A Multi-Isotopic Chemometric Approach for Tracing Hazelnut Origins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Bulk Isotopic Analysis by Elemental Analysis–Isotope Ratio Mass Spectrometry (EA-IRMS)
2.2.1. Sample Preparation for Bulk Isotopic Analysis
2.2.2. EA-IRMS
2.3. Isotopic Analysis of FAMEs by Gas Chromatography–Isotope Ratio Mass Spectrometry (GC-IRMS)
2.3.1. Sample Preparation for Isotopic Analysis of FAMEs
2.3.2. GC-IRMS
2.4. Data Treatment and Statistical Analysis
3. Results and Discussion
3.1. Four-Class PLS-DA Model
3.2. Three-Class PLS-DA Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camin, F.; Boner, M.; Bontempo, L.; Fauhl-Hassek, C.; Kelly, S.D.; Riedl, J.; Rossmann, A. Stable isotope techniques for verifying the declared geographical origin of food in legal cases. Trends Food Sci. Technol. 2017, 61, 176–187. [Google Scholar] [CrossRef]
- Hrastar, R.; Petrišič, M.G.; Ogrinc, N.; Košir, I.J. Fatty acid and stable carbon isotope characterization of camelina sativa oil: Implications for authentication. J. Agric. Food Chem. 2009, 57, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Camin, F.; Bontempo, L.; Perini, M.; Piasentier, E. Stable isotope ratio analysis for assessing the authenticity of food of animal origin. Compr. Rev. Food Sci. Food Saf. 2016, 15, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Laursen, K.H.; Bontempo, L.; Camin, F.; Roßmann, A. Advances in isotopic analysis for food authenticity testing. In Advances in Food Authenticity Testing; Downey, G., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 227–252. [Google Scholar] [CrossRef]
- Korenaga, T.; Suzuki, Y.; Chikaraishi, Y. Biochemical stable isotope analysis in food authenticity. In Engineering Tools in the Beverage Industry; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 209–227. [Google Scholar] [CrossRef]
- Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci Technol. 2005, 16, 555–567. [Google Scholar] [CrossRef]
- Podio, N.S.; Baroni, M.V.; Badini, R.G.; Inga, M.; Ostera, H.A.; Cagnoni, M.; Gautier, E.A.; García, P.P.; Hoogewerff, J.; Wunderlin, D.A. Elemental and isotopic fingerprint of argentinean wheat. Matching soil, water, and crop composition to differentiate provenance. J. Agric. Food Chem. 2013, 61, 3763–3773. [Google Scholar] [CrossRef]
- De Rijke, E.; Schoorl, J.C.; Cerli, C.; Vonhof, H.B.; Verdegaal, S.J.A.; Vivó-Truyols, G.; Lopatka, M.; Dekter, R.; Bakker, D.; Sjerps, M.J.; et al. The use of δ2H and δ18O isotopic analyses combined with chemometrics as a traceability tool for the geographical origin of bell peppers. Food Chem. 2016, 204, 122–128. [Google Scholar] [CrossRef]
- Bertoldi, D.; Cossignani, L.; Blasi, F.; Perini, M.; Barbero, A.; Pianezze, S.; Montesano, D. Characterization and geographical traceability of Italian goji berries. Food Chem. 2019, 275, 585–593. [Google Scholar] [CrossRef]
- Bontempo, L.; Paolini, M.; Franceschi, P.; Ziller, L.; García-González, D.L.; Camin, F. Characterisation and attempted differentiation of European and extra-European olive oils using stable isotope ratio analysis. Food Chem. 2019, 276, 782–789. [Google Scholar] [CrossRef]
- Katerinopoulou, K.; Kontogeorgos, A.; Salmas, C.E.; Patakas, A.; Ladavos, A. Geographical origin authentication of agri-food products: A review. Foods 2020, 9, 489. [Google Scholar] [CrossRef]
- Krauß, S.; Vieweg, A.; Vetter, W. Stable isotope signatures (δ2H-, δ13C-, δ15N-values) of walnuts (Juglans regia L.) from different regions in Germany. J. Sci. Food Agric. 2020, 100, 1625–1634. [Google Scholar] [CrossRef]
