Influence of Mulberry Leaf Powder Additive on Chemical and Physical Characteristics of Wheat and Rice Flour Butter Cookies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Butter Cookies
2.3. Proximate Analysis
2.4. Determination of Chlorophyll Content
2.5. Macro- and Microelement Analysis
2.6. Total Phenolic Amount Analysis
2.7. Determination of Antioxidant Activity
2.8. Color Parameter Analysis
2.9. The Hardness of Butter Cookies
2.10. Statistical Analysis
3. Result and Discussion
3.1. Proximate Composition of Butter Cookies
3.2. Mineral Elements Evaluation of Butter Cookies
3.3. Evaluation of Total Chlorophyll, Phenolic Amount, and Antioxidant Activity in Butter Cookies
3.4. Physical Characteristics of the Cookies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manley, D. Biscuit, Cracker and Cookie Recipes for the Food Industry; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Arshad, M.U.; Anjum, F.M.; Zahoor, T. Nutritional assessment of cookies supplemented with defatted wheat germ. Food Chem. 2007, 102, 123–128. [Google Scholar] [CrossRef]
- Ajila, C.M.; Leelavathi, K.; Prasada Rao, U.J.S. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Baumgartner, B.; Özkaya, B.; Saka, I.; Özkaya, H. Functional and physical properties of cookies enriched with dephytinized oat bran. J. Cereal Sci. 2018, 80, 24–30. [Google Scholar] [CrossRef]
- Lovis, L.J. Alternatives to wheat flour in baked goods. Cereal Foods World 2003, 48, 61–63. [Google Scholar]
- Park, I.D. Quality Characteristics of Cookies containing Mulberry Leaf (Morus alba Linne) Powder. J. Korean Soc. Food Cult. 2017, 32, 558–565. [Google Scholar]
- Gujral, H.S.; Rosell, C.M. Functionality of rice flour modified with a microbial transglutaminase. J. Cereal Sci. 2004, 39, 225–230. [Google Scholar] [CrossRef]
- Asadi, S.Z.; Khan, M.A.; Chamarthy, R.V. Development and quality evaluation of cookies supplemented with concentrated fiber powder from chiku (Manilkara zapota L.). J. Food Sci. Technol. 2021, 58, 1839–1847. [Google Scholar] [CrossRef]
- Mohibbullah, M.; Amin, A.; Talha, M.A.; Baten, M.A.; Rana, M.M.; Sabuz, A.A.; Choi, J.S. Physicochemical and nutritional characteristics of cookies prepared with untapped seaweed ulva intestinalis: An approach to value addition as a functional food. Foods 2023, 12, 205. [Google Scholar] [CrossRef]
- Thompson, T.; Dennis, M.; Higgins, L.A.; Lee, A.R.; Sharrett, M.K. Gluten–free diet survey: Are Americans with celiac disease consuming recommended amounts of fibre, iron, calcium and grain foods? J. Hum. Nutr. Diet. 2005, 18, 163–169. [Google Scholar] [CrossRef]
- Sanchez, M.D. Mulberry: An exceptional forage available almost worldwide! World Anim. Rev. 2000, 93, 1–21. [Google Scholar]
- Memon, A.A.; Memon, N.; Luthria, D.L.; Bhanger, M.I.; Pitafi, A.A. Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan. Pol. J. Food Nutr. Sci. 2010, 60, 25–32. [Google Scholar]
- Kalia, A.N. Textbook of Industrial Pharmacognosy, 1st ed.; CBS Publishers and Distributers: New Delhi, India, 2009; 285p. [Google Scholar]
- Devi, B.; Sharma, N.; Kumar, D.; Jeet, K. Morus alba Linn: A phytopharmacological review. Int. J. Pharm. Pharm. Sci. 2013, 5, 14–18. [Google Scholar]
- Butt, M.S.; Nazir, A.; Sultan, T.M.; Schoën, K. Morus alba L. nature’s functional tonic. Trends Food Sci. Technol. 2008, 19, 505–512. [Google Scholar] [CrossRef]
- Srivastava, S.; Kapoor, R.; Thathola, A.; Srivastava, R.P. Nutritional quality of leaves of some genotypes of mulberry (Morus alba). Int. J. Food Sci. Nutr. 2006, 57, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Adeduntan, S.A.; Oyerinde, A.S. Evaluation of chemical and antinutritional characteristics of obeche (Triplochition scleroxylon scleroxylon) and some mulberry (Morus alba) leaves. J. Biol. Chem. Res. 2009, 3, 681–687. [Google Scholar] [CrossRef]
