 B | 51.772 ± 0.205 a | ||||
OP6 | 49.262 ± 0.282 bA | 52.681 ± 0.297 B | 50.972 ± 0.205 b | ||||
Age mean | 50.619 ± 0.163 A | 52.303 ± 0.172 B | |||||
Linoleic acid (C18:2n6c) | CON | 10.449 ± 0.309 a | 11.479 ± 0.326 a | 10.964 ± 0.225 a | 0.002 | 0.195 | <0.001 |
OP4 | 10.145 ± 0.309 a | 9.986 ± 0.326 b | 10.065 ± 0.225 b | ||||
OP6 | 12.170 ± 0.309 bA | 10.279 ± 0.326 abB | 11.224 ± 0.225 a | ||||
Age mean | 10.921 ± 0.178 | 10.581 ± 0.188 | |||||
γ-Linolenic acid (C18:3n6) | CON | 0.060 ± 0.004 A | 0.082 ± 0.004 B | 0.071 ± 0.003 | 0.796 | 0.007 | 0.016 |
OP4 | 0.069 ± 0.004 | 0.074 ± 0.004 | 0.072 ± 0.003 | ||||
OP6 | 0.074 ± 0.004 | 0.073 ± 0.004 | 0.074 ± 0.003 | ||||
Age mean | 0.068 ± 0.002 A | 0.077 ± 0.002 B | |||||
Linolenic acid (C18:3n3) | CON | 0.133 ± 0.010 A | 0.462 ± 0.010 aB | 0.298 ± 0.007 a | 0.009 | <0.001 | <0.001 |
OP4 | 0.146 ± 0.010 A | 0.389 ± 0.010 bB | 0.267 ± 0.007 b | ||||
OP6 | 0.137 ± 0.010 A | 0.406 ± 0.010 bB | 0.271 ± 0.007 b | ||||
Age mean | 0.139 ± 0.006 A | 0.419 ± 0.006 B | |||||
Cis-11-Eicosenoic (C20:1) | CON | 0.332 ± 0.009 aA | 0.122 ± 0.010 B | 0.227 ± 0.007 ab | 0.015 | <0.001 | 0.013 |
OP4 | 0.332 ± 0.009 aA | 0.090 ± 0.010 B | 0.211 ± 0.007 a | ||||
OP6 | 0.375 ± 0.009 bA | 0.106 ± 0.010 B | 0.240 ± 0.007 b | ||||
Age mean | 0.346 ± 0.005 A | 0.106 ± 0.006 B | |||||
Cis-11,14-Eicosadienoic acid (C20:2) | CON | 0.053 ± 0.005 a | 0.072 ± 0.005 | 0.063 ± 0.004 a | 0.012 | 0.211 | <0.001 |
OP4 | 0.073 ± 0.005 ab | 0.063 ± 0.005 | 0.068 ± 0.004 ab | ||||
OP6 | 0.091 ± 0.005 bA | 0.066 ± 0.005 B | 0.078 ± 0.004 b | ||||
Age mean | 0.072 ± 0.003 | 0.067 ± 0.003 | |||||
Cis-8,11,14-Eicosatrienoic (C20:3n6) | CON | 0.063 ± 0.005 | 0.070 ± 0.006 | 0.066 ± 0.004 | 0.804 | 0.683 | 0.404 |
OP4 | 0.060 ± 0.005 | 0.066 ± 0.006 | 0.063 ± 0.004 | ||||
OP6 | 0.068 ± 0.005 | 0.061 ± 0.006 | 0.065 ± 0.004 | ||||
Age mean | 0.064 ± 0.003 | 0.066 ± 0.003 | |||||
Cis-11,14,17-Eicosatrienoate acid (C20:3n3) | CON | 0.293 ± 0.016 A | 0.389 ± 0.017 aB | 0.341 ± 0.011 | 0.455 | 0.009 | 0.006 |
OP4 | 0.312 ± 0.016 | 0.333 ± 0.017 ab | 0.323 ± 0.011 | ||||
OP6 | 0.329 ± 0.016 | 0.319 ± 0.017 b | 0.324 ± 0.011 | ||||
Age mean | 0.311 ± 0.009 A | 0.347 ± 0.010 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dedousi, A.; Kotzamanidis, C.; Dimitropoulou, G.; Sfetsas, T.; Malousi, A.; Giantzi, V.; Sossidou, E. The Beneficial Dietary Effect of Dried Olive Pulp on Some Nutritional Characteristics of Eggs Produced by Mid- and Late-Laying Hens. Foods 2024, 13, 4152. https://doi.org/10.3390/foods13244152
Dedousi A, Kotzamanidis C, Dimitropoulou G, Sfetsas T, Malousi A, Giantzi V, Sossidou E. The Beneficial Dietary Effect of Dried Olive Pulp on Some Nutritional Characteristics of Eggs Produced by Mid- and Late-Laying Hens. Foods. 2024; 13(24):4152. https://doi.org/10.3390/foods13244152
Chicago/Turabian StyleDedousi, Anna, Charalampos Kotzamanidis, Georgia Dimitropoulou, Themistoklis Sfetsas, Andigoni Malousi, Virginia Giantzi, and Evangelia Sossidou. 2024. "The Beneficial Dietary Effect of Dried Olive Pulp on Some Nutritional Characteristics of Eggs Produced by Mid- and Late-Laying Hens" Foods 13, no. 24: 4152. https://doi.org/10.3390/foods13244152
APA StyleDedousi, A., Kotzamanidis, C., Dimitropoulou, G., Sfetsas, T., Malousi, A., Giantzi, V., & Sossidou, E. (2024). The Beneficial Dietary Effect of Dried Olive Pulp on Some Nutritional Characteristics of Eggs Produced by Mid- and Late-Laying Hens. Foods, 13(24), 4152. https://doi.org/10.3390/foods13244152