Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (416)

Search Parameters:
Keywords = ursolic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 752 KiB  
Article
Enhanced Anti-Inflammatory Effects of Rosemary (Salvia rosmarinus) Extracts Modified with Pseudomonas shirazensis Nanoparticles
by Enrique Gutierrez-Albanchez, Elena Fuente-González, Svitlana Plokhovska, Francisco Javier Gutierrez-Mañero and Beatriz Ramos-Solano
Antioxidants 2025, 14(8), 931; https://doi.org/10.3390/antiox14080931 - 29 Jul 2025
Viewed by 273
Abstract
Rosemary (Salvia rosmarinus) is renowned for its antioxidant, anti-inflammatory, and antihyperglycemic properties, largely attributed to its rich phytochemical profile. This study evaluates the potential of metabolites from Pseudomonas shirazensis NFV3, formulated in silver nanoparticles (AgNPs), to enhance the bioactivity of rosemary [...] Read more.
Rosemary (Salvia rosmarinus) is renowned for its antioxidant, anti-inflammatory, and antihyperglycemic properties, largely attributed to its rich phytochemical profile. This study evaluates the potential of metabolites from Pseudomonas shirazensis NFV3, formulated in silver nanoparticles (AgNPs), to enhance the bioactivity of rosemary extracts in postharvest applications. Rosemary stems were treated with AgNPs coated with bacterial metabolites (NP), bacterial cells, or metabolites (LM), and the extracts’ phytochemical composition and bioactivities were assessed. HPLC and HPLC–MS analyses revealed that the NP treatment induced significant metabolic remodeling, particularly upregulating rosmarinic acid and selected triterpenes (ursolic and betulinic acids), while reducing carnosic acid levels. NP-treated extracts exhibited significantly enhanced inhibition of cyclooxygenase (COX-1 and COX-2), indicating improved anti-inflammatory potential. The α-glucosidase inhibition and antioxidant activity (DPPH assay) of the extracts were not substantially altered, suggesting the selective enhancement of pharmacological functions. These findings demonstrate that nanoparticle-based elicitation selectively remodels secondary metabolism in rosemary, improving extract quality and bioactivity. This strategy offers a novel, sustainable tool for optimizing plant-based therapeutics in the phytopharmaceutical industry. Full article
(This article belongs to the Special Issue Applications of Antioxidant Nanoparticles, 2nd Edition)
Show Figures

