Evaluating the Quality of Cheese Slices Packaged with Na-Alginate Edible Films Supplemented with Functional Lactic Acid Bacteria Cultures after High-Pressure Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Cultures and Cheese Slices
2.2. High-Pressure Processing (HPP) Treatment
2.3. Preparation and Application of Na-Alginate Edible Films
2.4. Experimental Design and Preparation of the Cheese Slices
2.5. Microbiological Analysis and pH Determination
2.6. Sensory Evaluation
2.7. Random Amplified Polymorphic DNA-PCR for Monitoring LAB Survival and Strain Differentiation
2.8. Determination of Organic Acids Using High-Performance Liquid Chromatography
2.9. Peptide Analysis Using Reversed-Phase High-Performance Liquid Chromatography
2.10. Statistical Analysis
3. Results
3.1. Microbiological Analysis and pH Determination
3.2. LAB Survival and Strain Differentiation in the Cheese Slices
3.3. Sensory Evaluation
3.4. HPLC Analysis of Organic Acids
3.5. Peptide Profiles after Reversed-Phase HPLC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Probiotics Market Size, Share |2021–2026| Markets and Markets. Available online: https://www.marketsandmarkets.com/Market-Reports/probiotic-market-advanced-technologies-and-global-market-69.html (accessed on 19 July 2022).
- Champagne, C.P.; Ross, R.P.; Saarela, M.; Hansen, K.F.; Charalampopoulos, D. Recommendations for the Viability Assessment of Probiotics as Concentrated Cultures and in Food Matrices. Int. J. Food Microbiol. 2011, 149, 185–193. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Batista, R.A.; Azeredo, H.M.C.; Otoni, C.G. Probiotics and Their Potential Applications in Active Edible Films and Coatings. Food Res. Int. 2016, 90, 42–52. [Google Scholar] [CrossRef]
- Cui, H.Y.; Wu, J.; Li, C.Z.; Lin, L. Anti-Listeria Effects of Chitosan-Coated Nisin-Silica Liposome on Cheddar Cheese. J. Dairy Sci. 2016, 99, 8598–8606. [Google Scholar] [CrossRef]
- Dantas, A.B.; Jesus, V.F.; Silva, R.; Almada, C.N.; Esmerino, E.A.; Cappato, L.P.; Silva, M.C.; Raices, R.S.L.; Cavalcanti, R.N.; Carvalho, C.C.; et al. Manufacture of Probiotic Minas Frescal Cheese with Lactobacillus Casei Zhang. J. Dairy Sci. 2016, 99, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Angelopoulou, A.; Alexandraki, V.; Georgalaki, M.; Anastasiou, R.; Manolopoulou, E.; Tsakalidou, E.; Papadimitriou, K. Production of Probiotic Feta Cheese Using Propionibacterium Freudenreichii Subsp. Shermanii as Adjunct. Int. Dairy J. 2017, 66, 135–139. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Kandylis, P.; Sidira, M.; Koutinas, A.A.; Kourkoutas, Y. Free and Immobilized Lactobacillus Casei ATCC 393 on Whey Protein as Starter Cultures for Probiotic Feta-Type Cheese Production. J. Dairy Sci. 2014, 97, 4675–4685. [Google Scholar] [CrossRef]
- Kourkoutas, Y.; Bosnea, L.; Taboukos, S.; Baras, C.; Lambrou, D.; Kanellaki, M. Probiotic Cheese Production Using Lactobacillus Casei Cells Immobilized on Fruit Pieces. J. Dairy Sci. 2006, 89, 1439–1451. [Google Scholar] [CrossRef]
