Variability within L. albus and L. angustifolius Seeds in Dietary Fiber Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Initial Characterization
2.2. Chemical Analyses
2.2.1. Proximate Composition
2.2.2. Sugars and Dietary Fiber Analyses
2.2.3. Amino Acid and Fatty Acid Analyses
2.3. Statistical Analysis
3. Results
3.1. Lupin Characteristics and Composition
3.2. Dietary Fiber Composition
3.3. Other Macronutrients and their Relationship to the Dietary Fiber
4. Discussion
4.1. Lupin Characteristics and Proximate Composition
4.2. Dietary Fiber Composition
4.3. Other Macronutrients and Relationship to the Dietary Fiber
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malekipoor, R.; Johnson, S.K.; Bhattarai, R.R. Lupin kernel fibre: Nutritional composition, processing methods, physicochemical properties, consumer acceptability and health effects of its enriched products. Nutrients 2022, 14, 2845. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Ramos, F.; Silva, A.S. Lupin (Lupinus albus L.) Seeds: Balancing the good and the bad and addressing future challenges. Molecules 2022, 27, 8577. [Google Scholar] [CrossRef] [PubMed]
- Abreu, B.; Lima, J.; Rocha, A. Consumer Perception and acceptability of lupin-derived products: A systematic review. Foods 2023, 12, 1241. [Google Scholar] [CrossRef] [PubMed]
- Struti, D.I.; Mierlita, D.; Pop, I.M.; Ladosi, D.; Papuc, T. Evaluation of the chemical composition and nutritional quality of dehulled lupin seed meal (Lupinus spp. L.) and its use for monogastrics animal nutrition: A review. Sci. Pap.-Ser. D-Anim. Sci. 2020, 63, 92–105. [Google Scholar]
- Lemus-Conejo, A.; Rivero-Pino, F.; Montserrat-de la Paz, S.; Millan-Linares, M.C. Nutritional composition and biological activity of narrow-leafed lupins (Lupinus angustifolius L.) hydrolysates and seeds. Food Chem. 2023, 420, 136104. [Google Scholar] [CrossRef]
- Chukwuejim, S.; Utioh, A.; Choi, T.D.; Aluko, R.E. Lupin seed proteins: A comprehensive review of composition, extraction technologies, food functionality, and health benefits. Food Rev. Int. 2023, 1–24. [Google Scholar] [CrossRef]
- Arnoldi, A.; Boschin, G.; Zanoni, C.; Lammi, C. The health benefits of sweet lupin seed flours and isolated proteins. J. Funct. Foods 2015, 18, 550–563. [Google Scholar] [CrossRef]