Figure 1

26 pages, 7094 KiB  
Article
Preliminary Study on the Geochemical Characterization of Viticis Fructus Cuticular Waxes: From Latitudinal Variation to Origin Authentication
by Yiqing Luo, Min Guo, Lei Hu, Jiaxin Yang, Junyu Xu, Muhammad Rafiq, Ying Wang, Chunsong Cheng and Shaohua Zeng
Int. J. Mol. Sci. 2025, 26(15), 7293; https://doi.org/10.3390/ijms26157293 - 28 Jul 2025
Viewed by 198
Abstract
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical [...] Read more.
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical limitations. This investigation systematically characterized the cuticular wax composition of VF sample from a diverse variety of production areas. Quantitative analyses were conducted to evaluate the spatial distribution patterns of the wax constituents. Significant regional variations were observed: Anhui sample exhibited the highest total wax content (21.39 μg/cm2), with n-alkanes dominating at 76.67%. High-latitude regions showed elevated triterpenoid acid levels, with maslinic acid (0.53 μg/cm2) and ursolic acid (0.34 μg/cm2) concentrations exceeding those of their low-latitude counterparts by four- and three-fold, respectively. Altitudinal influence manifested in long-chain alcohol accumulation, as triacontanol reached 0.87 μg/cm2 in high-altitude sample. Five key biomarkers demonstrated direct quality correlations: eicosanoic acid, n-triacontane, dotriacontanol, β-amyrin, and α-amyrin. This study established three novel origin identification protocols: single-component quantification, multi-component wax profiling, and wax ratio analysis. This work not only reveals the latitudinal dependence of VF wax composition, but also provides a scientific framework for geographical authentication. Our findings advance wax-based quality evaluation methodologies for fruit products, offering practical solutions for production area verification challenges in food raw materials. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 659 KiB  
Article
Effects of Ursolic Acid on Immune Function and Antioxidative Capacity in Weaned Rabbits
by Yanhua Liu, Saijuan Chen, Fengyang Wu, Baojiang Chen, Chong Li, Xinyu Yang, Gang Zhang and Man Hu
Animals 2025, 15(15), 2159; https://doi.org/10.3390/ani15152159 - 22 Jul 2025
Viewed by 321
Abstract
This study aimed to investigate the effects of dietary supplementation with different levels of ursolic acid (UA) on the growth performance, immune function, intestinal antioxidant capacity, and anti-inflammatory responses of weaned rabbits. A total of 160 Hyla meat rabbits aged 35 days were [...] Read more.
This study aimed to investigate the effects of dietary supplementation with different levels of ursolic acid (UA) on the growth performance, immune function, intestinal antioxidant capacity, and anti-inflammatory responses of weaned rabbits. A total of 160 Hyla meat rabbits aged 35 days were randomly assigned to four groups. Each treatment group consisted of 8 replicates, with 5 rabbits per replicate. The rabbits were fed a basal diet (control group, CON) or experimental diets supplemented with 50, 100, or 200 mg/kg UA for 28 days. Dietary supplementation with 50 mg/kg UA significantly increased (p < 0.05) the average daily gain and average daily feed intake. The villus height, crypt depth, and villus height to crypt depth ratio exhibited quadratic responses (p < 0.05) to increasing dietary UA levels, with rabbits fed 50 mg/kg UA showing optimal ileal morphology. Compared with the CON group, dietary supplementation with 50 mg/kg UA significantly enhanced (p < 0.05) cecal catalase activity, secretory immunoglobulin A, and interleukin-10 (IL-10) levels, while the addition of 200 mg/kg UA increased (p < 0.05) serum catalase activity. The concentrations of serum tumor necrosis factor-α (TNF-α) and cecal IL-10 responded quadratically (p < 0.01 and p = 0.01, respectively) as the dietary UA level increased. With increasing UA supplementation, cecal Kelch-like ECH-associated protein 1 and IL-10 mRNA expression showed linear upregulation (p < 0.05), whereas nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase 1 (SOD1), quinone oxidoreductase 1 (NQO1), TNF-α, interleukin-6, and interleukin-8 displayed quadratic responses (p < 0.05). Dietary UA at 50 mg/kg significantly downregulated cecal TNF-α and interleukin-1β mRNA expression while upregulating Nrf2, NQO1, and SOD1 mRNA levels (p < 0.05). In conclusion, dietary supplementation with 50 mg/kg UA significantly improved the growth performance of weaned rabbits by improving intestinal morphology, immune function, and antioxidant and anti-inflammatory capacities, demonstrating its efficacy as a natural phytogenic feed additive. Full article
(This article belongs to the Special Issue Use of Agro-Industrial Co-Products in Animal Nutrition)
Show Figures

Figure 1

23 pages, 14728 KiB  
Article
Integrated Multi-Omics Analysis of the Developmental Stages of Antheraea pernyi Pupae: Dynamic Changes in Metabolite Profiles and Gene Expression
by Shuhui Ma, Yongxin Sun, Yajie Li, Xuejun Li, Zhixin Wen, Rui Mi, Nan Meng and Xingfan Du
Insects 2025, 16(7), 745; https://doi.org/10.3390/insects16070745 - 21 Jul 2025
Viewed by 354
Abstract
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives [...] Read more.
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives (pyruvate, proline, lysine) declined, while pyrimidines (cytidine, uridine, β-alanine) and monosaccharides (glucose, mannose) increased. 18β-glycyrrhetinic and ursolic acids accumulated significantly in the middle and late stages. Transcriptomic analysis identified 7230 differentially expressed genes (DEGs), with 366, 1705, and 5159 significantly differentially expressed genes in the T1, T3, and T5 comparison groups, respectively. KEGG enrichment highlighted ABC transporters, amino acid/pyrimidine metabolism, and tyrosine pathways as developmentally critical, with aminoacyl-tRNA biosynthesis upregulated in later phases. Integrated multi-omics analysis revealed coordinated shifts in metabolites and genes across developmental phases, reflecting dynamic nutrient remodeling during pupal maturation. This study systematically delineates the molecular transitions driving pupal development in Antheraea pernyi pupae, uncovering conserved pathway interactions and mechanistic insights into nutrient metabolism. These findings provide a scientific foundation for leveraging pupal resources in functional food innovation and bioactive compound discovery for pharmaceutical applications. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