- Papadopoulou, O.; Chorianopoulos, N. Production of a Functional Fresh Cheese Enriched with the Probiotic Strain Lb. Plantarum T571 Isolated From Traditional Greek Product. Curr. Res. Nutr. Food Sci. J. 2016, 4, 169–181. [Google Scholar] [CrossRef]
- Papadopoulou, O.; Argyri, A.; Varzakis, E.E.; Tassou, C.; Chorianopoulos, N. Greek Functional Feta Cheese: Enhancing Quality and Safety Using a Lactobacillus Plantarum Strain with Probiotic Potential. Food Microbiol. 2018, 74, 21–33. [Google Scholar] [CrossRef]
- Pavli, F.; Tassou, C.; Nychas, G.-J.; Chorianopoulos, N. Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods. Int. J. Mol. Sci. 2018, 19, 150. [Google Scholar] [CrossRef] [Green Version]
- Pavli, F.; Argyri, A.A.; Nychas, G.-J.E.; Tassou, C.; Chorianopoulos, N. Use of Fourier Transform Infrared Spectroscopy for Monitoring the Shelf Life of Ham Slices Packed with Probiotic Supplemented Edible Films after Treatment with High Pressure Processing. Food Res. Int. 2018, 106, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Soukoulis, C.; Yonekura, L.; Gan, H.-H.; Behboudi-Jobbehdar, S.; Parmenter, C.; Fisk, I. Probiotic Edible Films as a New Strategy for Developing Functional Bakery Products: The Case of Pan Bread. Food Hydrocoll. 2014, 39, 231–242. [Google Scholar] [CrossRef]
- Costa, M.J.; Maciel, L.C.; Teixeira, J.A.; Vicente, A.A.; Cerqueira, M.A. Use of Edible Films and Coatings in Cheese Preservation: Opportunities and Challenges. Food Res. Int. 2018, 107, 84–92. [Google Scholar] [CrossRef]
- Pavli, F.; Kovaiou, I.; Apostolakopoulou, G.; Kapetanakou, A.; Skandamis, P.; Nychas, G.-J.; Tassou, C.; Chorianopoulos, N. Alginate-Based Edible Films Delivering Probiotic Bacteria to Sliced Ham Pretreated with High Pressure Processing. Int. J. Mol. Sci. 2017, 18, 1867. [Google Scholar] [CrossRef]
- Odila Pereira, J.; Soares, J.; Monteiro, M.J.; Gomes, A.; Pintado, M. Impact of Whey Protein Coating Incorporated with Bifidobacterium and Lactobacillus on Sliced Ham Properties. Meat Sci. 2018, 139, 125–133. [Google Scholar] [CrossRef]
- López de Lacey, A.M.; López-Caballero, M.E.; Montero, P. Agar Films Containing Green Tea Extract and Probiotic Bacteria for Extending Fish Shelf-Life. LWT-Food Sci. Technol. 2014, 55, 559–564. [Google Scholar] [CrossRef]
- Altamirano-Fortoul, R.; Moreno-Terrazas, R.; Quezada-Gallo, A.; Rosell, C.M. Viability of Some Probiotic Coatings in Bread and Its Effect on the Crust Mechanical Properties. Food Hydrocoll. 2012, 29, 166–174. [Google Scholar] [CrossRef]
- Tapia, M.S.; Rojas-Graü, M.A.; Rodríguez, F.J.; Ramírez, J.; Carmona, A.; Martin-Belloso, O. Alginate- and Gellan-Based Edible Films for Probiotic Coatings on Fresh-Cut Fruits. J. Food Sci. 2007, 72, E190–E196. [Google Scholar] [CrossRef]
- Artiga-Artigas, M.; Acevedo-Fani, A.; Martín-Belloso, O. Improving the Shelf Life of Low-Fat Cut Cheese Using Nanoemulsion-Based Edible Coatings Containing Oregano Essential Oil and Mandarin Fiber. Food Control 2017, 76, 1–12. [Google Scholar] [CrossRef]