- Khan, M.; Karnpanit, W.; Nasar-Abbas, S.; Zill-e-Huma; Jayasena, V. Phytochemical composition and bioactivities of lupin: A review. Int. J. Food Sci. Technol. 2015, 50, 2004–2012. [Google Scholar] [CrossRef]
- Sujak, A.; Kotlarz, A.; Strobel, W. Compositional and nutritional evaluation of several lupin seeds. Food Chem. 2006, 98, 711–719. [Google Scholar] [CrossRef]
- Eggum, B.O.; Tomes, G.; Beames, R.M.; Datta, F.U. Protein and energy evaluation with rats of seed from 11 lupin cultivars. Anim. Feed. Sci. Technol. 1993, 43, 109–119. [Google Scholar] [CrossRef]
- Thambiraj, S.R.; Reddy, N.; Phillips, M.; Koyyalamudi, S.R. Biological activities and characterization of polysaccharides from the three Australian sweet lupins. Int. J. Food Prop. 2019, 22, 522–535. [Google Scholar] [CrossRef]
- Szczepanski, A.; Adamek-Urbanska, D.; Kasprzak, R.; Szudrowicz, H.; Sliwinski, J.; Kamaszewski, M. Lupin: A promising alternative protein source for aquaculture feeds? Aquac. Rep. 2022, 26, 101281. [Google Scholar] [CrossRef]
- van Barneveld, R.J. Understanding the nutritional chemistry of lupin (Lupinus spp.) seed to improve livestock production efficiency. Nutr. Res. Rev. 1999, 12, 203–230. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, M.; Mikulski, D.; Przywitowski, M.; Jankowski, J. The effect of dietary yellow lupine (L. luteus cv. Baryt) on growth performance, carcass characteristics, meat quality and selected serum parameters of turkeys. J. Anim. Feed. Sci. 2015, 24, 61–70. [Google Scholar] [CrossRef]
- Wolko, B.; Clements, J.C.; Naganowska, B.; Nelson, M.N.; Yang, H.A. Lupinus. In Wild Crop Relatives: Genomic and Breeding Resources: Legume Crops and Forages; Springer: Berlin/Heidelberg, Germany, 2011; pp. 153–206. [Google Scholar] [CrossRef]
- Keller, J.; Marmit, S.P.; Bunzel, M. Structural Characterization of dietary fiber from different lupin species (Lupinus sp.). J. Agric. Food Chem. 2022, 70, 8430–8440. [Google Scholar] [CrossRef] [PubMed]
- Gdala, J.; Jansman, A.J.M.; van Leeuwen, P.; Huisman, J.; Verstegen, M.W.A. Lupins (L. luteus, L. albus, L. angustifolius) as a protein source for young pigs. Anim. Feed. Sci. Technol. 1996, 62, 239–249. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Stoldt, W. Vorschlag zur Vereinheitichung der Fettbestimmung in Lebensmitteln (Suggestion to standardise the determination of fat in foodstuffs). Fette Seifen Anstrichm. 