Recent Advances in Regenerative Therapies in Periodontology
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
- -
- Scientific articles published from 1 January 2015 to 10 July 2025;
- -
- Randomized Controlled Trials or Clinical Trials that are published in English;
- -
- Open Access Articles;
- -
- Articles regarding regenerative approaches used in periodontology.
- -
- Animal studies;
- -
- In vitro studies;
- -
- Studies lacking full-text accessibility or comprehensive methodological data;
- -
- Manuscripts with no clear report of a clinical study.
2.2. Literature Search Strategy
2.3. Risk of Bias
3. Results
3.1. Guided Tissue Regeneration (GTR)
3.2. Bone Grafting
3.3. Biological Therapies
3.3.1. Platelet Concentrates (PC)
3.3.2. Enamel Matrix Derivatives (EMD)
3.3.3. Hyaluronic Acid (HA)
3.4. Tissue Engineering
3.5. Laser Therapy
3.5.1. Antimicrobial Photodynamic Therapy (aPDT)
3.5.2. Low-Level Laser Therapy (LLLT)
3.5.3. Laser-Assisted New Attachment Procedure (LANAP)
4. Discussion
4.1. Quality of Evidence and Variability Among Studies
4.2. Patient-Related and Microbiological Factors
4.3. Surgical Techniques and Operator-Dependent Factors
4.4. Clinical Implications, Limitations, and Generalizability
4.5. Alignment with Guidelines and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| aPDT | Antimicrobial Photodynamic Therapy |
| AB | Antibiotics (systemic administration) |
| AA | Ascorbic Acid |
| ABG | Autologous Bone Graft |
| ADM | Acellular Dermal Matrix |
| ATP | Adenosine Triphosphate |
| A-PRF | Advanced Platelet-Rich Fibrin |
| BMP | Bone Morphogenetic Protein |
| BM-MSCs | Bone Marrow-Derived Mesenchymal Stem Cells |
| CAL | Clinical Attachment Level |
| CAF | Coronally Advanced Flap |
| CCO | Cytochrome c Oxidase |
| CGF | Concentrated Growth Factor |
| CLN | Clindamycin |
| CM | Collagen Membrane |
| CTG | Connective Tissue Graft |
| CXP | Creos Xenoprotect |
| DBBM | Deproteinized Bovine Bone Mineral |
| DFDBA | Demineralized Freeze-Dried Bone Allograft |
| DPBM | Deproteinized Porcine Bone Material |
| DPSCs | Dental Pulp Stem Cells |
| ECM | Extracellular Matrix |
| e-PTFE | Expanded Polytetrafluoroethylene |
| EFP | European Federation of Periodontology |
| EMD | Enamel Matrix Derivative |
| FMUD | Full-Mouth Ultrasonic Debridement |
| FGG | Free Gingival Graft |
| GBR | Guided Bone Regeneration |
| GCF | Gingival Crevicular Fluid |
| GMSCs | Gingival Mesenchymal Stem Cells |
| GPCGF | Gel Phase Concentrated Growth Factor |
| GTR | Guided Tissue Regeneration |
| HA | Hyaluronic Acid |
| ICG | Indocyanine Green |
| ICG-aPDT | Indocyanine Green-Mediated Antimicrobial Photodynamic Therapy |
| I-PRF | Injectable Platelet-Rich Fibrin |
| LANAP | Laser-Assisted New Attachment Procedure |
| LLLT | Low-Level Laser Therapy |
| L-PRF | Leukocyte-Platelet-Rich Fibrin |
| LPCGF | Liquid Phase Concentrated Growth Factor |
| MAGR | Multiple Adjacent Gingival Recessions |
| MARF | Modified Apically Repositioned Flap |
| MIST | Minimally Invasive Surgical Technique |
| M-MIST | Modified Minimally Invasive Surgical Technique |