12 pages, 2388 KiB  
Article
Secondary Metabolites of Bacillus zhangzhouensis from Zygophyllum oxianum and Their Antifungal and Plant Growth-Regulating Properties
by Zokir O. Toshmatov, Fazliddin A. Melikuziev, Ilkham S. Aytenov, Ma’ruf Z. Isokulov, Gulnaz Kahar, Tohir A. Bozorov and Daoyuan Zhang
Plants 2025, 14(13), 2058; https://doi.org/10.3390/plants14132058 - 4 Jul 2025
Viewed by 461
Abstract
Plant species harbor diverse rhizospheric bacteria within their resilient root zones, serving as a valuable reservoir of bioactive microorganisms with strong potential for natural antifungal and plant growth-promoting applications. This study aimed to investigate the antagonistic potential of Bacillus zhangzhouensis, isolated from [...] Read more.
Plant species harbor diverse rhizospheric bacteria within their resilient root zones, serving as a valuable reservoir of bioactive microorganisms with strong potential for natural antifungal and plant growth-promoting applications. This study aimed to investigate the antagonistic potential of Bacillus zhangzhouensis, isolated from Zygophyllum oxianum in the Aral Sea region, Uzbekistan, against the fungal pathogen Cytospora mali. Due to its strong antifungal activity, B. zhangzhouensis was selected for bioactive compound profiling. Methanolic extracts were fractionated via silica and Sephadex gel chromatography, followed by antifungal screening using the agar diffusion method. A highly active fraction (dichloromethane/methanol, 9:1) underwent further purification, yielding twelve antifungal sub-fractions. Mass spectrometry analysis across positive and negative ion modes identified 2475 metabolites, with polar solvents—particularly methanol—enhancing compound recovery. Refinement using Bacillus-specific references identified six known antibiotics. Four pure compounds were isolated and structurally characterized using NMR: oleanolic acid, ursolic acid, cyclo-(Pro-Ser), and uracil. Their growth regulatory activity was assessed on Amaranthus retroflexus, Nicotiana benthamiana, triticale, and Triticum aestivum at concentrations of 5, 20, 100, and 500 mg L−1. All compounds negatively affected root growth in a concentration-dependent manner, especially in monocots. Interestingly, some treatments enhanced stem growth, particularly in N. benthamiana. These findings indicate that B. zhangzhouensis produces diverse bioactive compounds with dual antifungal and plant growth-modulatory effects, highlighting its potential as a biocontrol agent and a source of natural bioactive compounds. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

16 pages, 1785 KiB  
Article
Effects of Betulinic Acid and Ursolic Acid on IL-17-Induced CCL20 Release in Normal Human Epidermal Keratinocytes
by Anna Arai, Takahiro Oyama, Toyoaki Nakajima, Michiru Usui, Ena Sato, Takanori Kamiya, Midori Oyama, Takashi Tanikawa, Tomoharu Takeuchi, Takehiko Abe and Tomomi Hatanaka
Life 2025, 15(7), 1073; https://doi.org/10.3390/life15071073 - 4 Jul 2025
Viewed by 499
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by erythema, infiltration, and scaling, which is mainly caused by interleukin (IL)-17. The use of molecular targeted drugs in specific therapies offers high efficacy; however, high medical costs and a significant risk of side effects [...] Read more.
Psoriasis is a chronic inflammatory skin disease characterized by erythema, infiltration, and scaling, which is mainly caused by interleukin (IL)-17. The use of molecular targeted drugs in specific therapies offers high efficacy; however, high medical costs and a significant risk of side effects highlight the need for novel therapeutic agents. We previously observed that Morus alba extract (MAE) suppressed IL-17-induced CCL20 mRNA expression in normal human epidermal keratinocytes (NHEKs). In this study, we focused on the IL-17 signaling pathway and investigated the effects of pentacyclic triterpenoids, betulinic acid (BA), and ursolic acid (UA), which are present in MAE, on NHEK cells. Real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) revealed that both BA and UA suppressed CCL20 expression, while only UA alone inhibited CCL20 release. ELISA using specific inhibitors demonstrated that both the p38 and extracellular-signal-regulated kinase 1/2 (ERK1/2) pathways were crucial for IL-17-induced CCL20 release in NHEK. UA effectively suppressed ERK1/2 nuclear localization and moderately affected p38 phosphorylation. These results indicated that UA is a potential seed compound for psoriasis treatment through its targeting of the IL-17 pathway. Full article
(This article belongs to the Special Issue Bioactive Natural Compounds: Therapeutic Insights and Applications)
Show Figures

