Combining Transcriptomics and Polyphenol Profiling to Provide Insights into Phenolics Transformation of the Fermented Chinese Jujube
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials, Reagents and Enzymes
2.2. Liquid-State Fermentation of Chinese Jujube
2.3. Extraction and Analysis of Phenolic Components
2.4. Qualitative and Quantitative Analysis of Phenolic Composition
2.5. RNA Extraction, Data Processing and Analysis
2.6. Determination of Carbohydrate-Hydrolyzing Enzymes Activities
2.7. Statistical Analysis
3. Results and Analysis
3.1. Selection of Microorganism and Optimization of LSF Condition
3.2. Qualitative Analysis of Phenolic Composition during LSF
3.3. Quantitative Analysis of Individual Phenolic Compounds
3.4. Transcriptome Sequencing and Carbohydrate-Active Enzymes Identification
3.5. Dynamic Changes of ISPC Contents and Enzymes Activities Verification
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Q.H.; Wu, C.S.; Wang, M.; Xu, B.N.; Du, L.J. Effect of drying of jujubes (Ziziphus jujuba Mill.) on the contents of sugars, organic acids, α-tocopherol, β-carotene, and phenolic compounds. J. Agric. Food Chem. 2012, 60, 9642–9648. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.; Chen, Q.; Li, X.; Li, M.; Kan, C.; Chen, B.; Zhang, Y.; Xue, Z. Quantitative assessment of bioactive compounds and the antioxidant activity of 15 jujube cultivars. Food Chem. 2015, 173, 1037–1044. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.; Yang, S. Phenolic compounds and its antioxidant activities in ethanolic extracts from seven cultivars of Chinese jujube. Food Sci. Hum. Wellness 2014, 3, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, Z.; Maiwulanjiang, M.; Zhang, W.L.; Zhan, J.; Lam, C.; Zhu, K.Y.; Yao, P.; Choi, R.; Lau, D. Chemical and biological assessment of Ziziphus jujuba fruits from china: Different geographical sources and developmental stages. J. Agric. Food Chem. 2013, 61, 7315–7324. [Google Scholar] [CrossRef]
- Wang, B.; Huang, Q.; Venkitasamy, C.; Chai, H.K.; Gao, H.; Cheng, N.; Cao, W.; Lv, X.G.; Pan, Z.L. Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Miller) during three edible maturity stages. LWT-Food Sci. Technol. 2016, 66, 56–62. [Google Scholar] [CrossRef]
- Guo, J.; Yan, Y.; Wang, M.; Wu, Y.; Liu, S.Q.; Chen, D.; Lu, Y. Effects of enzymatic hydrolysis on the chemical constituents in jujube alcoholic beverage fermented with Torulaspora delbrueckii. LWT-Food Sci. Technol. 2018, 97, 617–623. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Du, L.J.; Gao, Q.H.; Ji, X.L.; Ma, Y.J.; Wang, M. Comparison of flavonoids, phenolic acids, and antioxidant activity of explosion-puffed and sun-dried jujubes (Ziziphus jujuba Mill.). J. Agric. Food Chem. 2013, 61, 11840–11847. [Google Scholar] [CrossRef]
- Bei, Q.; Chen, G.; Lu, F.; Wu, S.; Wu, Z. Enzymatic action mechanism of phenolic mobilization in oats (Avena sativa L.) during solid-state fermentation with Monascus anka. Food Chem. 2018, 245, 297–304. [Google Scholar] [CrossRef]
- Bei, Q.; Liu, Y.; Wang, L.; Chen, G.; Wu, Z. Improving free, conjugated, and bound phenolic fractions in fermented oats (Avena sativa L.) with Monascus anka and their antioxidant activity. J. Funct. Foods 2017, 32, 185–194. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, H.; Xue, D. Enhancement of antioxidant activity of Radix Puerariae and red yeast rice by mixed fermentation with Monascus purpureus. Food Chem. 2017, 226, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Silveira, S.T.; Daroit, D.J.; Brandelli, A. Pigment production by Monascus purpureus in grape waste using factorial design. LWT-Food Sci. Technol. 2008, 41, 170–174. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chen, J.; Li, X.L.; Yi, K.; Ye, Y.; Liu, G.; Wang, S.F.; Hu, H.L.; Zou, L.; Wang, Z.G. Dynamic changes in antioxidant activity and biochemical composition of tartary buckwheat leaves during Aspergillus niger fermentation. J. Funct. Foods 2017, 32, 375–381. [Google Scholar] [CrossRef]
