Microstructural Modification and Sorption Capacity of Green Coffee Beans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green Coffee Beans (GCB)
2.2. Determination of Moisture Content of GCB at Different Soaking Times
2.3. Modification of Pre–Soaked GCB
2.3.1. Hot Air Drying (HD) and FREEZE–Drying (FD)
2.3.2. Short–Time Heating & Puffing (SHP) and Microwave & Puffing (MWP)
2.4. Color
2.5. Porosity
2.6. Microstructures
2.7. Caffeine and Chlorogenic Acid Extraction Characteristics
2.8. Sorption Studies
2.9. Statistical Analysis
3. Results and Discussion
3.1. Moisture Content of Soaked GCB
3.2. Color Changes of Modified GCB
3.3. Porosity of Modified GCB
3.4. The Microstructure of GCB and Modified GCB
3.5. CGA and Caffeine Extraction Characteristics
3.6. Sorption Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bastian, F.; Hutabarat, O.S.; Dirpan, A.; Nainu, F.; Harapan, H.; Emran, T.B.; Simal–Gandara, J. From Plantation to Cup: Changes in Bioactive Compounds during Coffee Processing. Foods 2021, 10, 2827. [Google Scholar] [CrossRef] [PubMed]
- de Melo Pereira, G.V.; de Carvalho Neto, D.P.; Magalhães Júnior, A.I.; Vásquez, Z.S.; Medeiros, A.B.P.; Vandenberghe, L.P.S.; Soccol, C.R. Exploring the impacts of postharvest processing on the aroma formation of coffee beans—A review. Food Chem. 2019, 272, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Febrianto, N.A.; Zhu, F. Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chem. 2023, 412, 135489. [Google Scholar] [CrossRef] [PubMed]
- de Melo Pereira, G.V.; Neto, E.; Soccol, V.T.; Medeiros, A.B.P.; Woiciechowski, A.L.; Soccol, C.R. Conducting starter culture–controlled fermentations of coffee beans during on–farm wet processing: Growth, metabolic analyses and sensorial effects. Food Res. Int. 2015, 75, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Elhalis, H.; Cox, J.; Frank, D.; Zhao, J. The crucial role of yeasts in the wet fermentation of coffee beans and quality. Int. J. Food Microbiol. 2020, 333, 108796. [Google Scholar] [CrossRef]
- Ebrahimi–Najafabadi, H.; Leardi, R.; Oliveri, P.; Casolino, M.C.; Jalali–Heravi, M.; Lanteri, S. Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques. Talanta 2012, 99, 175–183. [Google Scholar] [CrossRef]
- Schenker, S.; Handschin, S.; Frey, B.; Perren, R.; Escher, F. Pore structure of coffee beans affected by roasting conditions. J. Food Sci. 2000, 65, 452–457. [Google Scholar] [CrossRef]
- Córdoba, N.; Fernandez–Alduenda, M.; Moreno, F.L.; Ruiz, Y. Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews. Trends Food Sci. Technol. 2020, 96, 45–60. [Google Scholar] [CrossRef]
- Stanek, N.; Zarębska, M.; Biłos, Ł.; Barabosz, K.; Nowakowska–Bogdan, E.; Semeniuk, I.; Błaszkiewicz, J.; Kulesza, R.; Matejuk, R.; Szkutnik, K. Influence of coffee brewing methods on the chromatographic and spectroscopic profiles, antioxidant and sensory properties. Sci. Rep. 2021, 11, 21377. [Google Scholar] [CrossRef]
- Kim, W.; Kim, S.Y.; Kim, D.O.; Kim, B.Y.; Baik, M.Y. Puffing, a novel coffee bean processing technique for the enhancement of extract yield and antioxidant capacity. Food Chem. 2018, 240, 594–600. [Google Scholar] [CrossRef]
- Kamal, I.M.; Sobolik, V.; Kristiawan, M.; Mounir, S.M.; Allaf, K. Structure expansion of green coffee beans using instantaneous controlled pressure drop process. Innov. Food Sci. Emerg. Technol. 2008, 9, 534–541. [Google Scholar] [CrossRef]