Figure 1

24 pages, 3521 KiB  
Article
Ursolic Acid Suppresses Colorectal Cancer Through Autophagy–Lysosomal Degradation of β-Catenin
by Chung-Ming Lin, Min-Chih Chao, Hsin-Han Chen and Hui-Jye Chen
Int. J. Mol. Sci. 2025, 26(13), 6210; https://doi.org/10.3390/ijms26136210 - 27 Jun 2025
Viewed by 416
Abstract
Colorectal cancer remains a leading malignancy. As the aberrant activation of Wnt/β-catenin signaling causes colorectal cancer, Wnt/β-catenin signaling inhibitors are potential candidates for colorectal cancer treatment. Our drug screening platform identified ursolic acid (UA), a triterpenoid with various biological activities, as a potential [...] Read more.
Colorectal cancer remains a leading malignancy. As the aberrant activation of Wnt/β-catenin signaling causes colorectal cancer, Wnt/β-catenin signaling inhibitors are potential candidates for colorectal cancer treatment. Our drug screening platform identified ursolic acid (UA), a triterpenoid with various biological activities, as a potential anticancer drug because it inhibits the T-cell factor (TCF)/β-catenin-mediated transcriptional activity. Here, we discovered that UA inhibited Wnt signaling by reducing the Wnt reporter activity and Wnt target gene expression, leading to a delay in cell cycle progression and the suppression of cell proliferation. Stepwise epistatic analyses suggested that UA functions on β-catenin protein stability in Wnt signaling. Further studies revealed that UA reduced β-catenin protein levels by Western blotting and immunofluorescent staining and induced autophagy by microtubule-associated protein 1 light chain 3 beta (LC3B) punctate staining. The cotreatment with UA and the autophagy inhibitors chloroquine and wortmannin recovered the β-catenin protein levels. Therefore, UA was confirmed to induce β-catenin degradation by the autophagy–lysosomal degradation system through inhibition in the phosphatidylinositol 3-kinase (PI3K)/Ak strain transforming (protein kinase B; AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Our results not only highlight the potential of UA in Wnt-driven colorectal cancer therapy but also provide a workable Wnt signaling termination approach for the treatment of other Wnt-related diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Colorectal Cancer: 4th Edition)
Show Figures

Graphical abstract

50 pages, 4091 KiB  
Review
Targeting Prostate Cancer Metabolism Through Transcriptional and Epigenetic Modulation: A Multi-Target Approach to Therapeutic Innovation
by Pedro Juan Espitia-Pérez, Lyda Marcela Espitia-Perez and Mario Negrette-Guzmán
Int. J. Mol. Sci. 2025, 26(13), 6013; https://doi.org/10.3390/ijms26136013 - 23 Jun 2025
Viewed by 905
Abstract
Prostate cancer (PCa) therapy faces challenges due to tumor heterogeneity, plasticity, and progression. Metabolic reprogramming, a dynamic process, has emerged as a key focus in PCa treatment. However, conventional therapies targeting cancer-specific metabolic pathways or employing chemosensitizers are often limited by compensatory mechanisms [...] Read more.
Prostate cancer (PCa) therapy faces challenges due to tumor heterogeneity, plasticity, and progression. Metabolic reprogramming, a dynamic process, has emerged as a key focus in PCa treatment. However, conventional therapies targeting cancer-specific metabolic pathways or employing chemosensitizers are often limited by compensatory mechanisms and metabolic complexity. This review highlights the roles of transcription factors, including AR, p53, c-Myc, HIF-1, Nrf2, and PPARγ, in regulating PCa metabolism by influencing signaling pathways, enzymes, and gene expression. Multi-target compounds, particularly natural products, show potential for disrupting multiple metabolic enzymes, opening up new research possibilities. Notable examples include β-elemene, juglone, tannic acid, and withaferin A, which target critical metabolic processes through enzyme inhibition, transcription factor modulation, epigenetic changes, and protein interaction disruption. Naturally derived metabolites can elicit transversal responses in diverse metabolic pathways, particularly in p53 and MYC transcription factors. Additionally, compounds such as pentacyclic terpenoids (ursolic acid with ursane skeleton), sulforaphane, and isothiocyanate-related moieties may induce metabolic and epigenetic changes through S-adenosyl methionine (SAM) and acetyl-CoA modulation, potentially affecting new areas of research through metabolic processes. We propose a cooperative crosstalk between metabolic reprogramming and transcription factors/epigenetic modulation in PCa. This approach holds potential for expanding PCa therapeutics and opening new avenues for research. Full article
Show Figures