- Levickienė, D.; Jarienė, E.; Gajewski, M.; Danilčenko, H.; Vaitkevičienė, N.; Przybył, J.L.; Sitarek, M. Influence of harvest time on biologically active compounds and the antioxidant activity in leaves of mulberry grown in Lithuania. Not. Bot. Horti Agrobot. 2017, 45, 431–436. [Google Scholar] [CrossRef]
- Jarienė, E.; Levickienė, D.; Danilčenko, H.; Vaitkevičienė, N.; Kulaitienė, J.; Jakštas, V.; Gajewski, M. Effects of biodynamic preparations on concentration of phenolic compounds in the leaves of two white mulberry cultivars. Biol. Agric. Hortic. 2019, 35, 132–142. [Google Scholar] [CrossRef]
- Chan, E.W.; Lye, P.Y.; Wong, S.K. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin. J. Integr. Med. 2016, 14, 17–30. [Google Scholar]
- Jeszka–Skowron, M.; Flaczyk, E.; Podgórski, T. In vitro and in vivo analyses of Morus alba Polish var. wielkolistna zolwinska leaf ethanol–water extract—Antioxidant and hypocholesterolemic activities in hyperlipideamic rats. J. Lipid Sci. Technol. 2017, 119, 1600514. [Google Scholar] [CrossRef]
- Andulla, B.; Shankaran, M.; Ullagaddi, R.; Iyer, S. In vitro free radical scavenging and in vivo antioxidant potential of mulberry (Morus indica L.) leaves. J. Nutr. Res. 2014, 4, 10–17. [Google Scholar] [CrossRef]
- Katsube, T.; Imawaka, N.; Kawano, Y.; Yamazaki, Y.; Shiwaku, K.; Yamane, Y. Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chem. 2006, 97, 25–31. [Google Scholar] [CrossRef]
- Radojković, M.M.; Zeković, Z.P.; Dojinović, B.P.; Stojanović, Z.S.; Cvetanović, A.D.; Manojlović, D.D. Characterization of Morus species in respect to micro, macro, and toxic elements. Acta Period. Technol. 2014, 45, 229–237. [Google Scholar] [CrossRef]
- Levickienė, D.; Vaitkevičienė, N.; Jarienė, E.; Mažeika, M. The content of macroelements in white mulberry (Morus alba L.) leaves. Žemės Ūkio Mokslai 2018, 25, 177–183. [Google Scholar] [CrossRef]
- Kadam, R.A. The mulberry, Morus alba (L.): The medicinal herbal source for human health. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 2941–2964. [Google Scholar] [CrossRef]
- Ganai, A.M.; Ahmad, H.A.; Bilal, S. Nutritional evaluation of green mulberry (Morus multicaulis) leaves in sheep. Anim. Nutr. Feed. Technol. 2010, 10, 133–138. [Google Scholar]
- Yu, Y.; Li, H.; Zhang, B.; Wang, J.; Shi, X.; Huang, J.; Yang, J.; Zhang, Y.; Deng, Z. Nutritional and functional components of mulberry leaves from different varieties: Evaluation of their potential as food materials. Int. J. Food Prop. 2018, 21, 1495–1507. [Google Scholar] [CrossRef]
- Kulaitienė, J.; Vaitkevičienė, N.; Levickienė, D. Studies on Proximate Composition, Mineral and Total Phenolic Content of Yogurt Bites Enriched with Different Plant Raw Material. Fermentation 2021, 7, 301. [Google Scholar] [CrossRef]
- Kim, A.J.; Yuh, C.S.; Bang, I.S.; Woo, K.J. Study on preparation and quality of jelly using mulberry leaf powder. Korean J. Food Cook. Sci. 2006, 22, 56–61. [Google Scholar]
- Ramya, V.S.; Chandrashekar, S. Development of value added products from mulberry leaves. Int. J. Curr. Microbiol Appl. Sci. 2020, 9, 2319–7706. [Google Scholar] [CrossRef]
- Sayuti, K.; Permata, D.A.; Anggraini, T. Nutritional value and inhibitory activity alpha–amylase of cookies made from addition of mulberry leaf and the extract. Pak. J. Nutr. 2013, 12, 775–781. [Google Scholar] [CrossRef]
- Makchuay, T.; Tongchitpakdee, S.; Ratanasumawong, S. Effect of Mulberry Leaf Tea on Texture, Microstructure, Starch Retrogradation, and Antioxidant Capacity of Rice Noodles. J. Food Process. Preserv. 2023, 2023, 2964013. [Google Scholar] [CrossRef]
- LST ISO 751: 2000; Fruit and Vegetable Products. Determination of Water—Insoluble Solids. Lithuanian Standards Board: Vilnius, Lithuania, 2000; 9p.