- Frisullo, P.; Laverse, J.; Barnabà, M.; Navarini, L. Coffee beans microstructural changes induced by cultivation processing: An X–ray microtomographic investigation. J. Food Eng. 2012, 109, 175–181. [Google Scholar] [CrossRef]
- Lee, H.; Yim, J.; Lee, Y.; Lee, K.G. Effect of organic acid–soaking and sonication on the formation of volatile compounds and α–dicarbonyl compounds in Robusta coffee. Ultrason. Sonochem. 2023, 99, 106580. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.J.; Yang, N.; Yang, Q.; Ayed, C.; Linforth, R.; Fisk, I.D. Enhancing Robusta coffee aroma by modifying flavour precursors in the green coffee bean. Food Chem. 2019, 28, 8–17. [Google Scholar] [CrossRef]
- Baek, M.H.; Ijagbemi, C.O.; Se-Jin, O.; Kim, D.S. Removal of Malachite Green from aqueous solution using degreased coffee bean. J. Hazard. Mater. 2010, 176, 820–828. [Google Scholar] [CrossRef]
- Shooto, N.D.; Nkutha, C.S.; Guilande, N.R.; Naidoo, E.B. Pristine and modified mucuna beans adsorptive studies of toxic lead ions and methylene blue dye from aqueous solution. S. Afr. J. Chem. Eng. 2020, 31, 33–43. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Santos, P.S.; Caldeira, M.T.; Estrada, A.C.; da Costa, J.P.; Rocha–Santos, T.; Duarte, A.C. White bean (Phaseolus vulgaris L.) as a sorbent for the removal of zinc from rainwater. Water Res. 2019, 162, 170–179. [Google Scholar] [CrossRef]
- Mizera, C.; Herák, D.; Hrabě, P.; Kabutey, A.; Wasserbauer, M.; Pouzarová, H. Describing of drying curves of green coffee beans using mathematical model. In Proceedings of the Nommensen International Conference on Technology and Engineering, Medan, Indonesia, 19–20 July 2018. [Google Scholar] [CrossRef]
- Cheng, K.; Dong, W.; Long, Y.; Zhao, J.; Hu, R.; Zhang, Y.; Zhu, K. Evaluation of the impact of different drying methods on the phenolic compounds, antioxidant activity, and in vitro digestion of green coffee beans. Food Sci. Nutr. 2019, 7, 1084–1095. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S. Freeze drying process: A review. Int. J. Pharm. Sci. Res. 2011, 2, 3061–3068. [Google Scholar] [CrossRef]
- Hu, S.; Kim, B.Y.; Baik, M.Y. Physicochemical properties and antioxidant capacity of raw, roasted and puffed cacao beans. Food Chem. 2016, 194, 1089–1094. [Google Scholar] [CrossRef]
- Kim, H.; Ban, I.; Choi, Y.; Yu, S.M.; Youn, S.J.; Baik, M.Y.; Lee, H.; Kim, W. Puffing of Turmeric (Curcuma longa L.) Enhances its Anti–Inflammatory Effects by Upregulating Macrophage Oxidative Phosphorylation. Antioxidants 2020, 9, 931. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, E.M.; Leme, D.S.; Barbosa, B.H.G.; Rodarte, M.P.; Alvarenga Pereira, R.G.F. A computer vision system for coffee beans classification based on computational intelligence techniques. J. Food Eng. 2016, 171, 22–27. [Google Scholar] [CrossRef]
- Berrios, J.D.J.; Wood, D.F.; Whitehand, L.; Pan, J. Sodium bicarbonate and the microstructure, expansion and color of extruded black beans. J. Food Process. Preserv. 2004, 28, 321–335. [Google Scholar] [CrossRef]
- Oyedeji, A.B.; Sobukola, O.P.; Green, E.; Adebo, O.A. Physical properties and water absorption kinetics of three varieties of Mucuna beans. Sci. Rep. 2012, 11, 5450–5457. [Google Scholar] [CrossRef] [PubMed]