| MMP | Matrix Metalloproteinase |
| MPM | Modified Perforated Membrane |
| MSCs | Mesenchymal Stem Cells |
| MTZ | Metronidazole |
| MPP | Modified Papilla Preservation Technique |
| NT | No Treatment |
| OFD | Open-Flap Debridement |
| PB-MSCs | Peripheral Blood Mesenchymal Stem Cells |
| PC | Platelet Concentrates |
| PDGF | Platelet-Derived Growth Factor |
| PDPCs | Periosteum-Derived Progenitor Cells |
| PDL | Periodontal Ligament |
| PMPR | Professional Mechanical Plaque Removal |
| PRF | Platelet-Rich Fibrin |
| PRP | Platelet-Rich Plasma |
| PPD | Probing Pocket Depth |
| PTFE | Polytetrafluoroethylene |
| RBC | Red Blood Cell |
| RC | Recession Coverage |
| RDD | Radiographic Defect Depth |
| SBS | Synthetic Bone Substitute |
| SPP | Simplified Papilla Preservation Technique |
| SRP | Scaling and Root Planing |
| TGF-β | Transforming Growth Factor Beta |
| T-PRF | Titanium Platelet-Rich Fibrin |
| VBG | Vertical Bone Gain |
| WBC | White Blood Cell |
| xHyA | Cross-Linked Hyaluronic Acid |
References
- Konečná, B.; Chobodová, P.; Janko, J.; Baňasová, L.; Bábíčková, J.; Celec, P.; Tóthová, Ľ. The Effect of Melatonin on Periodontitis. Int. J. Mol. Sci. 2021, 22, 2390. [Google Scholar] [CrossRef]
- Thilagar, S.; Theyagarajan, R.; Mugri, M.H.; Bahammam, H.A.; Bahammam, S.A.; Bahammam, M.A.; Yadalam, P.K.; Raj, A.T.; Bhandi, S.; Patil, S. Periodontal Treatment for Chronic Periodontitis With Rheumatoid Arthritis. Int. Dent. J. 2022, 72, 832–838. [Google Scholar] [CrossRef]
- Gul, Y.S.; Kose, O.; Altin, A.; Yemenoglu, H.; Arslan, H.; Akyildiz, K.; Yilmaz, A. Melatonin Supports Nonsurgical Periodontal Treatment in Patients with Type 2 Diabetes Mellitus and Periodontitis: A Randomized Clinical Trial. J. Periodontol. 2024, 95, 832–841. [Google Scholar] [CrossRef]
- Pejcic, A.; Kostic, M.; Marko, I.; Obradovic, R.; Minic, I.; Bradic-Vasic, M.; Gligorijevic, N.; Kurtagic, D. Tooth Loss and Periodontal Status in Patients with Cardiovascular Disease in the Serbian Population: A Randomized Prospective Study. Int. J. Dent. Hyg. 2023, 21, 317–327. [Google Scholar] [CrossRef]
- Seinost, G.; Horina, A.; Arefnia, B.; Kulnik, R.; Kerschbaumer, S.; Quehenberger, F.; Muster, V.; Gütl, K.; Zelzer, S.; Gasser, R.; et al. Periodontal Treatment and Vascular Inflammation in Patients with Advanced Peripheral Arterial Disease: A Randomized Controlled Trial. Atherosclerosis 2020, 313, 60–69. [Google Scholar] [CrossRef]
- Brinar, S.; Skvarča, A.; Gašpirc, B.; Schara, R. The Effect of Antimicrobial Photodynamic Therapy on Periodontal Disease and Glycemic Control in Patients with Type 2 Diabetes Mellitus. Clin. Oral Investig. 2023, 27, 6235–6244. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; He, Z.; Zhao, H.; Cai, Y.; Song, S.; Yu, Q. Effects of Xipayi Mouth Rinse Combined with Minocycline on Localized Aggressive Periodontitis’ Therapeutic Effect and the Levels of CRP, TNF-α, IL-6 in Serum. Ann. Palliat. Med. 2020, 9, 3410–3417. [Google Scholar] [CrossRef]