- Da Silva Dannenberg, G.; Funck, G.D.; Mattei, F.J.; da Silva, W.P.; Fiorentini, Â.M. Antimicrobial and Antioxidant Activity of Essential Oil from Pink Pepper Tree (Schinus Terebinthifolius Raddi) in Vitro and in Cheese Experimentally Contaminated with Listeria Monocytogenes. Innov. Food Sci. Emerg. Technol. 2016, 36, 120–127. [Google Scholar] [CrossRef]
- Göksen, G.; Fabra, M.J.; Ekiz, H.I.; López-Rubio, A. Phytochemical-Loaded Electrospun Nanofibers as Novel Active Edible Films: Characterization and Antibacterial Efficiency in Cheese Slices. Food Control 2020, 112, 107133. [Google Scholar] [CrossRef]
- De Lima Marques, J.; Funck, G.D.; da Silva Dannenberg, G.; dos Santos Cruxen, C.E.; Halal, S.L.M.E.; Dias, A.R.G.; Fiorentini, Â.M.; da Silva, W.P. Bacteriocin-like Substances of Lactobacillus Curvatus P99: Characterization and Application in Biodegradable Films for Control of Listeria Monocytogenes in Cheese. Food Microbiol. 2017, 63, 159–163. [Google Scholar] [CrossRef]
- Ollé Resa, C.P.; Gerschenson, L.N.; Jagus, R.J. Starch Edible Film Supporting Natamycin and Nisin for Improving Microbiological Stability of Refrigerated Argentinian Port Salut Cheese. Food Control 2016, 59, 737–742. [Google Scholar] [CrossRef]
- Torrijos, R.; Nazareth, T.M.; Calpe, J.; Quiles, J.M.; Mañes, J.; Meca, G. Antifungal Activity of Natamycin and Development of an Edible Film Based on Hydroxyethylcellulose to Avoid Penicillium Spp. Growth on Low-Moisture Mozzarella Cheese. LWT 2022, 154, 112795. [Google Scholar] [CrossRef]
- Evert-Arriagada, K.; Hernández-Herrero, M.M.; Guamis, B.; Trujillo, A.J. Commercial Application of High-Pressure Processing for Increasing Starter-Free Fresh Cheese Shelf-Life. LWT-Food Sci. Technol. 2014, 55, 498–505. [Google Scholar] [CrossRef]
- Cheftel, J.C. Review: High-Pressure, Microbial Inactivation and Food Preservation. Food Sci. Technol. Int. 1995, 1, 75–90. [Google Scholar] [CrossRef]
- Torres, J.A.; Velazquez, G. Commercial Opportunities and Research Challenges in the High Pressure Processing of Foods. J. Food Eng. 2005, 67, 95–112. [Google Scholar] [CrossRef]
- Tomasula, P.M.; Renye, J.A.; Van Hekken, D.L.; Tunick, M.H.; Kwoczak, R.; Toht, M.; Leggett, L.N.; Luchansky, J.B.; Porto-Fett, A.C.S.; Phillips, J.G. Effect of High-Pressure Processing on Reduction of Listeria Monocytogenes in Packaged Queso Fresco. J. Dairy Sci. 2014, 97, 1281–1295. [Google Scholar] [CrossRef] [PubMed]
- Evert-Arriagada, K.; Hernández-Herrero, M.M.; Juan, B.; Guamis, B.; Trujillo, A.J. Effect of High Pressure on Fresh Cheese Shelf-Life. J. Food Eng. 2012, 110, 248–253. [Google Scholar] [CrossRef]
- Inácio, R.S.; Fidalgo, L.G.; Santos, M.D.; Queirós, R.P.; Saraiva, J.A. Effect of High-Pressure Treatments on Microbial Loads and Physicochemical Characteristics during Refrigerated Storage of Raw Milk Serra Da Estrela Cheese Samples. Int. J. Food Sci. Technol. 2014, 49, 1272–1278. [Google Scholar] [CrossRef]
- Rodríguez-Pinilla, J.; Márquez, G.; Tabla, R.; Ramírez, R.; Delgado, F.J. Microbiological and Lipolytic Changes in High-Pressure-Treated Raw Milk Cheeses during Refrigerated Storage. Dairy Sci. Technol. 2015, 95, 425–436. [Google Scholar] [CrossRef]