Figure 1

38 pages, 2216 KiB  
Review
Mediterranean Basin Erica Species: Traditional Uses, Phytochemistry and Pharmacological Properties
by Khadijah A. Jabal, Maria Pigott, Helen Sheridan and John J. Walsh
Molecules 2025, 30(12), 2616; https://doi.org/10.3390/molecules30122616 - 17 Jun 2025
Viewed by 686
Abstract
Erica species native to the Mediterranean basin are the principal Ericas that have found use in traditional medicine. Examples include treatments for urinary tract disorders, inflammatory conditions, gastrointestinal ailments and weight loss. This review critically evaluates the ethnobotanical usage, phytochemical profiles and pharmacological [...] Read more.
Erica species native to the Mediterranean basin are the principal Ericas that have found use in traditional medicine. Examples include treatments for urinary tract disorders, inflammatory conditions, gastrointestinal ailments and weight loss. This review critically evaluates the ethnobotanical usage, phytochemical profiles and pharmacological potential of the Mediterranean Erica species, including Erica arborea L., Erica multiflora L. and Erica manipuliflora Salisb. A wide spectrum of bioactive secondary metabolites has been identified across these species, notably pentacyclic triterpenes (e.g., lupeol, ursolic acid and oleanolic acid) and polyphenolics (e.g., myricetin and quercetin glycosides). Extracts of these species have demonstrated antioxidant, anti-inflammatory, analgesic, antimicrobial and diuretic activities in vitro and/or in vivo, providing pharmacological support for traditional uses. Phytochemical profiles vary by species, plant part, geography and extraction technique. Filsuvez®, comprising pentacyclic triterpenes from birch bark, has clinical approval for the treatment of partial thickness wounds associated with dystrophic and junctional epidermolysis bullosa. The undoubted reservoir of pentacyclic triterpenes and flavonoid glycosides in Mediterranean Erica species warrants further comprehensive mechanistic studies, toxicological evaluations and clinical validation. Full article
Show Figures

Graphical abstract

18 pages, 3326 KiB  
Article
Harnessing Natural Product Compounds to Target Dormancy Survival Regulator (DosR) in Latent Tuberculosis Infection (LTBI): An In Silico Strategy Against Dormancy
by Mandeep Chouhan, Mukesh Kumar, Vivek Dhar Dwivedi, Vivek Kumar Kashyap, Himanshu Narayan Singh and Sanjay Kumar
Adv. Respir. Med. 2025, 93(3), 19; https://doi.org/10.3390/arm93030019 - 16 Jun 2025
Viewed by 517
Abstract
Dormancy occurs when Mycobacterium tuberculosis (Mtb) enters a non-replicating and metabolically inactive state in response to hostile environment. During this state, it is highly resistant to conventional antibiotics, which increase the urgency to develop new potential drugs against dormant bacilli. In view of [...] Read more.
Dormancy occurs when Mycobacterium tuberculosis (Mtb) enters a non-replicating and metabolically inactive state in response to hostile environment. During this state, it is highly resistant to conventional antibiotics, which increase the urgency to develop new potential drugs against dormant bacilli. In view of this, the dormancy survival regulator (DosR) protein is thought to be an essential component that plays a key role in bacterial adaptation to dormancy during hypoxic conditions. Herein, the NP-lib database containing natural product compounds was screened virtually against the binding site of the DosR protein using the MTiopen screen web server. A series of computational analyses were performed, including redocking, intermolecular interaction analysis, and MDS, followed by binding free energy analysis. Through screening, 1000 natural product compounds were obtained with docking energy ranging from −8.5 to −4.1 kcal/mol. The top four lead compounds were then selected for further investigation. On comparative analysis of intermolecular interaction, dynamics simulation and MM/GBSA calculation revealed that M3 docked with the DosR protein (docking score = −8.1 kcal/mol, RMSD = ~7 Å and ΔG Bind = −53.51 kcal/mol) exhibited stronger stability than reference compound Ursolic acid (docking score = −6.2 kcal/mol, RMSD = ~13.5 Å and ΔG Bind = −44.51 kcal/mol). Hence, M3 is recommended for further validation through in vitro and in vivo studies against latent tuberculosis infection. Full article
Show Figures