1952, 54, 206–207. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E.; Li, B.W. Determination of oligosaccharides in protein-rich feedstuffs by gas-liquid-chromatography and high-performance liquid-chromatography. J. Agric. Food Chem. 1991, 39, 689–694. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed. Sci. Technol. 1997, 67, 319–338. [Google Scholar] [CrossRef]
- Theander, O.; Aman, P. Studies on dietary-fibers. 1. Analysis and chemical characterization of water-soluble and water-insoluble dietary-fibers. Swed. J. Agric. Res. 1979, 9, 97–106. [Google Scholar]
- Lee, G.I.; Hedemann, M.S.; Jorgensen, H.; Bach Knudsen, K.E. Influence of dietary fibre on nutrient digestibility and energy utilisation in growing pigs fed diets varying in soluble and insoluble fibres from co-products. Animal 2022, 16, 100511. [Google Scholar] [CrossRef] [PubMed]
- Mason, V.C.; Bechandersen, S.; Rudemo, M. Hydrolysate preparation for amino-acid determinations in feed constituents. 8. Studies of oxidation conditions for streamlined procedures. J. Anim. Physiol. Anim. Nutr. 1980, 43, 146–164. [Google Scholar]
- Engberg, R.M.; Jakobsen, K.; Borsting, C.F.; Gjern, H. On the utilization, retention and status of vitamin-e in mink (mustela-vison) under dietary oxidative stress. J. Anim. Physiol. Anim. Nutr. 1993, 69, 66–78. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E.; Lærke, H.N. Carbohydrates and lignin in the feed—From sugars to complex composed fibres. In Feed Evaluation Science; Moughan, P.J., Hendriks, W.H., Eds.; Wageningen University Press: Wageningen, The Netherlands, 2018; pp. 113–144. [Google Scholar]
- CAC. Codex Alimentarius Commission. Guidelines on Nutrition Labelling CAC/GL 2-1985 as Last Amended 2017; Joint FAO/WHO Food Standards Programme, Secretariat of the Codex Alimentarius Commission: Rome, Italy, 2017. [Google Scholar]
- Konieczka, P.; Smulikowska, S. Viscosity negatively affects the nutritional value of blue lupin seeds for broilers. Animal 2018, 12, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Gdala, J. Composition, properties, and nutritive value of dietary fibre of legume seeds. A review. J. Anim. Feed. Sci. 1998, 7, 131–150. [Google Scholar] [CrossRef]
Raffinose | Stachyose | Verbascose | Total | |
---|---|---|---|---|