- Isola, G.; Tartaglia, G.M.; Santonocito, S.; Polizzi, A.; Williams, R.C.; Iorio-Siciliano, V. Impact of N-Terminal pro-B-Type Natriuretic Peptide and Related Inflammatory Biomarkers on Periodontal Treatment Outcomes in Patients with Periodontitis: An Explorative Human Randomized-Controlled Clinical Trial. J. Periodontol. 2023, 94, 1414–1424. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Huang, C.-M.; Wang, Q.; Wei, J.; Xie, L.; Hu, C.-Y. Burden of Severe Periodontitis: New Insights Based on a Systematic Analysis from the Global Burden of Disease Study 2021. BMC Oral Health 2025, 25, 861. [Google Scholar] [CrossRef] [PubMed]
- Gobin, R.; Tian, D.; Liu, Q.; Wang, J. Periodontal Diseases and the Risk of Metabolic Syndrome: An Updated Systematic Review and Meta-Analysis. Front. Endocrinol. 2020, 11, 336. [Google Scholar] [CrossRef]
- Sanz, M.; Herrera, D.; Kebschull, M.; Chapple, I.; Jepsen, S.; Berglundh, T.; Sculean, A.; Tonetti, M.S. EFP Workshop Participants and Methodological Consultants Treatment of Stage I–III Periodontitis—The EFP S3 Level Clinical Practice Guideline. J. Clin. Periodontol. 2020, 47, 4–60. [Google Scholar] [CrossRef] [PubMed]
- Herrera, D.; Sanz, M.; Kebschull, M.; Jepsen, S.; Sculean, A.; Berglundh, T.; Papapanou, P.N.; Chapple, I.; Tonetti, M.S.; Berglundh, T.; et al. Treatment of Stage IV Periodontitis: The EFP S3 Level Clinical Practice Guideline. J. Clin. Periodontol. 2022, 49, 4–71. [Google Scholar] [CrossRef]
- Shi, J.; Wang, J.; Yang, Z.; Li, J.; Lei, L.; Li, H. A Novel Periodontal Endoscopy-Aided Non-Incisional Periodontal Regeneration Technique in the Treatment of Intrabony Defects: A Retrospective Cohort Study. BMC Oral Health 2023, 23, 962. [Google Scholar] [CrossRef]
- Nibali, L.; Pometti, D.; Chen, T.-T.; Tu, Y.-K. Minimally Invasive Non-Surgical Approach for the Treatment of Periodontal Intrabony Defects: A Retrospective Analysis. J. Clin. Periodontol. 2015, 42, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-H.; Chen, J.-Y.; Suo, W.-H.; Shao, W.-R.; Huang, C.-Y.; Li, M.-T.; Li, Y.-Y.; Li, Y.-H.; Liang, E.-L.; Chen, Y.-H.; et al. Unlocking the Future of Periodontal Regeneration: An Interdisciplinary Approach to Tissue Engineering and Advanced Therapeutics. Biomedicines 2024, 12, 1090. [Google Scholar] [CrossRef]
- Sculean, A.; Gruber, R.; Bosshardt, D.D. Soft Tissue Wound Healing around Teeth and Dental Implants. J. Clin. Periodontol. 2014, 41, S6–S22. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.M.; Moorehead, R.; Asencio, I.O. Correction: Alqahtani et al. Guided Tissue and Bone Regeneration Membranes: A Review of Biomaterials and Techniques for Periodontal Treatments. Polymers 2025, 17, 863. [Google Scholar] [CrossRef]
- Chen, H.; Song, G.; Xu, T.; Meng, C.; Zhang, Y.; Xin, T.; Yu, T.; Lin, Y.; Han, B. Biomaterial Scaffolds for Periodontal Tissue Engineering. J. Funct. Biomater. 2024, 15, 233. [Google Scholar] [CrossRef]
- Bastian, W.; Istvan, U.; Eduardo, M.; Werner, Z.; Markus, H.; Javier Alández, C.; Nuria Alández, M.; Giovanni, P.; Silvio, M.; Mariano, S. A Multicenter Randomized Controlled Clinical Trial Using a New Resorbable Non-Cross-Linked Collagen Membrane for Guided Bone Regeneration at Dehisced Single Implant Sites: Interim Results of a Bone Augmentation Procedure. Clin. Oral Implant. Res. 2017, 28, e218–e226. [Google Scholar] [CrossRef]