Figure 1

27 pages, 7392 KiB  
Article
Skin-Whitening, Antiwrinkle, and Moisturizing Effects of Astilboides tabularis (Hemsl.) Engl. Root Extracts in Cell-Based Assays and Three-Dimensional Artificial Skin Models
by Nam Ho Yoo, Hyun Sook Lee, Sung Min Park, Young Sun Baek and Myong Jo Kim
Int. J. Mol. Sci. 2025, 26(12), 5725; https://doi.org/10.3390/ijms26125725 - 15 Jun 2025
Viewed by 539
Abstract
This study investigated the potential cosmetic properties of the ethyl acetate (EtOAc) fraction obtained from the roots of Astilboides tabularis (Hemsl.) Engl., focusing on skin-whitening, antiwrinkle, and moisturizing effects using cell-based assays and three-dimensional (3D) artificial skin models (Neoderm-ED and Neoderm-ME). The EtOAc [...] Read more.
This study investigated the potential cosmetic properties of the ethyl acetate (EtOAc) fraction obtained from the roots of Astilboides tabularis (Hemsl.) Engl., focusing on skin-whitening, antiwrinkle, and moisturizing effects using cell-based assays and three-dimensional (3D) artificial skin models (Neoderm-ED and Neoderm-ME). The EtOAc fraction showed significant dose-dependent inhibitory activity against tyrosinase (TYR) (72.0% inhibition at 50 µg/mL), comparable to that of kojic acid. In α-melanocyte-stimulating hormone (α-MSH)-stimulated Neoderm-ME artificial skin containing melanocytes, the EtOAc fraction reduced melanin synthesis at concentrations of 50 and 75 µg/mL and decreased melanogenesis-related gene expression, including TYR, microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1) and TRP-2. In the antiwrinkle assays, the EtOAc fraction effectively inhibited elastase activity (41.5% inhibition at 10 µg/mL), exceeding the efficacy of ursolic acid. In the Neoderm-ED artificial skin model, the EtOAc fraction reversed structural damage induced by particulate matter (PM10), restoring epidermal thickness and dermal density. This improvement was supported by the increased expression of skin barrier and antiwrinkle genes, including filaggrin, hyaluronic acid synthase-1 (HAS-1), HAS-2, aquaporin-3 (AQP-3), collagen type I alpha 1 chain (COL1A1), elastin, tissue inhibitor of metalloproteinases-1 (TIMP-1), and TIMP-2, as well as decreased expression of matrix metalloproteinases (MMP-1, MMP-3, and MMP-9). Our results indicate that the EtOAc fraction from A. tabularis root has considerable potential as a multifunctional cosmetic. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

11 pages, 5119 KiB  
Communication
Ursolic Acid-Based Nutraceutical Mitigates Muscle Atrophy and Improves Exercise Performance in Mouse Model of Peripheral Neuropathy
by Caterina Miro, Fortuna Iannuzzo, Lucia Acampora, Annunziata Gaetana Cicatiello, Serena Sagliocchi, Elisabetta Schiano, Annarita Nappi, Federica Restolfer, Mariano Stornaiuolo, Gian Carlo Tenore, Monica Dentice and Ettore Novellino
Int. J. Mol. Sci. 2025, 26(11), 5418; https://doi.org/10.3390/ijms26115418 - 5 Jun 2025
Viewed by 536
Abstract
Peripheral nerve injuries, caused by trauma or iatrogenic damage, often lead to permanent disabilities with limited effectiveness of current therapeutic treatments. This has driven the growing interest toward natural bioactive molecules, including ursolic acid (UA). Literature studies have shown that white grape pomace [...] Read more.
Peripheral nerve injuries, caused by trauma or iatrogenic damage, often lead to permanent disabilities with limited effectiveness of current therapeutic treatments. This has driven the growing interest toward natural bioactive molecules, including ursolic acid (UA). Literature studies have shown that white grape pomace oleolyte (WGPO), a natural source of UA, is a promising candidate for promoting peripheral nerve regeneration. Considering that many neurological injuries involve compression or partial damage, the present study examined the effects of WGPO on peripheral neuropathy using a neuropathic pain mouse model. Briefly, 14 days after starting the WGPO-enriched diet, mice underwent cuffing of the right sciatic nerve to induce nerve injury and inflammation. At sacrifice, the WGPO-fed mice exhibited reduced muscle atrophy, as indicated by a greater number and larger diameter of muscle fibers, along with decreased expression of Atrogin-1 and Murf-1, compared with the injured control-diet group. To determine the functional impact of the WGPO treatment, the WGPO-supplemented group was compared with a control group receiving only sunflower oil, evaluating exercise performance post-cuffing via a treadmill test. Mice on the WGPO diet exhibited improved physical performance and a significantly lower expression of pro-inflammatory interleukins than controls. Our findings suggest WGPO as a promising candidate for managing peripheral neuropathy and related muscular impairments. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

