Pentacyclic Triterpenoid Content in Cranberry Raw Materials and Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Reagents
2.2. Sample Preparation
2.3. UPLC-MS and Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Liu, L.; Qiu, H.; Zhang, X.; Guo, W.; Chen, W.; Tian, Y.; Fu, L.; Shi, D.; Cheng, J.; et al. Ursolic Acid Simultaneously Targets Multiple Signaling Pathways to Suppress Proliferation and Induce Apoptosis in Colon Cancer Cells. PLoS ONE 2013, 8, e63872. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gao, Y.; Zhang, Z.; Chen, C.; Chi, Q.; Xu, K.; Yang, L. Ursolic Acid Protects Chondrocytes, Exhibits Anti-Inflammatory Properties via Regulation of the NF-ΚB/NLRP3 Inflammasome Pathway and Ameliorates Osteoarthritis. Biomed. Pharmacother. 2020, 130, 110568. [Google Scholar] [CrossRef] [PubMed]
- Gudoityte, E.; Arandarcikaite, O.; Mazeikiene, I.; Bendokas, V.; Liobikas, J. Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential. Int. J. Mol. Sci. 2021, 22, 4599. [Google Scholar] [CrossRef]
- Erdmann, J.; Kujaciński, M.; Wiciński, M. Beneficial Effects of Ursolic Acid and Its Derivatives—Focus on Potential Biochemical Mechanisms in Cardiovascular Conditions. Nutrients 2021, 13, 3900. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N. Clinically Useful Anticancer, Antitumor, and Antiwrinkle Agent, Ursolic Acid and Related Derivatives as Medicinally Important Natural Product. J. Enzym. Inhib. Med. Chem. 2011, 26, 616–642. [Google Scholar] [CrossRef]
- Kondo, M.; MacKinnon, S.L.; Craft, C.C.; Matchett, M.D.; Hurta, R.A.R.; Neto, C.C. Ursolic Acid and Its Esters: Occurrence in Cranberries and Other Vaccinium Fruit and Effects on Matrix Metalloproteinase Activity in DU145 Prostate Tumor Cells: Anti-Tumor Activity and Content of Ursolic Acid from Vaccinium Fruit. J. Sci. Food Agric. 2011, 91, 789–796. [Google Scholar] [CrossRef]
- Fiorentini, C.; Bodei, S.; Bedussi, F.; Fragni, M.; Bonini, S.A.; Simeone, C.; Zani, D.; Berruti, A.; Missale, C.; Memo, M.; et al. GPNMB/OA Protein Increases the Invasiveness of Human Metastatic Prostate Cancer Cell Lines DU145 and PC3 through MMP-2 and MMP-9 Activity. Exp. Cell Res. 2014, 323, 100–111. [Google Scholar] [CrossRef]
- Caligiani, A.; Malavasi, G.; Palla, G.; Marseglia, A.; Tognolini, M.; Bruni, R. A Simple GC–MS Method for the Screening of Betulinic, Corosolic, Maslinic, Oleanolic and Ursolic Acid Contents in Commercial Botanicals Used as Food Supplement Ingredients. Food Chem. 2013, 136, 735–741. [Google Scholar] [CrossRef]
- Kim, E.; Sy-Cordero, A.; Graf, T.N.; Brantley, S.J.; Paine, M.F.; Oberlies, N.H. Isolation and Identification of Intestinal CYP3A Inhibitors from Cranberry (Vaccinium Macrocarpon) Using Human Intestinal Microsomes. Planta Med. 2011, 77, 265–270. [Google Scholar] [CrossRef]
- Xue, L.; Liu, C.; Ma, H.; Seeram, N.P.; Neto, C.C. Anti-Inflammatory Activities of Cranberry Fruit Extracts in Human THP-1 Monocytes Are Influenced by Their Phytochemical Composition. ACS Food Sci. Technol. 2022, 2, 75–83. [Google Scholar] [CrossRef]