- Aravindakshan, S.; Nguyen, T.H.A.; Kyomugasho, C.; Buvé, C.; Dewettinck, K.; Van Loey, A.; Hendrickx, M.E. The Impact of Drying and Rehydration on the Structural Properties and Quality Attributes of Pre–Cooked Dried Beans. Foods 2021, 10, 1665. [Google Scholar] [CrossRef]
- Ramírez–Martínez, A.; Salgado–Cervantes, M.A.; Rodríguez, G.C.; García, M.A.; Cherblanc, F.; Bénet, J.C. Water transport in parchment and endosperm of coffee bean. J. Food Eng. 2013, 114, 375–383. [Google Scholar] [CrossRef]
- Collazos–Escobar, G.A.; Gutiérrez–Guzmán, N.; Váquiro–Herrera, H.A.; Amorocho–Cruz, C.M. Water dynamics adsorption properties of dried and roasted cocoa beans (Theobroma cacao L.). Int. J. Food Prop. 2020, 23, 434–444. [Google Scholar] [CrossRef]
- Anese, M.; Nicoli, M.C.; Verardo, G.; Munari, M.; Mirolo, G.; Bortolomeazzi, R. Effect of vacuum roasting on acrylamide formation and reduction in coffee beans. Food Chem. 2014, 145, 168–172. [Google Scholar] [CrossRef]
- Bauer, D.; Abreu, J.; Jordão, N.; Rosa, J.S.D.; Freitas–Silva, O.; Teodoro, A. Effect of Roasting Levels and Drying Process of Coffea canephora on the Quality of Bioactive Compounds and Cytotoxicity. Int. J. Mol. Sci. 2018, 19, 3407. [Google Scholar] [CrossRef]
- Arkadas, M.; AVSAR, Y.K. Formation of volatile compounds in double roasted antakya coffee. JNFRT 2018, 1, 19–22. [Google Scholar] [CrossRef]
- Dong, W.; Cheng, K.; Hu, R.; Chu, Z.; Zhao, J.; Long, Y. Effect of Microwave Vacuum Drying on the Drying Characteristics, Color, Microstructure, and Antioxidant Activity of Green Coffee Beans. Molecules 2018, 23, 1146. [Google Scholar] [CrossRef] [PubMed]
- Pittia, P.; Sacchetti, G.; Mancini, L.; Voltolini, M.; Sodini, N.; Tromba, G.; Zanini, F. Evaluation of microstructural properties of coffee beans by synchrotron X–ray microtomography: A methodological approach. J. Food Sci. 2011, 76, E222–E231. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Li, J.; Aslam, N.; Sun, H.; Zhao, J.; Wu, Z.; He, S. Effects of particle size on physicochemical and functional properties of superfine black kidney bean (Phaseolus vulgaris L.) powder. PeerJ 2019, 7, e6369. [Google Scholar] [CrossRef] [PubMed]
- Alean, J.; Chejne, F.; Maya, J.C.; Camargo–Trillos, D.; Ramírez, S.; Rincón, E.; Rojano, B. Evolution of the porous structure of cocoa beans during microwave drying. Dry. Technol. 2019, 38, 1313–1322. [Google Scholar] [CrossRef]
- Bhatta, S.; Stevanovic Janezic, T.; Ratti, C. Freeze–Drying of Plant–Based Foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef]
- Bilge, G.; Yurdakul, M.; Buzrul, S.; Bulut, O. Evaluation of the Effect of Pulsed Electric Field on Coffee Arabica Beans. Food Bioprocess. Technol. 2022, 15, 1073–1081. [Google Scholar] [CrossRef]
- Obradović, N.; Filipović, S.; Marković, S.; Mitrić, M.; Rusmirović, J.; Marinković, A.; Antić, V.; Pavlović, V. Influence of different pore–forming agents on wollastonite microstructures and adsorption capacities. Ceram. Int. 2017, 43, 7461–7468. [Google Scholar] [CrossRef]
- Reddy, K.S.K.; Shoaibi, A.A.; Srinivasakannan, C. A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits. New Carbon. Mater. 2012, 27, 344–351. [Google Scholar] [CrossRef]
- Bressani, A.P.P.; Martinez, S.J.; Sarmento, A.B.I.; Borém, F.M.; Schwan, R.F. Organic acids produced during fermentation and sensory perception in specialty coffee using yeast starter culture. Food Res. Int. 2020, 128, 108773. [Google Scholar] [CrossRef]