Ares 96 | 6.1 ± 0.5 | 63.0 ± 5.7 | 14.1 ± 0.9 | 83.1 ± 7.1 |
Ares 97 | 4.8 ± 0.0 | 71.8 ± 1.6 | 7.9 ± 0.3 | 84.5 ± 1.3 |
Lublanc 96 | 5.4 ± 0.1 | 69.2 ± 7.8 | 10.6 ± 0.1 | 85.1 ± 7.6 |
Lublanc 97 | 6.5 ± 0.4 | 72.8 ± 6.7 | 13.5 ± 0.0 | 92.8 ± 7.1 |
CHD-34-96 | 6.5 ± 0.1 | 65.8 ± 6.7 | 8.0 ± 0.1 | 80.2 ± 6.8 |
DTN-12-96 | 5.7 ± 0.5 | 56.9 ± 1.3 | 9.6 ± 0.3 | 72.1 ± 2.1 |
DTN-20-96 | 4.4 ± 0.4 | 57.1 ± 10.7 | 8.5 ± 0.2 | 70.0 ± 10.1 |
Ludet | 5.4 ± 0.3 | 62.8 ± 2.3 | 7.6 ± 0.1 | 75.8 ± 1.9 |
Mean ± SD | 5.6 ± 0.8 | 64.9 ± 6.1 | 10.0 ± 2.6 | 80.4 ± 7.5 |
Coefficient of variation (%) | 13.6 | 9.4 | 25.7 | 9.4 |
p (within L. albus) | 0.002 | 0.186 | <0.001 | 0.082 |
Emir 97 | 5.8 ± 0.1 | 47.8 ± 2.8 | 25.7 ± 0.1 | 79.3 ± 2.8 |
Polonez 96 | 6.4 ± 0.1 | 45.1 ± 1.4 | 16.1 ± 0.5 | 67.5 ± 1.0 |
E 101 | 4.9 ± 0.1 | 22.3 ± 0.7 | 12.1 ± 0.3 | 39.3 ± 1.1 |
Sonet | 5.3 ± 0.1 | 27.4 ± 0.2 | 25.1 ± 0.6 | 57.7 ± 0.7 |
Bordako 97 | 3.5 ± 0.2 | 26.0 ± 2.1 | 18.9 ± 0.1 | 48.3 ± 2.1 |
Borweta 97 | 5.2 ± 0.1 | 29.0 ± 0.9 | 19.2 ± 0.6 | 53.3 ± 1.6 |
L1 Rastatt 96 | 5.3 ± 0.4 | 29.9 ± 2.3 | 27.6 ± 0.6 | 62.8 ± 3.2 |
L2 E 97 | 5.2 ± 0.1 | 30.0 ± 0.1 | 20.0 ± 0.1 | 55.1 ± 0.1 |
Mean ± SD | 5.2 ± 0.8 | 32.2 ± 9.2 | 20.6 ± 0.5 | 57.9 ± 12.2 |
Coefficient of variation (%) | 16.1 | 28.6 | 25.5 | 21.1 |
p (within L. angustifolius) | <0.001 | <0.001 | <0.001 | <0.001 |
p (L. albus vs. L. angustifolius) | 0.152 | <0.001 | <0.001 | <0.001 |
Rhamnose | Fucose | Arabinose | Xylose | Mannose | Galactose | Glucose | Uronic Acids | Total | |
---|---|---|---|---|---|---|---|---|---|
Ares 96 | 1.2 ± 0.2 | 0.8 ± 0.1 | 20.3 ± 2.6 | 0.7 ± 0.1 | 4.0 ± 0.7 | 72.5 ± 6.2 | 6.8 ± 1.2 | 23.4 ± 1.7 | 129.7 ± 1.6 |
Ares 97 | 1.1 ± 0.2 | 0.6 ± 0.1 | 17.4 ± 2.2 | 2.7 ± 0.4 | 3.5 ± 0.6 | 59.4 ± 5.0 | 15.0 ± 2.8 | 21.4 ± 1.5 | 121.1 ± 5.3 |
Lublanc 96 | 0.9 ± 0.1 | 0.2 ± 0.0 | 14.3 ± 1.8 | 1.3 ± 0.2 | 3.7 ± 0.6 | 50.9 ± 4.3 | 8.6 ± 1.6 | 21.2 ± 1.5 | 101.0 ± 6.9 |
Lublanc 97 | 1.2 ± 0.2 | 0.7 ± 0.1 | 16.2 ± 2.1 | 2.3 ± 0.3 | 4.3 ± 0.7 | 57.3 ± 4.9 | 7.4 ± 1.4 | 23.0 ± 1.6 | 112.3 ± 2.4 |
CHD-34-96 | 1.2 ± 0.2 | 0.6 ± 0.1 | 21.0 ± 2.7 | 2.5 ± 0.3 | 2.9 ± 0.5 | 76.3 ± 6.5 | 5.1 ± 0.9 | 23.8 ± 1.7 | 133.4 ± 11.4 |
DTN-12-96 | 1.3 ± 0.2 | 0.6 ± 0.1 | 18.4 ± 2.3 | 3.4 ± 0.5 | 4.2 ± 0.7 | 61.1 ± 5.2 | 3.3 ± 0.6 | 20.5 ± 1.4 | 112.8 ± 7.2 |
