Plant-Based Alternatives to Mold-Ripened Cheeses as an Innovation among Dairy Analogues
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biological Material
2.3. Culture Media
2.4. Microorganism Culture Conditions and Evaluation of Medium Composition on Their Growth
2.5. Plant-Based Camembert Cheese Analogues Preparation
2.6. Physicochemical Analysis of Plant-Based Camembert Cheese Alternatives
2.7. Determination of Total Acidity Content of Plant-Based Camembert Cheese Alternatives
2.8. Organoleptic Analysis of Plant-Based Camembert Cheese Alternatives
2.9. Statistical Analysis
3. Results
3.1. Evaluation of Survival and Growth of Selected Strains of LAB and Molds in Vegan Media
3.2. Development of a Formulation for a Plant Analogue of Mold-Ripened Cheese
3.3. Physicochemical Analysis of Selected Plant-Based Camembert Cheese Alternatives
3.4. Fortification of Camembert Cheese Plant Analogues with Calcium Correlated to Composition of Basic Elements
3.5. Organoleptic Analysis of Plant-Based Camembert Cheese Alternatives
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Shurtleff, W.; Aoyagi, A. Early History of Soybeans and Soyfoods Worldwide (1024 BCE to 1899): Extensively Annotated Bibliography and Sourcebook; Soyinfo Center: Lafayette, CA, USA, 2014; ISBN 9781948436342. [Google Scholar]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-Dairy Plant-Based Milk Substitutes and Fermented Dairy-Type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Evaluation of Physicochemical and Glycaemic Properties of Commercial Plant-Based Milk Substitutes. Plant Foods Hum. Nutr. 2017, 72, 26–33. [Google Scholar] [CrossRef]
- Kamath, R.; Basak, S.; Gokhale, J. Recent Trends in the Development of Healthy and Functional Cheese Analogueues-a Review. Lebenson. Wiss. Technol. 2022, 155, 112991. [Google Scholar] [CrossRef]
- Lee, J.J.; Srebot, S.; Ahmed, M.; Mulligan, C.; Hu, G.; L’Abbé, M.R. Nutritional Quality and Price of Plant-based Dairy and Meat Analogues in the Canadian Food Supply System. J. Food Sci. 2023, 88, 3594–3606. [Google Scholar] [CrossRef]
- Pua, A.; Tang, V.C.Y.; Goh, R.M.V.; Sun, J.; Lassabliere, B.; Liu, S.Q. Ingredients, Processing, and Fermentation: Addressing the Organoleptic Boundaries of Plant-Based Dairy Analogues. Foods 2022, 11, 875. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Uniacke-Lowe, T.; O’Mahony, J.A.; Arendt, E.K. Physicochemical and Acid Gelation Properties of Commercial UHT-Treated Plant-Based Milk Substitutes and Lactose Free Bovine Milk. Food Chem. 2015, 168, 630–638. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Soto-Reyes, N.; Dávila-Rodríguez, M.; Lorenzo-Leal, A.C.; Jiménez-Munguía, M.T.; Mani-López, E.; López-Malo, A. Plant-Based Milk Alternatives: Types, Processes, Benefits, and Characteristics. Food Rev. Int. 2023, 39, 2320–2351. [Google Scholar] [CrossRef]
- Mitek, M.; Słowiński, M. (Eds.) Wybrane Zagadnienia z Technologii Żywności; Warsaw University of Life Sciences: Warsaw, Poland, 2006. (In Polish) [Google Scholar]