- European Union. First Commission Directive of 15 June 1971 Establishing Community Methods of Analysis for the Official Control of Feeding–Stuffs (71/250/EEC); European Union: Brussels, Belgium, 1971; 22p. [Google Scholar]
- LST ISO 1842:1997; Fruits and Vegetable Products. Determination of pH. Lithuanian Department of Standardization: Vilnius, Lithuania, 1997.
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar]
- LST EN 15510:2017; Animal Feeding Stuff: Methods of Sampling and Analysis—Determination of Calcium, Sodium, Phosphorus, Magnesium, Potassium, Iron, Zinc, Copper, Manganese, Cobalt, Molybdenum and Lead by ICP–AES. Lithuanian Standards Board: Vilnius, Lithuania, 2017; 29p.
- Tamilselvi, N.; Krishnamoorthy, P.; Dhamotharan, R.; Arumugam, P.; Sagadevan, E. Analysis of total phenols, total tannins and screening of phytocomponents in Indigofera aspalathoides (Shivanar vembu) Vahl EX DC. J. Chem. Pharm. Res. 2012, 4, 3259–3262. [Google Scholar]
- Leong, L.P.; Shui, G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002, 76, 69–75. [Google Scholar] [CrossRef]
- Zucco, F.; Borsuk, Y.; Arntfield, S.D. Physical and nutritional evaluation of wheat cookies supplemented with pulseflours of different particle sizes. LWT-Food Sci. Technol. 2011, 44, 2070–2076. [Google Scholar] [CrossRef]
- Andresen, S.M.; Dissing, S.B.; Loje, H. Quality assessment of butter cookies applying multispectral imaging. Food Sci. Nutr. 2013, 1, 315–323. [Google Scholar] [CrossRef]
- Verdú, S.; Barat, J.M.; Grau, R. Laser backscattering imaging as a non–destructive quality control technique for solid food matrices: Modelling the fibre enrichment effects on the physico–chemical and sensory properties of biscuits. Food Control 2019, 100, 278–286. [Google Scholar] [CrossRef]
- Tian, S.; Wei, Y.; Chen, Z. Effect of mixture design approach on nutritional characteristics and sensory evaluation of steamed bread added rice flour. Front. Nutr. 2022, 9, 989090. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Younas, U.; Sirajuddin; Chan, K.W.; Sarfraz, R.A.; Uddin, K. Proximate composition and antioxidant potential of leaves from three varieties of Mulberry (Morus sp.): A comparative study. Int. J. Mol. Sci. 2012, 13, 6651–6664. [Google Scholar]
- Blasé, M.E.M. Optimisation of Rice Flour Traits for the Production of Indigenous Rice Recipes. Curr. Res. Food Sci. 2020, 8, 349–359. [Google Scholar] [CrossRef]
- Horgan, F.G.; Ramal, F.A.; Bernal, C.C.; Villegas, J.M.; Stuart, A.M.; Almazan, M.L.P. Applying ecological engineering for sustainable and resilient rice production systems. Procedia Food Sci. 2016, 6, 7–15. [Google Scholar] [CrossRef]