- Wu, X.; Xue, L.; Tata, A.; Song, M.; Neto, C.C.; Xiao, H. Bioactive Components of Polyphenol-Rich and Non-Polyphenol-Rich Cranberry Fruit Extracts and Their Chemopreventive Effects on Colitis-Associated Colon Cancer. J. Agric. Food Chem. 2020, 68, 6845–6853. [Google Scholar] [CrossRef] [PubMed]
- Turbitt, J.R.; Colson, K.L.; Killday, K.B.; Milstead, A.; Neto, C.C. Application of 1 H-NMR-Based Metabolomics to the Analysis of Cranberry (Vaccinium Macrocarpon) Supplements. Phytochem. Anal. 2020, 31, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Kolniak-Ostek, J.; Lachowicz, S.; Gorzelany, J.; Matłok, N. Phytochemical Compounds and Antioxidant Activity in Different Cultivars of Cranberry (Vaccinium Macrocarpon L). J. Food Sci. 2017, 82, 2569–2575. [Google Scholar] [CrossRef] [PubMed]
- Sedbare, R.; Raudone, L.; Zvikas, V.; Viskelis, J.; Liaudanskas, M.; Janulis, V. Development and Validation of the UPLC-DAD Methodology for the Detection of Triterpenoids and Phytosterols in Fruit Samples of Vaccinium Macrocarpon Aiton and Vaccinium Oxycoccos L. Molecules 2022, 27, 4403. [Google Scholar] [CrossRef]
- Xue, L.; Otieno, M.; Colson, K.; Neto, C. Influence of the Growing Region on the Phytochemical Composition and Antioxidant Properties of North American Cranberry Fruit (Vaccinium Macrocarpon Aiton). Plants 2023, 12, 3595. [Google Scholar] [CrossRef]
- Zhang, F.; Daimaru, E.; Ohnishi, M.; Kinoshita, M.; Tokuji, Y. Oleanolic Acid and Ursolic Acid in Commercial Dried Fruits. Food Sci. Technol. Res. 2013, 19, 113–116. [Google Scholar] [CrossRef]
- Šedbarė, R.; Siliņa, D.; Janulis, V. Evaluation of the Phytochemical Composition of Phenolic and Triterpene Compounds in Fruit of Large Cranberries (Vaccinium Macrocarpon Aiton) Grown in Latvia. Plants 2022, 11, 2725. [Google Scholar] [CrossRef]
- Croteau, R.; Fagerson, I.S. The Chemical Composition of the Cuticular Wax of Cranberry. Phytochemistry 1971, 10, 3239–3245. [Google Scholar] [CrossRef]
- Dashbaldan, S.; Becker, R.; Pączkowski, C.; Szakiel, A. Various Patterns of Composition and Accumulation of Steroids and Triterpenoids in Cuticular Waxes from Screened Ericaceae and Caprifoliaceae Berries during Fruit Development. Molecules 2019, 24, 3826. [Google Scholar] [CrossRef]
- Szakiel, A.; Pączkowski, C.; Huttunen, S. Triterpenoid Content of Berries and Leaves of Bilberry Vaccinium Myrtillus from Finland and Poland. J. Agric. Food Chem. 2012, 60, 11839–11849. [Google Scholar] [CrossRef]
- Szakiel, A.; Pączkowski, C.; Pensec, F.; Bertsch, C. Fruit Cuticular Waxes as a Source of Biologically Active Triterpenoids. Phytochem. Rev. 2012, 11, 263–284. [Google Scholar] [CrossRef] [PubMed]
- Howell, A.B.; Reed, J.D.; Krueger, C.G.; Winterbottom, R.; Cunningham, D.G.; Leahy, M. A-Type Cranberry Proanthocyanidins and Uropathogenic Bacterial Anti-Adhesion Activity. Phytochemistry 2005, 66, 2281–2291. [Google Scholar] [CrossRef] [PubMed]