- Batty, D.; Meunier-Goddik, L.; Waite-Cusic, J.G. Camembert-Type Cheese Quality and Safety Implications in Relation to the Timing of High-Pressure Processing during Aging. J. Dairy Sci. 2019, 102, 8721–8733. [Google Scholar] [CrossRef]
- Mane, A.; McSweeney, P.L.H. Proteolysis in Irish Farmhouse Camembert Cheese during Ripening. J. Food Biochem. 2020, 44, e13101. [Google Scholar] [CrossRef]
- Lessard, M.-H.; Viel, C.; Boyle, B.; St-Gelais, D.; Labrie, S. Metatranscriptome Analysis of Fungal Strains Penicillium camemberti and Geotrichum candidum reveal Cheese Matrix Breakdown and Potential Development of Sensory Properties of Ripened Camembert-Type Cheese. BMC Genomics 2014, 15, 235. [Google Scholar] [CrossRef] [PubMed]
- Hilbig, J.; Ma, Q.; Davidson, P.M.; Weiss, J.; Zhong, Q. Physical and Antimicrobial Properties of Cinnamon Bark Oil Co-Nanoemulsified by Lauric Arginate and Tween 80. Int. J. Food Microbiol. 2016, 233, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Łepecka, A.; Okoń, A.; Szymański, P.; Zielińska, D.; Kajak-Siemaszko, K.; Jaworska, D.; Neffe-Skocińska, K.; Sionek, B.; Trząskowska, M.; Kołożyn-Krajewska, D.; et al. The Use of Unique, Environmental Lactic Acid Bacteria Strains in the Traditional Production of Organic Cheeses from Unpasteurized Cow’s Milk. Molecules 2022, 27, 1097. [Google Scholar] [CrossRef] [PubMed]
- de Godoy Alves Filho, E.; Rodrigues, T.H.S.; Fernandes, F.A.N.; Pereira, A.L.F.; Narain, N.; de Brito, E.S.; Rodrigues, S. Chemometric Evaluation of the Volatile Profile of Probiotic Melon and Probiotic Cashew Juice. Food Res. Int. 2017, 99, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Parecha, D.; Alfano, A.; Cimini, D.; Schiraldi, C. Vegan Grade Medium Component Screening and Concentration Optimization for the Fermentation of the Probiotic Strain Lactobacillus Paracasei IMC 502® Using Design of Experiments. J. Ind. Microbiol. Biotechnol. 2024, 51, kuae016. [Google Scholar] [CrossRef]
- Ayu, B.T.; Chamnipa, N.; Apiraksakorn, J. The Potential of an Inexpensive Plant-Based Medium for Halal and Vegetarian Starter Culture Preparation. Fermentation 2023, 9, 216. [Google Scholar] [CrossRef]
- Elsawey, H.; Patz, S.; Nemr, R.A.; Sarhan, M.S.; Hamza, M.A.; Youssef, H.H.; Abdelfadeel, M.R.; Daanaa, H.-S.A.; El-Tahan, M.; Abbas, M.; et al. Plant Broth- (Not Bovine-) Based Culture Media Provide the Most Compatible Vegan Nutrition for In Vitro Culturing and In Situ Probing of Plant Microbiota. Divers 2020, 12, 418. [Google Scholar] [CrossRef]
- Souza Filho, P.F.; Nair, R.B.; Andersson, D.; Lennartsson, P.R.; Taherzadeh, M.J. Vegan-Mycoprotein Concentrate from Pea-Processing Industry Byproduct Using Edible Filamentous Fungi. Fungal Biol. Biotechnol. 2018, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bravo, P.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A.; Sendra, E. Fermented Beverage Obtained from hydrosustainable Pistachios. J. Food Sci. 2020, 85, 3601–3610. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Drozłowska, E.; Tarnowiecka-Kuca, A.; Bartkowiak, A.; Mazurkiewicz-Zapałowicz, K.; Salachna, P. Biotransformation of Flaxseed Oil Cake into Bioactive Camembert-Analog Using Lactic Acid BacteriaLAB, Penicillium camemberti and Geotrichum candidum. Microorganisms 2020, 8, 1266. [Google Scholar] [CrossRef]