22 pages, 517 KiB  
Article
Erica spiculifolia Salisb. (Balkan Heath): A Focus on Metabolic Profiling and Antioxidant and Enzyme Inhibitory Properties
by Reneta Gevrenova, Anna Szakiel, Cezary Pączkowski, Gokhan Zengin, Inci Kurt-Celep, Alexandra Stefanova and Dimitrina Zheleva-Dimitrova
Plants 2025, 14(11), 1648; https://doi.org/10.3390/plants14111648 - 28 May 2025
Viewed by 549
Abstract
Erica spiculifolia Salisb. (formerly Bruckenthalia spiculifolia Benth.) (Balkan heath) is renowned for its traditional usage as a diuretic, anti-inflammatory and antioxidant agent. For the first time, acylquinic acids, flavonoids and numerous proanthocyanidin oligomers were annotated/dereplicated by liquid chromatography–high-resolution mass spectrometry in methanol–aqueous extracts [...] Read more.
Erica spiculifolia Salisb. (formerly Bruckenthalia spiculifolia Benth.) (Balkan heath) is renowned for its traditional usage as a diuretic, anti-inflammatory and antioxidant agent. For the first time, acylquinic acids, flavonoids and numerous proanthocyanidin oligomers were annotated/dereplicated by liquid chromatography–high-resolution mass spectrometry in methanol–aqueous extracts from E. spiculifolia aerial parts harvested at the early and full flowering stage. Chlorogenic acid and proanthocyanidin tetra- and trimer A, B-type together with quercitrin and (+) catechin were the predominant compounds in the semi-quantitative analysis. Neutral triterpenoids, triterpenoid acids and phytosterols were determined in apolar extracts by gas chromatography–mass spectrometry. Triterpenoid acids accounted for 80% of the total triterpenoid content, dominated by ursolic and oleanolic acid, reaching up to 32.2 and 6.1 mg/g dw, respectively. Ursa/olean-2,12-dien-28-oic acids and 3-keto-derivatives together with α-amyrin acetate as a chemotaxonomic marker, α-amyrenone, α- and β-amyrin were evaluated. Total phenolic and flavonoid contents were 83.85 ± 0.89 mg gallic acid equivalents/g and 78.91 ± 0.41 mg rutin equivalents/g, respectively. The extract actively scavenged DPPH and ABTS radicals (540.01 and 639.11 mg Trolox equivalents (TE)/g), possessed high potential to reduce copper and iron ions (660.32 and 869.22 mg TE/g, respectively), and demonstrated high metal chelating capacity (15.57 Ethylenediaminetetraacetic acid equivalents/g). It exhibited prominent anti-lipase (18.32 mg orlistat equivalents/g) and anti-tyrosinase (71.90 mg kojic acid equivalents/g) activity. The extract inhibited α-glucoside (1.35 mmol acarbose equivalents/g) and acetylcholinesterase (2.56 mg galanthamin equivalents/g), and had moderate effects on α-amylase, elastase, collagenase and hyaluronidase. Balkan heath could be recommended for raw material production with antioxidant and enzyme inhibitory properties. Full article
Show Figures