- Hye-Young, S.; Sung-Min, K.; Ju, H.L.; Seung-Taik, L. Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: Effects on phenolic acid composition and antioxidant activity of bran extracts. Food Chem. 2018, 272, 235–241. [Google Scholar] [CrossRef]
- Katina, K.; Laitila, A.; Juvonen, R.; Liukkonen, K.H.; Kariluoto, S.; Piironen, V.; Landberg, R.; Man, P.; Poutanen, K. Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol. 2007, 24, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Bhanja, T.; Kumari, A.; Banerjee, R. Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour. Technol. 2009, 99, 2861–2866. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.; Dulf, E.H.; Pintea, A. Phenolic compounds, flavonoids, lipids and antioxidant potential of apricot (Prunus armeniaca L.) pomace fermented by two filamentous fungal strains in solid state system. Chem. Cent. J. 2017, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Ling, T.J.; Su, X.Q.; Jiang, B.; Niao, B.; Chen, L.; Liu, M.; Zhang, Z.; Wang, D.; Mu, Y.; et al. Integrated proteomics and metabolomics analysis of tea leaves fermented by Aspergillus niger, Aspergillus tamarii and Aspergillus fumigatus. Food Chem. 2021, 334, 127560. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Y.; Wu, Y.; Wu, Z. Impact of fermentation degree on phenolic compositions and bioactivities during the fermentation of guava leaves with Monascus anka and Bacillus sp. J. Funct. Foods 2017, 41, 183–190. [Google Scholar] [CrossRef]
- Dey, T.B.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar] [CrossRef]
- Singhania, R.R.; Sukumaran, R.K.; Patel, A.K.; Larroche, C.; Pandey, A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 2010, 46, 541–549. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, R.; Zhang, Y.; Yang, Y.; Sun, X.; Zhang, Q.; Yang, N. Biotransformation of phenolics and metabolites and the change in antioxidant activity in kiwifruit induced by Lactobacillus plantarum fermentation. J. Sci. Food Agric. 2020, 100, 3283–3290. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S.; Chen, Y.; Guo, J.; Zhang, J. Metatranscriptomic approach reveals the functional and enzyme dynamics of core microbes during noni fruit fermentation. Food Res. Int. 2021, 141, 109999. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, R.; Deng, Y.; Zhang, Y.; Xiao, J.; Huang, F.; Wen, W.; Zhang, M. Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase. Food Chem. 2017, 221, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, R.; Fu, C.; Jiang, X.; Li, X.; Han, G.; Zhang, J. Combining bioactive compounds and antioxidant activity profling provide insights into assessment of geographical features of Chinese jujube. Food Biosci. 2022, 46, 101573. [Google Scholar] [CrossRef]
- Bei, Q.; Wu, Z.; Chen, G. Dynamic changes in the phenolic composition and antioxidant activity of oats during simultaneous hydrolysis and fermentation. Food Chem. 2019, 305, 125269. [Google Scholar] [CrossRef]
- Payne, M.J.; Hurst, W.J.; Miller, K.B.; Rank, C.; Stuart, D.A. Impact of fermentation, drying, roasting, and dutch processing on epicatechin and catechin content of Cacao beans and Cocoa ingredients. J. Agric. Food Chem. 2010, 58, 10518–10527. [Google Scholar] [CrossRef]
- Shi, K.; Song, D.; Chen, G.; Pistolozzi, M.; Wu, Z.; Quan, L. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation. J. Biosci. Bioeng. 2015, 120, 145–154. [Google Scholar] [CrossRef]
- Heras-Ramírez, M.E.; Quintero-Ramos, A.; Camacho-Dávila, A.A.; Barnard, J.; Talamás-Abbud, R.; Torres-Muñoz, J.V.; Salas-Muñoz, E. Effect of blanching and drying temperature on polyphenolic compound stability and antioxidant capacity of apple pomace. Food Bioprocess Technol. 2012, 5, 2201–2210. [Google Scholar] [CrossRef]
- Hopper, W.; Mahadevan, A. Utilization of catechin and its metabolites by Bradyrhizobium japonicum. Appl. Microbiol. Biotechnol. 1991, 35, 411–415. [Google Scholar] [CrossRef]
- Sachan, A.; Ghosh, S.; Sen, S.K.; Mitra, A. Co-production of caffeic acid and p-hydroxybenzoic acid from p-coumaric acid by Streptomyces caeruleus MTCC 6638. Appl. Microbiol. Biotechnol. 2006, 71, 720. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, H.; Wu, P.; Sarah, E.; Li, X.; Tanner, Y.; Yi, H.; Yang, Z.; Yin, Y. dbCAN-seq: A database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res. 2018, 46, D516–D521. [Google Scholar] [CrossRef] [PubMed]