- Abtahi, S.; Chen, X.; Shahabi, S.; Nasiri, N. Resorbable Membranes for Guided Bone Regeneration: Critical Features, Potentials, and Limitations. ACS Mater. Au 2023, 3, 394–417. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, D.-C.; Long, X.-Y.; Liu, X.; Lu, J.-W.; Zhang, Z.-J.; Shi, Q.-Q.; Zhou, Y.; Zou, D.-H. Bioinspired Triple-Layered Membranes for Periodontal Guided Bone Regeneration Applications. J. Mater. Chem. B 2024, 12, 9938–9946. [Google Scholar] [CrossRef]
- Cucchi, A.; Vignudelli, E.; Napolitano, A.; Marchetti, C.; Corinaldesi, G. Evaluation of Complication Rates and Vertical Bone Gain after Guided Bone Regeneration with Non-Resorbable Membranes versus Titanium Meshes and Resorbable Membranes. A Randomized Clinical Trial. Clin. Implant. Dent. Relat. Res. 2017, 19, 821–832. [Google Scholar] [CrossRef]
- Górski, B.; Jalowski, S.; Górska, R.; Zaremba, M. Treatment of Intrabony Defects with Modified Perforated Membranes in Aggressive Periodontitis: Subtraction Radiography Outcomes, Prognostic Variables, and Patient Morbidity. Clin. Oral Investig. 2019, 23, 3005–3020. [Google Scholar] [CrossRef] [PubMed]
- Turri, A.; Čirgić, E.; Shah, F.A.; Hoffman, M.; Omar, O.; Dahlin, C.; Trobos, M. Early Plaque Formation on PTFE Membranes with Expanded or Dense Surface Structures Applied in the Oral Cavity of Human Volunteers. Clin. Exp. Dent. Res. 2021, 7, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Balice, G.; Paolantonio, M.; De Ninis, P.; Rexhepi, I.; Serroni, M.; Frisone, A.; Romano, L.; Sinjari, B.; Murmura, G.; Femminella, B. Treatment of Unfavorable Intrabony Defects with Autogenous Bone Graft in Combination with Leukocyte- and Platelet-Rich Fibrin or Collagen Membranes: A Non-Inferiority Study. Medicina 2024, 60, 1091. [Google Scholar] [CrossRef] [PubMed]
- Urban, I.A.; Serroni, M.; Dias, D.R.; Baráth, Z.; Forster, A.; Araújo, T.G.; Saleh, M.H.A.; Cucchi, A.; Ravidà, A. Impact of Collagen Membrane in Vertical Ridge Augmentation Using Ti-Reinforced PTFE Mesh: A Randomised Controlled Trial. J. Clin. Periodontol. 2025, 52, 575–588. [Google Scholar] [CrossRef]
- Cheruvu, R.N.S.; Katuri, K.K.; Dhulipalla, R.; Kolaparthy, L.; Adurty, C.; Thota, K.M. Evaluation of Soft Tissue and Crestal Bone Changes around Non-Submerged Implants with and without a Platelet-Rich Fibrin Membrane: A Randomized Controlled Clinical Trial. Dent. Med. Probl. 2023, 60, 437–443. [Google Scholar] [CrossRef]
- Akcan, S.K.; Ünsal, B. Gingival Recession Treatment with Concentrated Growth Factor Membrane: A Comparative Clinical Trial. J. Appl. Oral Sci. Rev. FOB 2020, 28, e20190236. [Google Scholar] [CrossRef]
- Basler, T.; Naenni, N.; Schneider, D.; Hämmerle, C.H.F.; Jung, R.E.; Thoma, D.S. Randomized Controlled Clinical Study Assessing Two Membranes for Guided Bone Regeneration of Peri-Implant Bone Defects: 3-Year Results. Clin. Oral Implant. Res. 2018, 29, 499–507. [Google Scholar] [CrossRef]