- Mattison, C.P.; Aryana, K.J.; Clermont, K.; Prestenburg, E.; Lloyd, S.W.; Grimm, C.C.; Wasserman, R.L. Microbiological, Physicochemical, and Immunological Analysis of a Commercial Cashew Nut-Based Yogurt. Int. J. Mol. Sci. 2020, 21, 8267. [Google Scholar] [CrossRef] [PubMed]
- Peterlik, M.; Cross, H.S. Vitamin D and Calcium Deficits Predispose for Multiple Chronic Diseases. Eur. J. Clin. Investig. 2005, 35, 290–304. [Google Scholar] [CrossRef] [PubMed]
- Schlangen, M.; Ribberink, M.A.; Taghian Dinani, S.; Sagis, L.M.C.; van der Goot, A.J. Mechanical and Rheological Effects of Transglutaminase Treatment on Dense Plant Protein Blends. Food Hydrocoll. 2023, 136, 108261. [Google Scholar] [CrossRef]
- Chen, Y.; Lan, D.; Wang, W.; Zhang, W.; Wang, Y. Effect of Transglutaminase-Catalyzed Crosslinking Behavior on the Quality Characteristics of Plant-Based Burger Patties: A Comparative Study with Methylcellulose. Food Chem. 2023, 428, 136754. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, M.; Sathe, S.K. Chemical Composition of Selected Edible Nut Seeds. J. Agric. Food Chem. 2006, 54, 4705–4714. [Google Scholar] [CrossRef]
- Redan, B.W.; Zuklic, J.; Hryshko, J.; Boyer, M.; Wan, J.; Sandhu, A.; Jackson, L.S. Analysis of Eight Types of Plant-Based Milk Alternatives from the United States Market for Target Minerals and Trace Elements. J. Food Compost. Anal. 2023, 122, 105457. [Google Scholar] [CrossRef]
- Harmankaya, M.; Özcan, M.M.; AL Juhaimi, F. Mineral Contents and Proximate Composition of Pistacia Vera Kernels. Environ. Monit. Assess. 2014, 186, 4217–4221. [Google Scholar] [CrossRef] [PubMed]
- Tošić, S.B.; Mitić, S.S.; Velimirović, D.S.; Stojanović, G.S.; Pavlović, A.N.; Pecev-Marinković, E.T. Elemental Composition of Edible Nuts: Fast Optimization and Validation Procedure of an ICP-OES Method. J. Sci. Food Agric. 2015, 95, 2271–2278. [Google Scholar] [CrossRef] [PubMed]
- Akbaba, U.; Şahin, Y.; Türkez, H. Element Content Analysis by WDXRF in Pistachios Grown under Organic and Conventional Farming Regimes for Human Nutrition and Health. Toxicol. Ind. Health 2012, 28, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Bell, R.W.; Vance, W.H. Genotypic Variation among Chickpea and Wild Cicer Spp. in Nutrient Uptake with Increasing Concentration of Solution Al at Low pH. Plant Physiol. Biochem. 2020, 157, 390–401. [Google Scholar] [CrossRef]
No. | Plant Base | Plant Base: Water Ratio |
---|---|---|
1 | 100% Cashew nuts | 1:1 |
2 | 100% Pistachio nuts | 3:2 |
3 | 100% Pea protein | 1:3 |
4 | 100% Hemp protein | 1:1 |
5 | 50% Pumpkin protein + 50% pea protein | 2:3 |
6 | 100% Soy flour | 1:1 |
7 | 100% Chickpea flour | 1:1 |
8 | 70% Cashew nuts + 30% soy flour | 1:1 |
9 | 70% Cashew nuts + 30% soy flour + 0.5% spirulina powder | 1:1 |
Plant Base | Bacterial Starter Culture 1 | Mold Starter Culture 2 | LAB (log CFU/cm3) | Molds (log CFU/cm3) |