- Daryaei, H.; Coventry, M.J.; Versteeg, C.; Sherkat, F. Effect of High Pressure Treatment on Starter Bacteria and Spoilage Yeasts in Fresh Lactic Curd Cheese of Bovine Milk. Innov. Food Sci. Emerg. Technol. 2008, 9, 201–205. [Google Scholar] [CrossRef]
- Roberta, S.; Giuseppe, V. Shelf Life Analysis of a Ricotta Packaged Using Modified Atmosphere Packaging or High Pressure Processing. Int. J. Food Eng. 2020, 16, 20190108. [Google Scholar] [CrossRef]
- Juric, M.; Bertelsen, G.; Mortensen, G.; Petersen, M.A. Light-Induced Colour and Aroma Changes in Sliced, Modified Atmosphere Packaged Semi-Hard Cheeses. Int. Dairy J. 2003, 13, 239–249. [Google Scholar] [CrossRef]
- Silva, I.M.M.; Almeida, R.C.C.; Alves, M.A.O.; Almeida, P.F. Occurrence of Listeria Spp. in Critical Control Points and the Environment of Minas Frescal Cheese Processing. Int. J. Food Microbiol. 2003, 81, 241–248. [Google Scholar] [CrossRef]
- Pavli, F.; Argyri, A.A.; Papadopoulou, O.S.; Nychas, G.-J.E.; Chorianopoulos, N.G.; Tassou, C.C. Probiotic Potential of Lactic Acid Bacteria from Traditional Fermented Dairy and Meat Products: Assessment by In Vitro Tests and Molecular Characterization. J. Probiotics Health 2016, 4. [Google Scholar] [CrossRef]
- Argyri, A.A.; Papadopoulou, O.S.; Nisiotou, A.; Tassou, C.C.; Chorianopoulos, N. Effect of High Pressure Processing on the Survival of Salmonella Enteritidis and Shelf-Life of Chicken Fillets. Food Microbiol. 2018, 70, 55–64. [Google Scholar] [CrossRef]
- Cocolin, L.; Diez, A.; Urso, R.; Rantsiou, K.; Comi, G.; Bergmaier, I.; Beimfohr, C. Optimization of Conditions for Profiling Bacterial Populations in Food by Culture-Independent Methods. Int. J. Food Microbiol. 2007, 120, 100–109. [Google Scholar] [CrossRef]
- Giraffa, G.; Rossetti, L.; Neviani, E. An Evaluation of Chelex-Based DNA Purification Protocols for the Typing of Lactic Acid Bacteria. J. Microbiol. Methods 2000, 42, 175–184. [Google Scholar] [CrossRef]
- Argyri, A.A.; Doulgeraki, A.I.; Blana, V.A.; Panagou, E.Z.; Nychas, G.-J.E. Potential of a Simple HPLC-Based Approach for the Identification of the Spoilage Status of Minced Beef Stored at Various Temperatures and Packaging Systems. Int. J. Food Microbiol. 2011, 150, 25–33. [Google Scholar] [CrossRef]
- Skandamis, P.N.; Nychas, G.J. Effect of Oregano Essential Oil on Microbiological and Physico-Chemical Attributes of Minced Meat Stored in Air and Modified Atmospheres. J. Appl. Microbiol. 2001, 91, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Zoidou, E.; Plakas, N.; Giannopoulou, D.; Kotoula, M.; Moatsou, G. Effect of Supplementation of Brine with Calcium on the Feta Cheese Ripening. Int. J. Dairy Technol. 2015, 68, 420–426. [Google Scholar] [CrossRef]
- Nega, A.; Moatsou, G. Proteolysis and Related Enzymatic Activities in Ten Greek Cheese Varieties. Dairy Sci. Technol. 2012, 92, 57–73. [Google Scholar] [CrossRef]
- Mallatou, H.; Pappa, E.C.; Boumba, V.A. Proteolysis in Teleme Cheese Made from Ewes’, Goats’ or a Mixture of Ewes’ and Goats’ Milk. Int. Dairy J. 2004, 14, 977–987. [Google Scholar] [CrossRef]