- Vo, N.N.Q.; Nomura, Y.; Muranaka, T.; Fukushima, E.O. Structure-Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and Lipoxygenase Enzymes. J. Nat. Prod. 2019, 82, 3311–3320. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Nikolic, D.; Pendland, S.; Doyle, B.J.; Locklear, T.D.; Mahady, G.B. Effects of Cranberry Extracts and Ursolic Acid Derivatives on P-Fimbriated Escherichia Coli, COX-2 Activity, pro-Inflammatory Cytokine Release and the NF-Kappabeta Transcriptional Response in Vitro. Pharm. Biol. 2009, 47, 18–25. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Lin, C.-S.; Hua, C.-H.; Jou, Y.-J.; Liao, C.-R.; Chang, Y.-S.; Wan, L.; Huang, S.-H.; Hour, M.-J.; Lin, C.-W. Cis-3-O-p-Hydroxycinnamoyl Ursolic Acid Induced ROS-Dependent P53-Mediated Mitochondrial Apoptosis in Oral Cancer Cells. Biomol. Ther. 2019, 27, 54–62. [Google Scholar] [CrossRef]
- Tsai, S.-J.; Yin, M.-C. Antioxidative and Anti-Inflammatory Protection of Oleanolic Acid and Ursolic Acid in PC12 Cells. J. Food Sci. 2008, 73, H174–H178. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Wang, H.; Zhu, L.; Wei, W. Ursolic Acid Ameliorates Early Brain Injury After Experimental Traumatic Brain Injury in Mice by Activating the Nrf2 Pathway. Neurochem. Res. 2017, 42, 337–346. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Cui, L.; Wang, L.; Liu, H.; Ji, H.; Du, Y. Ursolic Acid Promotes the Neuroprotection by Activating Nrf2 Pathway after Cerebral Ischemia in Mice. Brain Res. 2013, 1497, 32–39. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, Y.; Li, P.; Wen, X.; Yang, J. Study on the Absorption of Corosolic Acid in the Gastrointestinal Tract and Its Metabolites in Rats. Toxicol. Appl. Pharmacol. 2019, 378, 114600. [Google Scholar] [CrossRef]
- Zhou, X.J.; Hu, X.M.; Yi, Y.M.; Wan, J. Preparation and Body Distribution of Freeze-Dried Powder of Ursolic Acid Phospholipid Nanoparticles. Drug Dev. Ind. Pharm. 2009, 35, 305–310. [Google Scholar] [CrossRef]
Sample | Ursolic Acid (UA) | Oleanolic Acid (OA) | Corosolic Acid (CA) | Maslinic Acid (MA) | cis- and trans-p-Hydroxy-Cinnamoyl UA/OA Esters | Total Triterpenoids |
---|---|---|---|---|---|---|
Presscake | 6494 ± 29 | 2133 ± 37 | 207.5 ± 7.1 | 55.3 ± 3.3 | 760 ± 64 | 9650 ± 58 |
Pomace | 15,500 ± 1700 | 3990 ± 360 | 459 ± 21 | 164 ± 5 | 615 ± 62 | 20,738 ± 2089 |
Fried cranberries | 436 ± 7 | 93.7 ± 1.3 | 17.6 ± 0.3 | 3.85 ± 0.03 | 4.63 ± 0.99 | 556 ± 7.3 |
Sweetened dried cranberries | 1950 ± 52 | 452 ± 3.7 | 45.7 ± 2.0 | 8.0 ± 0.4 | 88.4 ± 7.9 | 2540 ± 65 |
Whole berry sauce | 283.3 ± 4.8 | 57.1 ± 1.9 | 7.4 ± 0.1 | 1.84 ± 0.23 | 5.7 ± 1.1 | 355 ± 7.1 |
Cranberry juice beverage (A) | 0.017 ± 0.0013 | 0.0009 ± 0.0002 | ND | ND | ND | 0.018 ± 0.001 |
Cranberry juice beverage (B) | 0.190 ± 0.007 | 0.054 ± 0.001 | 0.0081 ± 0.0005 | 0.0031 ± 0.00013 | ND | 0.26 ± 0.008 |
Cranberry juice beverage (C) | 0.013 ± 0.0037 | 0.003 + 0.0009 | 0.0009 ± 0.0003 | 0.0007 ± 0.0001 | ND | 0.018 + 0.005 |