---|---|---|---|---|
100% Cashews | M | P | 9.19 ± 0.20 | 5.27 ± 0.14 |
100% Pistachios | M | P | 9.18 ± 0.10 | 6.65 ± 0.13 |
100% Pea protein | M | G | 8.77 ± 0.15 | 4.11 ± 0.23 |
50% Pumpkin protein + 50% pea protein | T | G | 8.96 ± 0.12 | 4.96 ± 0.08 |
100% Soy flour | T | G | 10.04 ± 0.40 | 5.40 ± 0.18 |
70% Cashew nuts + 30% soy flour | M | G | 9.08 ± 0.21 | 5.33 ± 0.32 |
100% Hemp protein | T | P | 7.07 ± 0.13 | 4.87 ± 0.10 |
100% Chickpea flour | T | G | 7.84 ± 0.20 | 4.33 ± 0.15 |
Plant Matrix | Lactic Acid Content (g/kg) | pH |
---|---|---|
Cashews | 10.04 ± 0.34 | 5.51 ± 0.11 |
Pistachios | 10.74 ± 1.09 | 5.46 ± 0.08 |
Cashews/soy flour/spirulina | 12.17 ± 1.53 | 5.74 ± 0.24 |
Pea protein | 11.78 ± 2.64 | 6.08 ± 0.46 |
Chickpea | 10.88 ± 0.50 | 5.59 ± 0.12 |
LAB Starter Culture | Lactic Acid Content (g/kg) | pH |
Mesophilic commercial culture | 9.35 ± 1.14 | 5.91 ± 0.17 |
Thermophilic commercial culture | 12.55 ± 1.83 | 5.69 ± 0.32 |
culture composed of L. lactis and S. salivarius | 11.82 ± 0.68 | 5.51 ± 0.12 |
Mold Starter Culture | Lactic Acid Content (g/kg) | pH |
G. candidum | 11.48 ± 0.74 | 5.55 ± 0.12 |
P. camemberti | 10.56 ± 0.94 | 5.80 ± 0.16 |
Elements | Unit | Chickpeas | Cashews | Pistachios | Peas | Cashews/Soy Flour/Spirulina |
---|---|---|---|---|---|---|
C | g/kg | 46.96 | 59.73 | 64.81 | 51.78 | 57.48 |
N | g/kg | 39.63 | 34.09 | 41.49 | 130.70 | 50.29 |
S | g/kg | 2.36 | 1.57 | 1.36 | 2.85 | 2.20 |
P | g/kg | 3.17 | 3.54 | 3.58 | 8.05 | 5.18 |
Na | g/kg | 0.06 | 15.79 | 2.69 | 9.73 | 4.73 |
K | g/kg | 10.48 | 5.83 | 10.06 | 2.86 | 10.51 |
Ca | g/kg | 1.36 | 0.39 | 1.25 | 0.81 | 0.96 |
Mg | g/kg | 1.49 | 2.12 | 1.32 | 0.47 | 3.03 |
Fe | mg/kg | 196.0 | 21.9 | 6.4 | 184.8 | 67.8 |
Al | mg/kg | 223.8 | 0.0 | 0.0 | 7.6 | 14.0 |
Mn | mg/kg | 30.70 | 11.25 | 11.90 | 10.33 | 24.00 |
Cu | mg/kg | 17.34 | 22.93 | 7.21 | 9.38 | 24.82 |
Zn | mg/kg | 26.81 | 38.46 | 17.22 | 64.53 | 51.90 |
Ni | mg/kg | 0.44 | 2.36 | 0.00 | 0.00 | 4.72 |
Pb | mg/kg | 0.88 | 0.04 | 0.00 | 0.08 | 0.29 |
Sr | mg/kg | 10.99 | 1.51 | 21.42 | 12.98 | 3.67 |
Ba | mg/kg | 2.11 | 0.58 | 0.09 | 2.06 | 1.72 |
Maturation Time (Days) | CaCl2 (g/100 g) | Plant Matrix | C | N | S | P | Na | K | Ca | Mg |
---|---|---|---|---|---|---|---|---|---|---|
(g/kg) | ||||||||||
14 | 0 | chickpeas | 46.96 | 39.63 | 2.36 | 3.17 | 8.06 | 10.48 | 1.36 | 1.49 |
7 | 0.6 | 45.63 | 38.74 | 1.80 | 2.80 | 8.62 | 9.56 | 1.78 | 1.40 | |
7 | 1.4 | 45.59 | 38.25 | 2.01 | 2.98 | 8.88 | 9.93 | 2.91 | 1.45 | |
14 | 0.6 | 46.02 | 38.56 | 1.58 | 2.66 | 8.30 | 9.51 | 1.89 | 1.36 | |
14 | 1.4 | 44.84 | 37.61 | 1.73 | 2.93 | 14.10 | 9.51 | 2.84 | 1.45 | |
14 | 0 | cashews | 59.73 | 34.09 | 1.57 | 3.54 | 15.79 | 5.83 | 0.39 | 2.12 |
7 | 0.6 | 59.90 | 36.00 | 1.58 | 4.19 | 7.14 | 5.84 | 1.50 | 2.53 | |
7 | 1.4 | 59.57 | 36.80 | 1.47 | 3.92 | 6.90 | 5.48 | 1.07 | 2.40 | |
14 | 0.6 | 59.81 | 35.89 | 1.31 | 3.96 | 8.35 | 5.39 | 0.91 | 2.45 | |
14 | 1.4 | 58.26 | 35.35 | 1.33 | 3.97 | 15.96 | 5.56 | 1.29 | 2.44 | |