- Pappa, E.C.; Bontinis, T.G.; Tasioula-Margari, M.; Samelis, J. Microbial Quality and Biochemical Changes of Fresh Soft, Acid-Curd Xinotyri Cheese Made from Raw or Pasteurized Goat Milk. Food Technol. Biotechnol. 2017, 55, 496–510. [Google Scholar] [CrossRef]
- Pavlidis, D.E.; Mallouchos, A.; Ercolini, D.; Panagou, E.Z.; Nychas, G.-J.E. A Volatilomics Approach for Off-Line Discrimination of Minced Beef and Pork Meat and Their Admixture Using HS-SPME GC/MS in Tandem with Multivariate Data Analysis. Meat Sci. 2019, 151, 43–53. [Google Scholar] [CrossRef]
- De Llano, D.G.; Polo, M.C.; Ramos, M. Study of Proteolysis in Artisanal Cheeses: High Performance Liquid Chromatography of Peptides. J. Dairy Sci. 1995, 78, 1018–1024. [Google Scholar] [CrossRef]
- Moatsou, G.; Hatzinaki, A.; Kandarakis, I.; Anifantakis, E. Nitrogenous Fractions during the Manufacture of Whey Protein Concentrates from Feta Cheese Whey. Food Chem. 2003, 81, 209–217. [Google Scholar] [CrossRef]
- Trujillo, A.J.; Buffa, M.; Casals, I.; Fernández, P.; Guamis, B. Proteolysis in Goat Cheese Made from Raw, Pasteurized or Pressure-Treated Milk. Innov. Food Sci. Emerg. Technol. 2002, 3, 309–319. [Google Scholar] [CrossRef]
- Ajesh Kumar, V.; Pravitha, M.; Srivastav, P.P.; Mangaraj, S.; Pandiselvam, R.; Hasan, M. Development of Soy-Based Nanocomposite Film: Modeling for Barrier and Mechanical Properties and Its Application as Cheese Slice Separator. J. Texture Stud. 2021, 1–11. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Conte, A.; Faccia, M.; Del Nobile, M.A.; Zambrini, A.V. Combined Effect of Active Coating and Modified Atmosphere Packaging on Prolonging the Shelf Life of Low-Moisture Mozzarella Cheese. J. Dairy Sci. 2014, 97, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Senturk Parreidt, T.; Müller, K.; Schmid, M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018, 7, 170. [Google Scholar] [CrossRef] [PubMed]
- Lucera, A.; Mastromatteo, M.; Conte, A.; Zambrini, A.V.; Faccia, M.; Del Nobile, M.A. Effect of Active Coating on Microbiological and Sensory Properties of Fresh Mozzarella Cheese. Food Packag. Shelf Life 2014, 1, 25–29. [Google Scholar] [CrossRef]
- Angiolillo, L.; Conte, A.; Zambrini, A.V.; Del Nobile, M.A. Biopreservation of Fior Di Latte Cheese. J. Dairy Sci. 2014, 97, 5345–5355. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Bambace, M.F.; Quintana, G.; Gomez-Zavaglia, A.; Moreira, M. del R. Prebiotic-Alginate Edible Coating on Fresh-Cut Apple as a New Carrier for Probiotic Lactobacilli and Bifidobacteria. LWT 2021, 137, 110483. [Google Scholar] [CrossRef]
- Raeisi, S.N.; Ouoba, L.I.I.; Farahmand, N.; Sutherland, J.; Ghoddusi, H.B. Variation, Viability and Validity of Bifidobacteria in Fermented Milk Products. Food Control 2013, 34, 691–697. [Google Scholar] [CrossRef]
- Picon, A.; de Torres, B.; Gaya, P.; Nuñez, M. Cheesemaking with a Lactococcus Lactis Strain Expressing a Mutant Oligopeptide Binding Protein as Starter Results in a Different Peptide Profile. Int. J. Food Microbiol. 2005, 104, 299–307. [Google Scholar] [CrossRef]