DTN-20-96 | 1.3 ± 0.2 | 0.5 ± 0.1 | 17.9 ± 2.3 | 0.0 ± 0.0 | 3.7 ± 0.6 | 61.7 ± 5.2 | 3.1 ± 0.6 | 22.7 ± 1.6 | 110.9 ± 8.2 |
Ludet | 1.7 ± 0.2 | 1.0 ± 0.2 | 22.4 ± 2.9 | 0.4 ± 0.0 | 4.0 ± 0.7 | 82.3 ± 7.0 | 5.4 ± 1.0 | 24.5 ± 1.7 | 141.6 ± 10.3 |
Mean ± SD | 1.2 ± 0.2 | 0.6 ± 0.2 | 18.5 ± 2.7 | 1.6 ± 1.2 | 3.8 ± 0.4 | 65.2 ± 10.7 | 6.8 ± 3.8 | 22.6 ± 1.4 | 120.4 ± 13.6 |
Coefficient of variation (%) | 18.3 | 39.9 | 14.4 | 74.1 | 11.7 | 16.4 | 55.5 | 6.2 | 11.3 |
p (within L. albus) | 0.060 | 0.002 | 0.108 | <0.001 | 0.526 | 0.006 | 0.001 | 0.289 | 0.008 |
Emir 97 | 2.3 ± 0.4 | 0.9 ± 0.1 | 24.7 ± 1.0 | 0.0 ± 0.0 | 4.4 ± 0.2 | 130.1 ± 16.6 | 12.0 ± 1.2 | 28.3 ± 4.4 | 202.5 ± 10.7 |
Polonez 96 | 2.7 ± 0.5 | 1.0 ± 0.1 | 30.1 ± 1.3 | 0.6 ± 0.1 | 3.9 ± 0.3 | 155.5 ± 19.8 | 2.6 ± 0.3 | 30.2 ± 4.7 | 226.7 ± 25.7 |
E 101 | 2.7 ± 0.5 | 0.9 ± 0.1 | 30.1 ± 1.3 | 1.2 ± 0.2 | 3.3 ± 0.2 | 129.1 ± 16.4 | 3.0 ± 0.3 | 33.3 ± 5.2 | 203.5 ± 20.0 |
Sonet | 3.1 ± 0.5 | 1.2 ± 0.2 | 35.1 ± 1.5 | 1.7 ± 0.2 | 4.5 ± 0.3 | 166.4 ± 21.2 | 0.9 ± 0.1 | 35.5 ± 5.5 | 248.3 ± 14.8 |
Bordako 97 | 2.6 ± 0.4 | 0.8 ± 0.1 | 27.3 ± 1.2 | 0.1 ± 0.0 | 3.1 ± 0.2 | 129.7 ± 16.5 | 4.4 ± 0.4 | 31.8 ± 4.9 | 199.7 ± 13.9 |
Borweta 97 | 2.2 ± 0.4 | 1.1 ± 0.1 | 26.6 ± 1.1 | 0.8 ± 0.1 | 2.4 ± 0.2 | 147.6 ± 18.8 | 2.7 ± 0.3 | 32.6 ± 5.1 | 215.9 ± 24.9 |
L1 Rast | 2.4 ± 0.4 | 0.7 ± 0.1 | 22.7 ± 1.0 | 0.4 ± 0.1 | 4.5 ± 0.3 | 114.1 ± 14.5 | 0.0 ± 0.0 | 31.2 ± 4.8 | 175.7 ± 18.4 |
L2 E97 | 2.0 ± 0.3 | 0.6 ± 0.1 | 21.3 ± 0.9 | 0.0 ± 0.0 | 2.1 ± 0.1 | 106.0 ± 13.5 | 0.0 ± 0.0 | 28.6 ± 4.5 | 160.4 ± 8.8 |
Mean ± SD | 2.5 ± 0.3 | 0.9 ± 0.2 | 27.2 ± 4.5 | 0.6 ± 0.7 | 3.5 ± 1.0 | 134.8 ± 20.5 | 3.2 ± 3.9 | 31.4 ± 2.4 | 204.1 ± 27.6 |
Coefficient of variation (%) | 13.6 | 20.9 | 16.5 | 102.0 | 27.1 | 15.2 | 121.2 | 7.7 | 13.5 |
p (within L. angustifolius) | 0.371 | 0.017 | <0.001 | <0.001 | <0.001 | 0.087 | <0.001 | 0.824 | 0.023 |
p (L.albus vs. L.angustifolius) | <0.001 | 0.001 | <0.001 | 0.003 | 0.378 | <0.001 | 0.010 | <0.001 | <0.001 |
Rhamnose | Fucose | Arabinose | Xylose | Mannose | Galactose | Glucose | Uronic Acids | Total | |
---|---|---|---|---|---|---|---|---|---|
Ares 96 | 1.9 ± 0.2 | 1.4 ± 0.1 | 26.0 ± 1.1 | 31.9 ± 5.4 | 3.8 ± 0.6 | 62.2 ± 5.3 | 8.1 ± 0.6 | 15.8 ± 1.8 | 151.0 ± 2.9 |
Ares 97 | 2.0 ± 0.2 | 1.4 ± 0.1 | 26.7 ± 1.1 | 32.2 ± 5.5 | 4.3 ± 0.7 | 64.3 ± 5.5 | 2.6 ± 0.2 | 16.3 ± 1.8 | 149.7 ± 2.4 |