- Grab, C.; Srb, C.; Gg, B.; Rm, C.; Ll, B.; Dswc, D. Edible nuts deliver polyphenols and their transformation products to the large intestine: An in vitro fermentation model combining targeted/untargeted metabolomics. Food Res. Int. 2019, 116, 786–794. [Google Scholar] [CrossRef]
- Zhang, J. The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnol. Biofuels 2011, 4, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarado, I.E.; Lomascolo, A.; Navarro, D.; Delattre, M.; Asther, M.; Lesage-Meessen, L. Evidence of a new biotransformation pathway of p-coumaric acid into p-hydroxybenzaldehyde in Pycnoporus cinnabarinus. Appl. Microbiol. Biotechnol. 2001, 57, 725 . [Google Scholar] [CrossRef]
- Torres, J.; Rosazza, J. Microbial transformations of p-coumaric acid by Bacillus megaterium and Curvularia lunata. J. Nat. Prod. 2001, 64, 1408. [Google Scholar] [CrossRef] [PubMed]
- Braune, A.; Gütschow, M.; Engst, W.; Blaut, M. Degradation of quercetin and luteolin by Eubacterium ramulus. Appl. Environ. Microbiol. 2001, 67, 5558–5567. [Google Scholar] [CrossRef] [Green Version]
- Seeram, N.P.; Bourquin, L.D.; Nair, M.G. Degradation products of cyanidin glycosides from tart cherries and their bioactivities. J. Agric. Food Chem. 2001, 49, 4924 . [Google Scholar] [CrossRef]
Fermentation Time (d) | NF | 0d | 2d | 5d | 7d | 9d |
---|---|---|---|---|---|---|
Catechins | 0.26 ± 0.07 cd | 5.72 ± 0.39 a | 4.22 ± 0.10 b | 0.54 ± 0.05 c | 0.40 ± 0.05 cd | 0.07 ± 0.04 d |
Ferulic acid | 1.02 ± 0.59 b | 1.47 ± 0.06 a | 0.22 ± 0.04 b | 0.55 ± 0.06 b | 0.72 ± 0.16 b | 0.68 ± 0.40 b |
Chlorogenic acid | 7.41 ± 0.68 b | 8.05 ± 0.35 b | 41.40 ± 0.63 a | 42.60 ± 1.92 a | 44.71 ± 4.51 a | 2.10 ± 0.20 c |
Rutin | 28.94 ± 0.44 c | 50.60 ± 0.45 b | 59.80 ± 0.40 a | 18.26 ± 0.07 f | 11.15 ± 0.06 e | 5.52 ± 0.18 d |
p-Coumaric acid | 2.58 ± 0.25 d | 2.97 ± 0.19 d | 4.70 ± 0.09 c | 5.28 ± 0.42 b | 6.57 ± 0.09 a | 4.66 ± 0.12 c |
Quercetin | 0.59 ± 0.05 b | 0.49 ± 0.12 b | 1.35 ± 0.78 ab | 1.50 ± 0.04 ab | 1.85 ± 0.58 a | 0.52 ± 0.10 b |
Protocatechuic acid | 6.52 ± 0.12 e | 9.83 ± 0.07 d | 18.29 ± 0.65 c | 26.39 ± 1.44 b | 109.20 ± 0.42 a | 3.43 ± 0.15 f |
p-Hydroxybenzoic acid | 1.39 ± 0.04 d | 1.03 ± 0.14 e | 8.66 ± 0.03 c | 15.12 ± 0.13 b | 19.53 ± 0.17 a | 0.53 ± 0.07 f |
Kaempferol | 2.05 ± 1.92 ab | 0.24 ± 0.01 b | 0.42 ± 0.31 b | 1.55 ± 0.27 ab | 2.85 ± 0.23 a | 1.88 ± 1.05 ab |
Quercetin-3-O-glucuronide | 0.03 ± 0.01 d | 0.04 ± 0.01 d | 0.65 ± 0.05 a | 0.68 ± 0.12 a | 0.25 ± 0.01 b | 0.15 ± 0.04 c |
Hyperoside * | ND | 0.11 ± 0.13 b | 0.02 ± 0.01 b | 0.10 ± 0.04 b | 0.63 ± 0.03 a | ND |
Luteolin * | ND | 0.58 ± 0.22 c | 0.74 ± 0.11 c | 1.81 ± 0.21 b | 2.85 ± 0.21 a | 0.10 ± 0.01 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Li, P.; Zhang, B.; Yu, X.; Li, X.; Han, G.; Ren, Y.; Zhang, J. Combining Transcriptomics and Polyphenol Profiling to Provide Insights into Phenolics Transformation of the Fermented Chinese Jujube. Foods 2022, 11, 2546. https://doi.org/10.3390/foods11172546
Wang C, Li P, Zhang B, Yu X, Li X, Han G, Ren Y, Zhang J. Combining Transcriptomics and Polyphenol Profiling to Provide Insights into Phenolics Transformation of the Fermented Chinese Jujube. Foods. 2022; 11(17):2546. https://doi.org/10.3390/foods11172546
Chicago/Turabian StyleWang, Cheng, Peiyao Li, Beibei Zhang, Xiang Yu, Xingang Li, Gang Han, Yamei Ren, and Jingfang Zhang. 2022. "Combining Transcriptomics and Polyphenol Profiling to Provide Insights into Phenolics Transformation of the Fermented Chinese Jujube" Foods 11, no. 17: 2546. https://doi.org/10.3390/foods11172546
APA StyleWang, C., Li, P., Zhang, B., Yu, X., Li, X., Han, G., Ren, Y., & Zhang, J. (2022). Combining Transcriptomics and Polyphenol Profiling to Provide Insights into Phenolics Transformation of the Fermented Chinese Jujube. Foods, 11(17), 2546. https://doi.org/10.3390/foods11172546