- Smith, B.N.; Epstein, S. Two categories of 13C/12C ratios for higher plants. Plant Physiol. 1971, 47, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, T.; Fujiwara, H.; Engelaar, W.M.H.G. Weather and nodule mediated variations in δ13C and δ15N values in field-grown soybean (Glycine max L.) with special interest in the analyses of xylem fluids. J. Exp. Bot. 2000, 51, 559–566. [Google Scholar] [CrossRef]
- Martin, G.J.; Martin, M.L. Climatic significance of isotope ratios. Phytochem. Rev. 2003, 2, 179–190. [Google Scholar] [CrossRef]
- Scartazza, A.; Mata, C.; Matteucci, G.; Yakir, D.; Moscatello, S.; Brugnoli, E. Comparisons of delta13C of photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability. Oecologia 2004, 140, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Camin, F.; Larcher, R.; Perini, M.; Bontempo, L.; Bertoldi, D.; Gagliano, G.; Nicolini, G.; Versini, G. Characterisation of authentic Italian extra-virgin olive oils by stable isotope ratios of C, O, and H and mineral composition. Food Chem. 2010, 118, 901–909. [Google Scholar] [CrossRef]
- Schellenberg, A.; Chmielus, S.; Schlicht, C.; Camin, F.; Perini, M.; Bontempo, L.; Heinrich, K.; Kelly, S.D.; Rossmann, A.; Thomas, F.; et al. Multielement stable isotope ratios (H, C, N, S) of honey from different European regions. Food Chem. 2010, 121, 770–777. [Google Scholar] [CrossRef]
- Faberi, A.; Marianella, R.M.; Fuselli, F.; La Mantia, A.; Ciardiello, F.; Montesano, C.; Mascini, M.; Sergi, M.; Compagnone, D. Fatty acid composition and δ13C of bulk and individual fatty acids as marker for authenticating Italian PDO/PGI extra virgin olive oils by means of isotopic ratio mass spectrometry. J. Mass Spectrom. 2014, 49, 840–849. [Google Scholar] [CrossRef]
- Yoshida, M.; Tabata, A.; Niino, T.; Chiku, K.; Nakashita, R.; Suzuki, Y. Potential application of light element stable isotope ratio in crude fiber for geographical origin verification of raw and cooked kabocha pumpkin (Cucurbita maxima). Food Chem. 2022, 373, 131462. [Google Scholar] [CrossRef]
- Chung, I.M.; Kim, Y.J.; Moon, H.S.; Han, J.G.; Kong, W.S.; Yarnes, C.T.; Kim, S.H. Improved accuracy of geographical origin identification of shiitake grown in sawdust medium: A compound-specific isotope model-based pilot study. Food Chem. 2022, 369, 130955. [Google Scholar] [CrossRef]
- Luykx, D.M.A.M.; van Ruth, S.M. An overview of analytical methods for determining the geographical origin of food products. Food Chem. 2008, 107, 897–911. [Google Scholar] [CrossRef]
- Drivelos, S.A.; Georgiou, C.A. Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union. TRAC—Trend Anal Chem. 2012, 40, 38–51. [Google Scholar] [CrossRef]
- Muñoz-Redondo, J.M.; Bertoldi, D.; Tonon, A.; Ziller, L.; Camin, F.; Moreno-Rojas, J.M. Multi-element and stable isotopes characterization of commercial avocado fruit (Persea americana Mill) with origin authentication purposes. Food Contr. 2022, 137, 108975. [Google Scholar] [CrossRef]
- Nie, J.; Yang, J.; Liu, C.; Li, C.; Shao, S.; Yao, C.; Chen, B.; Tao, Y.; Wang, F.; Zhang, Y.; et al. Stable isotope and elemental profiles determine geographical origin of saffron from China and Iran. Food Chem. 2023, 405, 134733. [Google Scholar] [CrossRef]
- Król, K.; Gantner, M. Morphological traits and chemical composition of hazelnut from different geographical origins: A review. Agriculture 2020, 10, 375. [Google Scholar] [CrossRef]
- FAOSTAT, Food and Agriculture Organization of the United Nations. Agricultural Data 2022. Available online: http://www.fao.org/faostat/en/ (accessed on 14 March 2024).