14 | 0 | pistachios | 64.81 | 41.49 | 1.36 | 3.58 | 2.69 | 10.06 | 1.25 | 1.32 |
7 | 0.6 | 62.25 | 36.96 | 1.30 | 2.86 | 15.19 | 6.22 | 1.81 | 1.04 | |
14 | 0.6 | 62.56 | 36.59 | 1.18 | 2.51 | 18.66 | 6.37 | 1.47 | 0.94 |
Maturation Time (Days) | CaCl2 (g/100 g) | Plant Matrix | Fe | Al | Mn | Cu | Zn | Ni | Pb | Sr | Ba |
---|---|---|---|---|---|---|---|---|---|---|---|
(mg/kg) | |||||||||||
14 | 0 | chickpeas | 196.0 | 223.8 | 30.70 | 17.34 | 26.81 | 0.44 | 0.88 | 10.99 | 2.11 |
7 | 0.6 | 157.4 | 182.6 | 28.08 | 10.16 | 24.31 | 0.00 | 0.41 | 10.27 | 2.40 | |
7 | 1.4 | 171.0 | 186.9 | 29.40 | 11.21 | 26.56 | 0.35 | 0.10 | 10.89 | 3.38 | |
14 | 0.6 | 176.7 | 207.5 | 25.08 | 9.52 | 21.69 | 0.03 | 0.25 | 10.52 | 2.50 | |
14 | 1.4 | 162.7 | 186.6 | 28.49 | 10.14 | 24.69 | 0.00 | 0.37 | 11.08 | 3.49 | |
14 | 0 | cashews | 21.9 | 0.0 | 11.25 | 22.93 | 38.46 | 2.36 | 0.04 | 1.51 | 0.58 |
7 | 0.6 | 28.4 | 0.0 | 16.58 | 26.34 | 49.22 | 3.99 | 0.06 | 1.89 | 1.65 | |
7 | 1.4 | 27.9 | 0.0 | 15.80 | 25.33 | 47.21 | 3.55 | 0.21 | 1.68 | 1.16 | |
14 | 0.6 | 33.8 | 0.0 | 16.74 | 25.38 | 50.77 | 3.68 | 0.07 | 1.64 | 1.04 | |
14 | 1.4 | 29.3 | 0.0 | 15.83 | 25.46 | 49.22 | 3.51 | 0.22 | 1.83 | 1.44 | |
14 | 0 | pistachios | 6.4 | 0.0 | 11.90 | 7.21 | 17.22 | 0.00 | 0.00 | 21.42 | 0.09 |
7 | 0.6 | 0.0 | 0.0 | 7.30 | 4.95 | 11.05 | 0.00 | 0.46 | 21.95 | 1.19 | |
14 | 0.6 | 2.7 | 0.0 | 6.10 | 5.42 | 9.95 | 0.00 | 0.00 | 20.92 | 0.66 |
Plant Matrix | 70% Cashews/30% Soy Flour/Spirulina | Cashews | Pistachios |
---|---|---|---|
Appearance * | 8 | 6.5 | 8 |
Color * | 7 | 7 | 8 |
Sour taste | 2 a | 5.5 b | 4 ab |
Salty taste | 4 ab | 2.5 a | 5 b |
Bitter taste * | 4 | 4 | 2 |
Creaminess | 2 ab | 4 b | 1.5 a |
Spreadability | 9 ab | 8 a | 9 b |
Aroma | 3 a | 5 b | 3 ab |
Overall impression | 8 ab | 6 a | 8 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabiszewska, A.; Wierzchowska, K.; Dębkowska, I.; Śliczniak, W.; Ziółkowska, M.; Jasińska, K.; Kobus, J.; Nowak, D.; Zieniuk, B. Plant-Based Alternatives to Mold-Ripened Cheeses as an Innovation among Dairy Analogues. Foods 2024, 13, 2305. https://doi.org/10.3390/foods13142305
Fabiszewska A, Wierzchowska K, Dębkowska I, Śliczniak W, Ziółkowska M, Jasińska K, Kobus J, Nowak D, Zieniuk B. Plant-Based Alternatives to Mold-Ripened Cheeses as an Innovation among Dairy Analogues. Foods. 2024; 13(14):2305. https://doi.org/10.3390/foods13142305
Chicago/Turabian StyleFabiszewska, Agata, Katarzyna Wierzchowska, Ilona Dębkowska, Weronika Śliczniak, Magdalena Ziółkowska, Karina Jasińska, Joanna Kobus, Dorota Nowak, and Bartłomiej Zieniuk. 2024. "Plant-Based Alternatives to Mold-Ripened Cheeses as an Innovation among Dairy Analogues" Foods 13, no. 14: 2305. https://doi.org/10.3390/foods13142305
APA StyleFabiszewska, A., Wierzchowska, K., Dębkowska, I., Śliczniak, W., Ziółkowska, M., Jasińska, K., Kobus, J., Nowak, D., & Zieniuk, B. (2024). Plant-Based Alternatives to Mold-Ripened Cheeses as an Innovation among Dairy Analogues. Foods, 13(14), 2305. https://doi.org/10.3390/foods13142305