Figure 1

38 pages, 2978 KiB  
Review
Chemopreventive and Anticancer Activity of Selected Triterpenoids in Melanoma
by Natalia Dycha, Magdalena Michalak-Tomczyk, Jacek Jachuła, Estera Okoń, Agata Jarząb, Joanna Tokarczyk, Wojciech Koch, Katarzyna Gaweł-Bęben, Wirginia Kukula-Koch and Anna Wawruszak
Cancers 2025, 17(10), 1625; https://doi.org/10.3390/cancers17101625 - 11 May 2025
Cited by 1 | Viewed by 874
Abstract
Melanoma is one of the most aggressive forms of skin cancer, characterized by high metastatic potential and resistance to conventional therapies. Natural compounds, particularly terpenoids, have gained attention for their chemopreventive potential and anticancer properties. These plant-derived compounds exhibit diverse biological activities, e.g., [...] Read more.
Melanoma is one of the most aggressive forms of skin cancer, characterized by high metastatic potential and resistance to conventional therapies. Natural compounds, particularly terpenoids, have gained attention for their chemopreventive potential and anticancer properties. These plant-derived compounds exhibit diverse biological activities, e.g., cell viability and proliferation inhibition, apoptosis induction, cell cycle regulation, and immune system modulation. The review evaluates the current state of the art on the chemopreventive and anticancer activity of lupane- (betulinic acid), oleanane- (oleanolic acid, β-amyrin, escin, hederagenin, glycyrrhetinic acid), and ursane-type (ursolic acid, asiatic acid, madecassic acid, α-amyrin) triterpenoids in melanoma, highlighting their mechanisms of action, therapeutic potential, and challenges in clinical application. Full article
(This article belongs to the Special Issue Chemoprevention Advances in Cancer (2nd Edition))
Show Figures

Figure 1

24 pages, 8214 KiB  
Article
Inhibition of RPA32 and Cytotoxic Effects of the Carnivorous Plant Sarracenia purpurea Root Extract in Non-Small-Cell Lung Cancer Cells
by Kuo-Ting Chang, Yu-Cheng Chen, Yi Lien, Yen-Hua Huang and Cheng-Yang Huang
Plants 2025, 14(10), 1426; https://doi.org/10.3390/plants14101426 - 9 May 2025
Viewed by 904
Abstract
The carnivorous plant Sarracenia purpurea has been traditionally used in various ethnobotanical applications, including treatments for type 2 diabetes and tuberculosis-like symptoms. This study investigates the cytotoxic effects of S. purpurea root extract (Sp-R) on human non-small-cell lung cancer (NSCLC) cell lines, including [...] Read more.
The carnivorous plant Sarracenia purpurea has been traditionally used in various ethnobotanical applications, including treatments for type 2 diabetes and tuberculosis-like symptoms. This study investigates the cytotoxic effects of S. purpurea root extract (Sp-R) on human non-small-cell lung cancer (NSCLC) cell lines, including H1975, H838, and A549, focusing on its impact on cell survival, apoptosis, proliferation, and migration. Additionally, its ability to inhibit the single-stranded DNA-binding activity of human RPA32 (huRPA32), a key protein in DNA replication, was evaluated. Extracts from different plant parts (leaf, stem, and root) were prepared using various solvents (water, methanol, ethanol, and acetone) and screened for apoptosis-inducing potential using the chromatin condensation assay. Among these, the acetone-extracted root fraction (Sp-R-A) exhibited the most potent pro-apoptotic effects. The MTT assay demonstrated a dose-dependent cytotoxic effect on NSCLC cells, with IC50 values of 33.74 μg/mL for H1975, 60.79 μg/mL for H838, and 66.52 μg/mL for A549. Migration and clonogenic assays further revealed that Sp-R-A significantly inhibited cancer cell migration and colony formation in a dose-dependent manner. Moreover, Sp-R-A enhanced apoptosis when combined with the EGFR inhibitor afatinib, suggesting a potential synergistic effect. The electrophoretic mobility shift assay confirmed that Sp-R-A significantly inhibited the DNA-binding activity of huRPA32, with an IC50 of 13.6 μg/mL. AlphaFold structural prediction and molecular docking studies indicated that major bioactive compounds in S. purpurea, including α-amyrin, ursolic acid, and betulinaldehyde, strongly interact with the DNA-binding domain of huRPA32, potentially contributing to its inhibitory effect. Overall, these findings suggest that huRPA32 is a potential molecular target of Sp-R-A and the anticancer potential of S. purpurea root extract against NSCLC is highlighted, supporting further investigation into its therapeutic applications. Full article
(This article belongs to the Special Issue Biological Activities of Plant Extracts, 2nd Edition)
Show Figures

Figure 1

Back to TopTop