- Potharaju, S.P.; Prathypaty, S.K.; Chintala, R.K.; Kumar, D.S.; Bai, Y.D.; Bolla, V.L.; Koppolu, P.; Barakat, A.; Lingam, A.S. Comparative Efficacy of Coronally Advanced Flap with and without Guided Tissue Regeneration in the Management of Gingival Recession Defects: A Split-Mouth Trial. Ann. Afr. Med. 2022, 21, 415–420. [Google Scholar] [CrossRef]
- Zhu, L.; Du, X.; Fu, G.; Wang, L.; Huang, H.; Wu, X.; Xu, B. Efficacy of Different Forms of Concentrated Growth Factors Combined with Deproteinized Bovine Bone Minerals in Guided Bone Regeneration: A Randomized Clinical Trial. BMC Oral Health 2025, 25, 320. [Google Scholar] [CrossRef]
- Kojima, K.; Kamata, Y.; Shimizu, T.; Sato, S.; Suzuki, S.; Takanashi, Y.; Hojo, S.; Yoshino, T.; Fuchida, S.; Tamura, T.; et al. Recombinant Human Fibroblast Growth Factor and Autogenous Bone for Periodontal Regeneration: Alone or in Combination? A Randomized Clinical Trial. J. Periodontal Res. 2024, 59, 1162–1174. [Google Scholar] [CrossRef]
- Priyanka, M.; Reddy, K.; Pradeep, K. Efficacy of Rh-PDGF-BB and Emdogain with or without DFDBA Using M-MIST in the Treatment of Intrabony Defects. Niger. J. Clin. Pract. 2023, 26, 116–124. [Google Scholar] [CrossRef]
- Alshoiby, M.M.; El-Sayed, K.M.F.; Elbattawy, W.; Hosny, M.M. Injectable Platelet-Rich Fibrin with Demineralized Freeze-Dried Bone Allograft Compared to Demineralized Freeze-Dried Bone Allograft in Intrabony Defects of Patients with Stage-III Periodontitis: A Randomized Controlled Clinical Trial. Clin. Oral Investig. 2023, 27, 3457–3467. [Google Scholar] [CrossRef]
- Cha, J.; Jung, U.; Montero-Solis, E.; Sanz-Sánchez, I.; Sanz-Alonso, M. Guided Bone Regeneration at Dehiscence Comparing Synthetic Bone Substitute versus Bovine Bone Mineral: A Multicenter, Noninferiority, Randomized Trial. Clin. Implant. Dent. Relat. Res. 2024, 26, 1233–1244. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.; Jeong, S. Adjunctive Use of Enamel Matrix Derivatives to Porcine-Derived Xenograft for the Treatment of One-Wall Intrabony Defects: Two-Year Longitudinal Results of a Randomized Controlled Clinical Trial. J. Periodontol. 2020, 91, 880–889. [Google Scholar] [CrossRef]
- Jung, J.; Park, S.; Kim, K.; Ko, K.; Lee, D.; Lee, J. Particulate Versus Cross-Linked Collagenated Bone Substitutes for Guided Bone Regeneration: A Randomized Controlled Trial. Clin. Oral Implant. Res. 2025, 36, 879–889. [Google Scholar] [CrossRef]
- Strauss, F.J.; Schneider, D.; Jung, R.E.; Kraus, R.; Thoma, D.S.; Naenni, N. Hard and Soft Tissue Contour Changes Following Simultaneous Guided Bone Regeneration at Single Peri-Implant Dehiscence Defects Using Either Resorbable or Non-Resorbable Membranes: A 6-Month Secondary Analysis of a Randomized Controlled Trial. Clin. Oral Investig. 2025, 29, 231. [Google Scholar] [CrossRef] [PubMed]
- Azangookhiavi, H.; Habibzadeh, S.; Zahmatkesh, H.; Mellati, E.; Mosaddad, S.A.; Dadpour, Y. The Effect of Platelet-Rich Fibrin (PRF) versus Freeze-Dried Bone Allograft (FDBA) Used in Alveolar Ridge Preservation on the Peri-Implant Soft and Hard Tissues: A Randomized Clinical Trial. BMC Oral Health 2024, 24, 693. [Google Scholar] [CrossRef] [PubMed]