- GIview Database. Search for Geographical Indications Across the European Union and Beyond, Data 2023. Available online: https://www.tmdn.org/giview/gi/search (accessed on 14 March 2024).
- Anderson, K.A.; Smith, B.W. Effect of season and variety on the differentiation of geographic growing origin of pistachios by stable isotope profiling. J. Agric. Food Chem. 2006, 54, 1747–1752. [Google Scholar] [CrossRef]
- Di Pierro, E.A.; Ziller, L.; Tonon, A.; Bianco, L.; Franceschi, P.; Troggio, M.; Camin, F. Characterization and valorisation of the Italian walnut (Juglans regia L.): A first application of stable isotope ratio analysis to determine walnut geographical origin. In Proceedings of the 2nd Isotope Ratio MS Day, Messina, Italy, 27–29 June 2018; Available online: http://hdl.handle.net/10449/49708 (accessed on 20 June 2024).
- Popescu, R.; Ionete, R.E.; Botoran, O.R.; Costinel, D.; Bucura, F.; Geana, E.I.; Alabedallat, Y.F.J.; Botu, M. 1H-NMR profiling and carbon isotope discrimination as tools for the comparative assessment of walnut (Juglans regia L.) cultivars with various geographical and genetic origins—A preliminary study. Molecules 2019, 24, 1378. [Google Scholar] [CrossRef]
- Wadood, S.A.; Nie, J.; Li, C.; Rogers, K.M.; Zhang, Y.; Yuan, Y. Geographical origin classification of peanuts and processed fractions using stable isotopes. Food Chem. X 2022, 16, 100456. [Google Scholar] [CrossRef]
- Mahalovich, M.F.; Kimsey, M.J.; Fortin-Noreus, J.K.; Robbins, C.T. Isotopic heterogeneity in whitebark pine (Pinus albicaulis Engelm.) nuts across geographic, edaphic and climatic gradients in the Northern Rockies (USA). For. Ecol. Manag. 2016, 359, 174–189. [Google Scholar] [CrossRef]
- Sammarco, G.; Rossi, M.; Summan, M.; Cavanna, D.; Viotto, L.; Pettenà, P.; Dall’Asta, C.; Iacumin, P. Hazelnut products traceability through combined isotope ratio mass spectrometry and multi-elemental analysis. JSFA Rep. 2023, 3, 633–645. [Google Scholar] [CrossRef]
- Torres-Cobos, B.; Rosell, M.; Soler, A.; Rovira, M.; Romero, A.; Guardiola, F.; Vichi, S.; Tres, A. Investigating isotopic markers for hazelnut geographical authentication: Promising variables and potential applications. Food Chem. 2024, 449, 139083. [Google Scholar] [CrossRef]
- Quintanilla-Casas, B.; Marin, M.; Guardiola, F.; García-González, D.L.; Barbieri, S.; Bendini, A.; Gallina Toschi, T.; Vichi, S.; Tres, A. Supporting the sensory panel to grade virgin olive oils: An in-house-validated screening tool by volatile fingerprinting and Chemometrics. Foods 2020, 9, 1509. [Google Scholar] [CrossRef] [PubMed]
- Bowen, G.J.; Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 2003, 39, 1299. [Google Scholar] [CrossRef]
- IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database. 2015. Available online: https://nucleus.iaea.org/wiser (accessed on 22 January 2024).
- Bowen, G.J. The Online Isotopes in Precipitation Calculator, Version 3.2. 2024. Available online: http://www.waterisotopes.org (accessed on 15 June 2024).