Cranberry juice beverage (D) | 0.191 ± 0.014 | 0.052 ± 0.0009 | 0.0216 ± 0.0017 | 0.0070 ± 0.00006 | ND | 0.27 ± 0.017 |
Sample | Ursolic Acid (UA) | Oleanolic Acid (OA) | Corosolic Acid (CA) | Maslinic Acid (MA) | cis- and trans-p-Hydroxy-Cinnamoyl UA/OA Esters | Total Triterpenoids |
---|---|---|---|---|---|---|
Presscake | 27,770 ± 120 | 9120 ± 160 | 887 ± 30 | 237 ± 14 | 3236 ± 270 | 41,250 ± 248 |
Pomace | 47,520 ± 5100 | 12,220 ± 1100 | 1960 ± 91 | 502 ± 15 | 1885 ± 190 | 64,090 ± 6420 |
Fried cranberries | 437 ± 7 | 93.9 ± 1.3 | 17.6 ± 0.3 | 3.86 ± 0.03 | 4.6 ± 1.0 | 557 ± 7.3 |
Whole berry sauce | 610 ± 10 | 123 ± 4.0 | 15.96 ± 0.2 | 3.97 ± 0.50 | 12.3 ± 2.4 | 765 ± 15 |
Dried cranberries | 2040 ± 54 | 474 ± 4 | 46.9 ± 2.1 | 8.41 ± 0.40 | 92.8 ± 8.3 | 2665 ± 68 |
Yellow Bell fruit | 8360 ± 320 | 2040 ± 110 | 518 ± 25 | 95 ± 3.2 | 807.8 ± 42.5 | 11,703 ± 612 |
Early Black fruit (MA, 2017) | 7423 ± 183 | 2650 ± 63 | 925 ± 19 | 225 ± 8 | 5844 ± 51 | 17,070 ± 320 |
Stevens fruit (MA, 2016) | 5236 ± 90 | 1858 ± 70 | 107 ± 12 | 20.0 ± 3.5 | 2875 ± 114 | 10,095 ± 289 |
Stevens fruit (MA, 2017) | 5909 ± 129 | 2132 ± 53 | 123 ± 10 | 48.4 ± 2.3 | 4325 ± 174 | 12,537 ± 368 |
Welker fruit (MA, 2016) | 5435 ± 83 | 1511 ± 52 | 48.8 ± 9.7 | 6.5 ± 2 | 1910 ± 37 | 8911 ± 188 |
Welker fruit (MA, 2017) | 6996 ± 46 | 2640 ± 87 | 265 ± 14 | 72.5 ± 1 | 1235 ± 93 | 11,209 ± 241 |
Welker fruit (OR, 2016) | 5511 ± 94 | 1764 ± 39 | 117 ± 29 | 105 ± 4 | 58 ± 14 | 7555 ± 180 |
Welker fruit (OR, 2017) | 5244 ± 98 | 1632 ± 13 | 108 ± 2.6 | 48.4 ± 1.4 | 160 ± 10 | 7192 ± 125 |
GH-1 fruit (MA, 2016) | 5961 ± 170 | 2306 ± 46 | 100 ± 1.9 | 19.9 ± 0.7 | 7055 ± 290 | 15,441 ± 493 |
GH-1 fruit (MA, 2017) | 6733 ± 325 | 2470 ± 88 | 69.2 ± 10 | 22.7 ± 2.9 | 5671 ± 434 | 14,970 ± 860 |
GH-1 fruit (OR, 2016) | 4971 ± 100 | 1444 ± 18 | 45.9 ± 1.1 | 12.8 ± 0.4 | 68 ± 7 | 6542 ± 119 |
GH-1 fruit (OR, 2017) | 5174 ± 87 | 1510 ± 2 | 51.8 ± 1.9 | 13.9 ± 1.9 | 211 ± 32 | 6961 ± 125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, L.; Carreiro, B.; Mia, M.S.; Paetau-Robinson, I.; Khoo, C.; Neto, C. Pentacyclic Triterpenoid Content in Cranberry Raw Materials and Products. Foods 2024, 13, 3136. https://doi.org/10.3390/foods13193136
Xue L, Carreiro B, Mia MS, Paetau-Robinson I, Khoo C, Neto C. Pentacyclic Triterpenoid Content in Cranberry Raw Materials and Products. Foods. 2024; 13(19):3136. https://doi.org/10.3390/foods13193136
Chicago/Turabian StyleXue, Liang, Bianca Carreiro, Md Sagir Mia, Inke Paetau-Robinson, Christina Khoo, and Catherine Neto. 2024. "Pentacyclic Triterpenoid Content in Cranberry Raw Materials and Products" Foods 13, no. 19: 3136. https://doi.org/10.3390/foods13193136
APA StyleXue, L., Carreiro, B., Mia, M. S., Paetau-Robinson, I., Khoo, C., & Neto, C. (2024). Pentacyclic Triterpenoid Content in Cranberry Raw Materials and Products. Foods, 13(19), 3136. https://doi.org/10.3390/foods13193136