Lublanc 96 | 2.1 ± 0.2 | 1.8 ± 0.1 | 27.9 ± 1.2 | 31.4 ± 5.3 | 4.5 ± 0.7 | 73.2 ± 6.2 | 4.1 ± 0.3 | 16.2 ± 1.8 | 161.2 ± 8.8 |
Lublanc 97 | 1.8 ± 0.2 | 1.4 ± 0.1 | 25.7 ± 1.1 | 33.5 ± 5.7 | 5.0 ± 0.8 | 69.8 ± 5.9 | 5.5 ± 0.4 | 17.2 ± 1.9 | 159.9 ± 14.0 |
CHD-34-96 | 1.9 ± 0.2 | 1.7 ± 0.1 | 25.7 ± 1.1 | 35.0 ± 5.9 | 5.7 ± 0.9 | 54.7 ± 4.6 | 12.8 ± 0.9 | 14.3 ± 1.6 | 151.7 ± 7.8 |
DTN-12-96 | 1.7 ± 0.2 | 1.4 ± 0.1 | 26.0 ± 1.1 | 30.2 ± 5.1 | 5.0 ± 0.8 | 52.2 ± 4.4 | 9.6 ± 0.7 | 14.6 ± 1.7 | 140.7 ± 3.1 |
DTN-20-96 | 1.7 ± 0.2 | 1.5 ± 0.1 | 25.4 ± 1.1 | 32.5 ± 5.5 | 5.5 ± 0.9 | 51.6 ± 4.4 | 16.8 ± 1.2 | 14.5 ± 1.6 | 149.5 ± 0.2 |
Ludet | 1.4 ± 0.1 | 1.2 ± 0.0 | 20.5 ± 0.9 | 34.4 ± 5.8 | 4.2 ± 0.7 | 46.1 ± 3.9 | 11.8 ± 0.8 | 13.7 ± 1.5 | 133.2 ± 0.8 |
Mean ± SD | 1.8 ± 0.2 | 1.5 ± 0.2 | 25.5 ± 2.2 | 32.6 ± 1.6 | 4.7 ± 0.7 | 59.3 ± 9.6 | 8.9 ± 4.8 | 15.3 ± 1.2 | 149.6 ± 9.2 |
Coefficient of variation (%) | 12.6 | 13.9 | 8.5 | 4.9 | 14.0 | 16.2 | 53.9 | 7.9 | 6.2 |
p (within L. albus) | 0.064 | <0.001 | 0.005 | 0.987 | 0.265 | 0.006 | <0.001 | 0.512 | 0.041 |
Emir 97 | 1.8 ± 0.3 | 1.9 ± 0.1 | 21.8 ± 4.0 | 31.5 ± 2.2 | 4.5 ± 0.5 | 42.3 ± 7.8 | 3.9 ± 0.2 | 11.2 ± 1.9 | 118.8 ± 11.9 |
Polonez 96 | 0.9 ± 0.1 | 1.1 ± 0.1 | 19.5 ± 3.6 | 31.0 ± 2.2 | 6.4 ± 0.7 | 34.2 ± 6.3 | 6.2 ± 0.3 | 10.1 ± 1.7 | 109.3 ± 8.6 |
E 101 | 0.8 ± 0.1 | 1.1 ± 0.1 | 18.8 ± 3.5 | 34.8 ± 2.5 | 9.0 ± 1.0 | 31.2 ± 5.7 | 4.3 ± 0.2 | 10.5 ± 1.8 | 110.7 ± 7.7 |
Sonet | 0.8 ± 0.1 | 1.1 ± 0.1 | 20.6 ± 3.8 | 29.1 ± 2.1 | 6.4 ± 0.7 | 38.5 ± 7.1 | 6.5 ± 0.3 | 10.1 ± 1.7 | 113.2 ± 3.1 |
Bordako 97 | 0.9 ± 0.2 | 1.2 ± 0.1 | 21.0 ± 3.9 | 32.5 ± 2.3 | 3.5 ± 0.4 | 39.6 ± 7.3 | 3.5 ± 0.2 | 10.7 ± 1.8 | 112.9 ± 0.2 |
Borweta 97 | 0.9 ± 0.2 | 1.1 ± 0.1 | 21.1 ± 3.9 | 35.2 ± 2.5 | 4.3 ± 0.5 | 47.4 ± 8.7 | 5.4 ± 0.2 | 10.7 ± 1.8 | 126.0 ± 11.4 |
L1 Rast | 0.8 ± 0.1 | 1.2 ± 0.1 | 21.1 ± 3.9 | 32.5 ± 2.3 | 5.6 ± 0.6 | 35.0 ± 6.4 | 8.6 ± 0.4 | 10.8 ± 1.8 | 115.6 ± 9.6 |
L2 E97 | 0.9 ± 0.2 | 1.2 ± 0.1 | 19.8 ± 3.6 | 28.3 ± 2.0 | 4.6 ± 0.5 | 39.2 ± 7.2 | 8.0 ± 0.3 | 10.7 ± 1.8 | 112.8 ± 3.5 |
Mean ± SD | 1.0 ± 0.3 | 1.2 ± 0.3 | 20.5 ± 1.0 | 31.9 ± 2.4 | 5.6 ± 1.7 | 38.4 ± 5.0 | 5.8 ± 1.9 | 10.6 ± 0.4 | 114.9 ± 5.3 |
Coefficient of variation (%) | 34.6 | 20.9 | 4.9 | 7.6 | 31.5 | 13.2 | 32.4 | 3.5 | 4.6 |