- Ehtesham, E.; Hayman, A.R.; McComb, K.A.; Van Hale, R.; Frew, R.D. Correlation of geographical location with stable isotope values of hydrogen and carbon of fatty acids from New Zealand milk and bulk milk powder. J. Agric. Food Chem. 2013, 61, 8914–8923. [Google Scholar] [CrossRef]
- Paolini, M.; Bontempo, L.; Camin, F. Compound-specific δ13C and δ2H analysis of olive oil fatty acids. Talanta 2017, 174, 38–43. [Google Scholar] [CrossRef]
2019 (n) | 2020 (n) | 2021 (n) | 2022 (n) | Geographical Coordinates | |
---|---|---|---|---|---|
Chile | 20 | 20 | - | - | 35°15′36″ S, 71°32′60″ W |
Spain | 23 | 23 | 23 | 22 | 41°10′15″ N, 1°10′09″ E |
Georgia | - | - | 20 | 20 | 42°27′34″ N, 41°51′31″ E |
Italy | 12 | 12 | 12 | - | 42°25′23″ N, 12°4′45″ E |
Isotopic Signatures | Chile (n = 40) | Spain (n = 91) | Georgia (n = 40) | Italy (n = 36) |
---|---|---|---|---|
δ18O (‰) | 23.7 ± 0.7 b | 23.6 ± 0.8 b | 19.8 ± 0.5 c | 24.8 ± 0.8 a |
δ13CPalmitic (‰) | −29.9 ± 0.7 a | −29.9 ± 0.5 a | −31.8 ± 1.2 b | −29.9 ± 0.6 a |
δ13CStearic (‰) | −31.0 ± 1.2 ab | −30.8 ± 1.1 a | −32.8 ± 1.1 c | −31.3 ± 1.2 b |
δ13COleic (‰) | −28.4 ± 0.6 a | −28.4 ± 0.5 a | −30.3 ± 1.3 b | −28.3 ± 0.6 a |
δ13CLinoleic (‰) | −30.5 ± 0.7 a | −30.5 ± 0.7 a | −32.7 ± 1.6 b | −30.5 ± 0.9 a |
δ2HPalmitic (‰) | −179.0 ± 6.8 b | −163.0 ± 8.2 a | −186.6 ± 6.9 c | −166.5 ± 8.2 a |
δ2HOleic (‰) | −191.3 ± 5.3 c | −174.8 ± 5.4 a | −197.5 ± 5.3 d | −179.4 ± 6.9 b |
δ2HLinoleic (‰) | −215.3 ± 5.8 b | −199.5 ± 6.7 a | −219.4 ± 5.0 c | −200.7 ± 7.7 a |
True Origins | Origins Assigned by the Model | |||||
---|---|---|---|---|---|---|
n | CHL (n) | ESP + ITA (n) | GEO (n) | Not Assigned (n) | Correct Classification (%) | |
CHL | 8 | 6.6 ± 1.1 | 1.3 ± 1.0 | 0.0 ± 0.0 | 0.1 ± 0.5 | 82.1 ± 14.2 |
ESP + ITA | 25 | 0.9 ± 0.7 | 23.9 ± 0.9 | 0.0 ± 0.0 | 0.3 ± 0.5 | 95.4 ± 3.6 |
GEO | 8 | 0.0 ± 0.0 | 0.0 ± 0.0 | 8.0 ± 0.0 | 0.0 ± 0.0 | 100.0 ± 0.0 |
Total | 41 | 93.7 ± 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Cobos, B.; Rosell, M.; Soler, A.; Rovira, M.; Romero, A.; Guardiola, F.; Vichi, S.; Tres, A. A Multi-Isotopic Chemometric Approach for Tracing Hazelnut Origins. Foods 2024, 13, 3399. https://doi.org/10.3390/foods13213399
Torres-Cobos B, Rosell M, Soler A, Rovira M, Romero A, Guardiola F, Vichi S, Tres A. A Multi-Isotopic Chemometric Approach for Tracing Hazelnut Origins. Foods. 2024; 13(21):3399. https://doi.org/10.3390/foods13213399
Chicago/Turabian StyleTorres-Cobos, Berta, Mònica Rosell, Albert Soler, Mercè Rovira, Agustí Romero, Francesc Guardiola, Stefania Vichi, and Alba Tres. 2024. "A Multi-Isotopic Chemometric Approach for Tracing Hazelnut Origins" Foods 13, no. 21: 3399. https://doi.org/10.3390/foods13213399
APA StyleTorres-Cobos, B., Rosell, M., Soler, A., Rovira, M., Romero, A., Guardiola, F., Vichi, S., & Tres, A. (2024). A Multi-Isotopic Chemometric Approach for Tracing Hazelnut Origins. Foods, 13(21), 3399. https://doi.org/10.3390/foods13213399