- Krawecka, A.; Sobota, A.; Pankiewicz, U.; Zielinska, E.; Zarzyci, P. Stinging Nettle (Urtica dioica L.) as a Functional Component in Durum Wheat Pasta Production. Impact on Chemical Composition, In Vitro Glycemic Index, and Quality Properties. Molecules 2021, 26, 6909. [Google Scholar] [CrossRef] [PubMed]
- Thongkham, C.; Techakriengkrai, T.; Kongkachuicai, R.; Charoensiri, R. Antioxidant Activities and Polyphenol Compounds in Snack Products Fortified with Mulberry Leaf Powder. RMUTP Res. J. 2020, 14, 57–71. [Google Scholar]
- Kobus-Cisowska, J.; Dziedziński, M.; Szymanowska, D.; Szczepaniak, O.; Byczkiewicz, S.; Telichowska, A.; Szulc, P. The Effects of Morus alba L. Fortification on the Quality, Functional Properties and Sensory Attributes of Bread Stored under Refrigerated Conditions. Sustainability 2020, 12, 6691. [Google Scholar] [CrossRef]
- Polumackanycz, M.; Wesolowski, M.; Viapiana, A. Morus alba L. and Morus nigra L. leaves as a Promising Food Source of Phenolic Compounds with Antioxidant Activity. Plant Foods Hum. Nutr. 2021, 76, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Guine, F.P. Textural Properties of Bakery Products: A Review of Instrumental and Sensory Evaluation Studies. Appl. Sci. 2022, 12, 8628. [Google Scholar] [CrossRef]
- Chauhan, A.; Saxena, D.C.; Singh, S. Physical, textural, and sensory characteristics of wheat and amaranth flour blend cookies. Cogent Food Agric. 2016, 2, 1125773. [Google Scholar] [CrossRef]
Nutrition Value | White Wheat Flour Type 500 C | Rice Flour |
---|---|---|
Energy value (kJ/Kcal) | 1482.0/350.0 | 1463.0/345.0 |
Fat | 1.2 | 1 |
Of which saturates | 0.4 | 0.2 |
Carbohydrate | 70 | 76 |
Of which sugars | 0.5 | 0.5 |
Fiber | 2.9 | 1 |
Protein | 12 | 7.4 |
Salt | 0.1 | 0.01 |
Composition | Content |
---|---|
Dry matter, % | 96.78 |
Protein, % | 14.04 |
Fiber, % | 12.55 |
Ash, % | 11.59 |
Total chlorophyll content, mg 100 g−1 | 341.05 |
Total phenolic content, mg 100 g−1 | 28.33 |
K (mg 100 g−1) | 1630.14 |
Ca (mg 100 g−1) | 2870.08 |
P (mg 100 g−1) | 430.88 |
Mg (mg 100 g−1) | 270.68 |
Fe (mg kg−1) | 7.93 |
Zn (mg kg−1) | 2.73 |
B (mg kg−1) | 2.71 |
Mn (mg kg−1) | 1.82 |
Cu (mg kg−1) | 0.75 |
Ingredients, g | Mulberry Leaf Powder Content of 0% (Control) | Mulberry Leaf Powder Content of 4% | Mulberry Leaf Powder Content of 8% | Mulberry Leaf Powder Content of 12% |
---|---|---|---|---|
Wheat/rice flour | 185 | 177.6 | 170.2 | 162.8 |
Mulberry leaf powder | 0 | 7.4 | 14.8 | 22.2 |
Sugar | 80 | 80 | 80 | 80 |
Butter | 115 | 115 | 115 | 115 |
Baking powder | 5 | 5 | 5 | 5 |
Egg | 50 | 50 | 50 | 50 |
Treatments | Moisture | Protein | Fiber | Ash | pH |
---|---|---|---|---|---|
WC | 3.88 c | 5.75 b | 12.54 d | 0.94 e | 6.81 bc |
WM4 | 4.54 a | 6.32 ab | 14.27 c | 1.42 c | 7.02 b |
WM8 | 3.19 e | 6.57 a | 17.21 b | 1.54 b | 7.05 b |
WM12 | 3.79 c | 6.77 a | 20.34 a | 1.73 a | 7.57 a |
RC | 3.39 d | 2.96 e | 10.77 e | 1.19 d | 6.58 c |