- Zhao, N.; Kokawa, M.; Amini, R.K.; Dong, W.; Kitamura, Y. Isolation of Yeast and LAB from Dry Coffee Pulp and Monitoring of Organic Acids in Inoculated Green Beans. Foods 2023, 12, 2622. [Google Scholar] [CrossRef]
- Martinez, S.J.; Bressani, A.P.P.; Dias, D.R.; Simão, J.B.P.; Schwan, R.F. Effect of Bacterial and Yeast Starters on the Formation of Volatile and Organic Acid Compounds in Coffee Beans and Selection of Flavors Markers Precursors During Wet Fermentation. Front. Microbiol. 2019, 10, 1287. [Google Scholar] [CrossRef] [PubMed]
Treatment | Soaking Time (min) | ||||
---|---|---|---|---|---|
0 | 30 | 60 | 120 | 180 | |
HD | 1.87 ± 0.12 Cb | 1.43 ± 0.09 Aa | 1.57 ± 0.05 ABab | 1.72 ± 0.14 BCab | 1.79 ± 0.16 BCb |
FD | 0.85 ± 0.18 Aa | 1.24 ± 0.22 Ba | 1.31 ± 0.28 Ba | 1.33 ± 0.11 Ba | 1.26 ± 0.18 Ba |
SH1P | 4.47 ± 0.67 Be | 3.38 ± 0.34 Ac | 3.61 ± 0.45 Ad | 3.89 ± 0.33 ABb | 3.62 ± 0.25 Ae |
SH2P | 6.53 ± 0.49 Cf | 4.97 ± 0.33 Ad | 5.14 ± 0.34 ABe | 5.78 ± 0.12 Bc | 5.69 ± 0.32 Bf |
SH3P | 8.17 ± 0.77 Ag | 6.38 ± 0.34 Be | 6.01 ± 0.25 Bf | 5.89 ± 0.23 Bc | 5.78 ± 0.25 Bf |
MW45P | 3.02± 0.43 Cc | 2.14 ± 0.19 Bb | 1.88 ± 0.24 Abc | 2.29 ± 0.21 Aab | 2.35 ± 0.43 Ac |
MW60P | 3.17 ± 0.55 Cc | 2.23 ± 0.13 ABb | 2.01 ± 0.11 Ac | 2.47 ± 0.08 ABab | 2.59 ± 0.12 Bc |
MW75P | 4.17 ± 0.33 Cd | 3.54 ± 0.32 Bc | 3.69 ± 0.42 Bd | 3.05 ± 0.25 Aab | 3.14 ± 0.29 Ad |
Sample | Pre–Soaking Time | qe,exp | Pseudo–First–Order | Pseudo–Second–Order | ||||
---|---|---|---|---|---|---|---|---|
k1 | qe | R2 | k2 | qe | R2 | |||
GCB | / | 2.21 | 0.00943 | 2.41 | 0.99173 | 0.00238 | 3.31 | 0.98414 |
HD–GCB | 30 | 2.31 | 0.01116 | 2.42 | 0.99589 | 0.00317 | 3.19 | 0.98775 |
60 | 2.39 | 0.01279 | 2.48 | 0.99007 | 0.00383 | 3.19 | 0.97874 | |
120 | 2.68 | 0.01285 | 2.80 | 0.99354 | 0.00348 | 3.57 | 0.98329 | |
180 | 2.77 | 0.01523 | 2.82 | 0.99633 | 0.00471 | 3.47 | 0.98776 | |
FD–GCB | 30 | 3.14 | 0.01151 | 3.31 | 0.99657 | 0.00251 | 4.29 | 0.99272 |
60 | 3.31 | 0.01307 | 3.43 | 0.99431 | 0.00307 | 4.32 | 0.99039 | |
120 | 3.45 | 0.01428 | 3.55 | 0.99012 | 0.00353 | 4.37 | 0.97946 | |
180 | 3.54 | 0.01571 | 3.62 | 0.98957 | 0.00411 | 4.40 | 0.98128 | |
MWP–GCB | 30 | 3.25 | 0.01077 | 3.51 | 0.99302 | 0.00206 | 4.66 | 0.98424 |
60 | 3.44 | 0.01455 | 3.52 | 0.98874 | 0.00371 | 4.30 | 0.98731 | |
120 | 3.54 | 0.01584 | 3.59 | 0.99133 | 0.00416 | 4.34 | 0.99051 | |
180 | 3.68 | 0.01862 | 3.70 | 0.99311 | 0.00527 | 4.36 | 0.99193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Kitamura, Y.; Kokawa, M.; Suzuki, T.; Amini, R.K. Microstructural Modification and Sorption Capacity of Green Coffee Beans. Foods 2024, 13, 3398. https://doi.org/10.3390/foods13213398
Dong W, Kitamura Y, Kokawa M, Suzuki T, Amini RK. Microstructural Modification and Sorption Capacity of Green Coffee Beans. Foods. 2024; 13(21):3398. https://doi.org/10.3390/foods13213398
Chicago/Turabian StyleDong, Weixue, Yutaka Kitamura, Mito Kokawa, Taroh Suzuki, and Rasool Khan Amini. 2024. "Microstructural Modification and Sorption Capacity of Green Coffee Beans" Foods 13, no. 21: 3398. https://doi.org/10.3390/foods13213398
APA StyleDong, W., Kitamura, Y., Kokawa, M., Suzuki, T., & Amini, R. K. (2024). Microstructural Modification and Sorption Capacity of Green Coffee Beans. Foods, 13(21), 3398. https://doi.org/10.3390/foods13213398