p (within L. angustifolius) | 0.006 | 0.001 | 0.991 | 0.131 | 0.001 | 0.490 | <0.001 | 0.998 | 0.565 |
p (L. albus vs. L. angustifolius) | <0.001 | 0.014 | <0.001 | 0.554 | 0.106 | <0.001 | 0.019 | <0.001 | <0.001 |
Cellulose | NSP | Klason Lignin | |
---|---|---|---|
Ares 96 | 78.5 ± 14.4 | 359.2 ± 13.1 | 11.4 ± 2.1 |
Ares 97 | 92.3 ± 17.0 | 363.2 ± 14.0 | 9.2 ± 1.7 |
Lublanc 96 | 96.0 ± 17.6 | 358.2 ± 15.8 | 12.5 ± 2.3 |
Lublanc 97 | 106.9 ± 19.6 | 379.1 ± 8.0 | 9.8 ± 1.8 |
CHD-34-96 | 98.3 ± 18.1 | 383.4 ± 14.5 | 8.5 ± 1.6 |
DTN-12-96 | 97.0 ± 17.8 | 350.5 ± 7.5 | 13.5 ± 2.5 |
DTN-20-96 | 88.9 ± 16.3 | 349.2 ± 8.0 | 7.9 ± 1.5 |
Ludet | 92.3 ± 17.0 | 367.2 ± 5.9 | 9.1 ± 1.7 |
Mean ± SD | 93.8 ± 8.2 | 363.8 ± 12.4 | 10.2 ± 2.0 |
Coefficient of variation (%) | 8.7 | 3.4 | 19.6 |
p (within L. albus) | 0.847 | 0.128 | 0.146 |
Emir 97 | 126.5 ± 7.2 | 447.9 ± 5.9 | 9.0 ± 1.1 |
Polonez 96 | 129.5 ± 7.3 | 465.5 ± 9.8 | 0.5 ± 0.1 |
E 101 | 161.3 ± 9.1 | 475.5 ± 3.1 | 2.0 ± 0.3 |
Sonet | 139.1 ± 7.9 | 500.6 ± 10.1 | 3.1 ± 0.4 |
Bordako 97 | 143.3 ± 8.1 | 455.9 ± 6.0 | 4.0 ± 0.5 |
Borweta 97 | 164.0 ± 9.3 | 506.0 ± 4.2 | 3.2 ± 0.4 |
L1 Rast | 140.7 ± 8.0 | 432.0 ± 0.8 | 4.9 ± 0.6 |
L2 E97 | 129.3 ± 7.3 | 402.4 ± 19.6 | 1.2 ± 0.2 |
Mean ± SD | 141.7 ± 14.3 | 460.8 ± 34.4 | 3.5 ± 2.7 |
Coefficient of variation (%) | 10.1 | 7.5 | 77.1 |
p (within L. angustifolius) | 0.009 | <0.001 | <0.001 |
p (L. albus vs. L. angustifolius) | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, E.; Carrapiso, A.I.; Canibe, N.; Bach Knudsen, K.E. Variability within L. albus and L. angustifolius Seeds in Dietary Fiber Components. Foods 2024, 13, 299. https://doi.org/10.3390/foods13020299
González E, Carrapiso AI, Canibe N, Bach Knudsen KE. Variability within L. albus and L. angustifolius Seeds in Dietary Fiber Components. Foods. 2024; 13(2):299. https://doi.org/10.3390/foods13020299
Chicago/Turabian StyleGonzález, Elena, Ana Isabel Carrapiso, Nuria Canibe, and Knud Erik Bach Knudsen. 2024. "Variability within L. albus and L. angustifolius Seeds in Dietary Fiber Components" Foods 13, no. 2: 299. https://doi.org/10.3390/foods13020299
APA StyleGonzález, E., Carrapiso, A. I., Canibe, N., & Bach Knudsen, K. E. (2024). Variability within L. albus and L. angustifolius Seeds in Dietary Fiber Components. Foods, 13(2), 299. https://doi.org/10.3390/foods13020299