RM4 | 3.85 c | 3.68 d | 13.20 cd | 1.39 c | 6.83 bc |
RM8 | 3.47 d | 4.40 c | 17.13 b | 1.57 b | 7.03 b |
RM12 | 4.07 b | 4.76 c | 20.23 a | 1.75 a | 7.50 a |
Treatments | Macroelements (mg 100 g−1 DM) | |||
---|---|---|---|---|
Phosphorus (P) | Potassium (K) | Calcium (Ca) | Magnesium (Mg) | |
WC | 260.51 d | 110.14 c | 29.84 e | 13.24 d |
WM4 | 350.45 bc | 140.51 b | 91.51 c | 21.14 c |
WM8 | 350.64 bc | 140.91 b | 120.15 b | 24.64 c |
WM12 | 360.74 b | 170.22 a | 170.45 a | 32.21 b |
RC | 340.51 c | 100.32 c | 21.58 e | 24.91 c |
RM4 | 380.47 a | 140.14 b | 72.13 d | 31.52 b |
RM8 | 390.82 a | 140.61 b | 110.56 b | 36.21 a |
RM12 | 390.91 a | 160.22 a | 160.68 a | 42.33 a |
Treatments | Microelements (mg kg−1 DM) | ||||
---|---|---|---|---|---|
Iron (Fe) | Zinc (Zn) | Boron (B) | Manganese (Mn) | Cooper (Cu) | |
WC | 8.70 c | 5.28 c | 9.12 a | 1.95 e | 0.73 e |
WM4 | 8.55 c | 5.58 c | 5.15 c | 2.35 de | 0.90 d |
WM8 | 8.70 c | 6.02 c | 4.78 c | 2.83 cd | 0.95 d |
WM12 | 9.78 b | 5.68 c | 5.13 c | 3.40 c | 1.00 d |
RC | 14.30 a | 9.88 b | 7.06 b | 5.25 b | 1.65 b |
RM4 | 8.93 c | 10.20 b | 5.30 c | 5.78 b | 1.40 c |
RM8 | 10.81 b | 10.36 b | 4.52 c | 5.98 b | 1.37 c |
RM12 | 9.25 b | 12.25 a | 5.60 c | 6.28 a | 1.95 a |
Treatments | Hardness (N) | Color | ||
---|---|---|---|---|
L* | a* | b* | ||
WC0 | 30.07 b | 70.96 a | 8.76 a | 32.49 d |
WM4 | 30.98 b | 60.90 c | 3.13 b | 38.69 b |
WM8 | 33.35 b | 55.67 e | 0.12 d | 39.41 a |
WM12 | 42.70 a | 53.44 f | −1.26 e | 39.90 a |
RC0 | 19.96 c | 68.09 b | 9.36 a | 30.59 e |
RM4 | 28.33 b | 58.94 d | 3.85 b | 36.14 c |
RM8 | 31.14 b | 52.73 f | 1.37 c | 36.38 c |
RM12 | 39.13 a | 49.80 g | 0.25 d | 36.47 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levickienė, D.; Kulaitienė, J.; Vaitkevičienė, N.; Rakauskaitė, L. Influence of Mulberry Leaf Powder Additive on Chemical and Physical Characteristics of Wheat and Rice Flour Butter Cookies. Foods 2024, 13, 1737. https://doi.org/10.3390/foods13111737
Levickienė D, Kulaitienė J, Vaitkevičienė N, Rakauskaitė L. Influence of Mulberry Leaf Powder Additive on Chemical and Physical Characteristics of Wheat and Rice Flour Butter Cookies. Foods. 2024; 13(11):1737. https://doi.org/10.3390/foods13111737
Chicago/Turabian StyleLevickienė, Dovilė, Jurgita Kulaitienė, Nijolė Vaitkevičienė, and Laura Rakauskaitė. 2024. "Influence of Mulberry Leaf Powder Additive on Chemical and Physical Characteristics of Wheat and Rice Flour Butter Cookies" Foods 13, no. 11: 1737. https://doi.org/10.3390/foods13111737
APA StyleLevickienė, D., Kulaitienė, J., Vaitkevičienė, N., & Rakauskaitė, L. (2024). Influence of Mulberry Leaf Powder Additive on Chemical and Physical Characteristics of Wheat and Rice Flour Butter Cookies. Foods, 13(11), 1737. https://doi.org/10.3390/foods13111737