- Giannoglou, M.; Karra, Z.; Platakou, E.; Katsaros, G.; Moatsou, G.; Taoukis, P. Effect of High Pressure Treatment Applied on Starter Culture or on Semi-Ripened Cheese in the Quality and Ripening of Cheese in Brine. Innov. Food Sci. Emerg. Technol. 2016, 38, 312–320. [Google Scholar] [CrossRef]
- Maniou, D.; Tsala, A.; Moschopoulou, E.; Giannoglou, M.; Taoukis, P.; Moatsou, G. Effect of High-Pressure-Treated Starter on Ripening of Feta Cheese. Dairy Sci. Technol. 2013, 93, 11–20. [Google Scholar] [CrossRef]
- Madureira, A.R.; Soares, J.C.; Amorim, M.; Tavares, T.; Gomes, A.M.; Pintado, M.M.; Malcata, F.X. Bioactivity of Probiotic Whey Cheese: Characterization of the Content of Peptides and Organic Acids: Bioactive Whey Cheese. J. Sci. Food Agric. 2013, 93, 1458–1465. [Google Scholar] [CrossRef]
- Albenzio, M.; Santillo, A.; Marino, R.; Della Malva, A.; Caroprese, M.; Sevi, A. Identification of Peptides in Functional Scamorza Ovine Milk Cheese. J. Dairy Sci. 2015, 98, 8428–8432. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Benoist, D.M.; Ameerally, A.; Drake, M.A. Sensory and Chemical Properties of Gouda Cheese. J. Dairy Sci. 2018, 101, 1967–1989. [Google Scholar] [CrossRef] [PubMed]
- Zeppa, G.; Conterno, L.; Gerbi, V. Determination of Organic Acids, Sugars, Diacetyl, and Acetoin in Cheese by High-Performance Liquid Chromatography. J. Agric. Food Chem. 2001, 49, 2722–2726. [Google Scholar] [CrossRef]
- Kaminarides, S.; Stamou, P.; Massouras, T. Changes of Organic Acids, Volatile Aroma Compounds and Sensory Characteristics of Halloumi Cheese Kept in Brine. Food Chem. 2007, 100, 219–225. [Google Scholar] [CrossRef]
- Ávila, M.; Gómez-Torres, N.; Delgado, D.; Gaya, P.; Garde, S. Application of High Pressure Processing for Controlling Clostridium Tyrobutyricum and Late Blowing Defect on Semi-Hard Cheese. Food Microbiol. 2016, 60, 165–173. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulou, O.S.; Argyri, A.A.; Bikouli, V.C.; Lambrinea, E.; Chorianopoulos, N. Evaluating the Quality of Cheese Slices Packaged with Na-Alginate Edible Films Supplemented with Functional Lactic Acid Bacteria Cultures after High-Pressure Processing. Foods 2022, 11, 2855. https://doi.org/10.3390/foods11182855
Papadopoulou OS, Argyri AA, Bikouli VC, Lambrinea E, Chorianopoulos N. Evaluating the Quality of Cheese Slices Packaged with Na-Alginate Edible Films Supplemented with Functional Lactic Acid Bacteria Cultures after High-Pressure Processing. Foods. 2022; 11(18):2855. https://doi.org/10.3390/foods11182855
Chicago/Turabian StylePapadopoulou, Olga S., Anthoula A. Argyri, Vasiliki C. Bikouli, Eleni Lambrinea, and Nikos Chorianopoulos. 2022. "Evaluating the Quality of Cheese Slices Packaged with Na-Alginate Edible Films Supplemented with Functional Lactic Acid Bacteria Cultures after High-Pressure Processing" Foods 11, no. 18: 2855. https://doi.org/10.3390/foods11182855
APA StylePapadopoulou, O. S., Argyri, A. A., Bikouli, V. C., Lambrinea, E., & Chorianopoulos, N. (2022). Evaluating the Quality of Cheese Slices Packaged with Na-Alginate Edible Films Supplemented with Functional Lactic Acid Bacteria Cultures after High-Pressure Processing. Foods, 11(18), 2855. https://doi.org/10.3390/foods11182855