- Zeitounlouian, T.S.; Zeno, K.G.; Brad, B.A.; Haddad, R.A. Three-Dimensional Evaluation of the Effects of Injectable Platelet Rich Fibrin (i-PRF) on Alveolar Bone and Root Length during Orthodontic Treatment: A Randomized Split Mouth Trial. BMC Oral Health 2021, 21, 92. [Google Scholar] [CrossRef]
- Csifó-Nagy, B.K.; Sólyom, E.; Bognár, V.L.; Nevelits, A.; Dőri, F. Efficacy of a New-Generation Platelet-Rich Fibrin in the Treatment of Periodontal Intrabony Defects: A Randomized Clinical Trial. BMC Oral Health 2021, 21, 580. [Google Scholar] [CrossRef]
- Mohammadivahedi, F.; Sadeghifar, A.; Farsinejad, A.; Jambarsang, S.; Mirhosseini, H. Comparative Efficacy of Platelet-Rich Plasma (PRP) Injection versus PRP Combined with Vitamin C Injection for Partial-Thickness Rotator Cuff Tears: A Randomized Controlled Trial. J. Orthop. Surg. Res. 2024, 19, 426. [Google Scholar] [CrossRef] [PubMed]
- Shiezadeh, F.; Moeintaghavi, A.; Moslehitabar, Z.; Khojaste, M. Platelet-Rich Fibrin versus Acellular Dermal Matrix for Vertical Soft Tissue Augmentation Simultaneously with Dental Implantation: A 3-Month Randomized Pilot Clinical Trial. BMC Oral Health 2025, 25, 1060. [Google Scholar] [CrossRef]
- Louis, J.P.; Crena, J.M.; Prakash, P.; Subramanian, S.; Victor, D.J.; Balaji, T.M.; Zidane, B.; Al-Ahmari, M.M.M.; Albar, N.H.; Alahmari, M.M.M.; et al. Evaluating the Efficacy of Platelet-Rich Fibrin Matrix versus Subepithelial Connective Tissue Grafts in Dental Root Coverage: A Comparative Study Using Modified Ruben’s Technique. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2023, 29, e941473. [Google Scholar] [CrossRef]
- Arunachalam, M.; Pulikkotil, S.J.; Sonia, N. Platelet Rich Fibrin in Periodontal Regeneration. Open Dent. J. 2016, 10, 174–181. [Google Scholar] [CrossRef]
- Gürbüz, T.Ç.; Yıldıran, B.M. The Clinical Efficacy of Injectable Platelet-Rich Fibrin (i-PRF) as an Adjunct to Nonsurgical Periodontal Therapy in Smokers with Periodontitis. BMC Oral Health 2025, 25, 618. [Google Scholar] [CrossRef]
- Haripriya, N.; P, M.K.; Penmetsa, G.S.; G, N.S.; Ksv, R.; V, K. Comparison of the Effectiveness of DFDBA and T-PRF in the Regeneration of Intra-Bony Defects—A Randomized Split-Mouth Study. J. Stomatol. Oral Maxillofac. Surg. 2024, 125, 101668. [Google Scholar] [CrossRef]
- Straub, A.; Vollmer, A.; Lâm, T.-T.; Brands, R.C.; Stapf, M.; Scherf-Clavel, O.; Bittrich, M.; Fuchs, A.; Kübler, A.C.; Hartmann, S. Evaluation of Advanced Platelet-Rich Fibrin (PRF) as a Bio-Carrier for Ampicillin/Sulbactam. Clin. Oral Investig. 2022, 26, 7033–7044. [Google Scholar] [CrossRef] [PubMed]
- Omar, Y.K.; Rashidy, M.A.E.; Ahmed, G.B.; Aboulela, A.G. Evaluation of Leukocyte-Platelet Rich Fibrin as an Antibiotic Slow-Release Biological Device in the Treatment of Moderate Periodontitis: A Randomized Controlled Clinical Trial. BMC Oral Health 2024, 24, 1530. [Google Scholar] [CrossRef]
- Tadepalli, A.; Chekurthi, S.; Balasubramanian, S.K.; Parthasarathy, H.; Ponnaiyan, D. Comparative Evaluation of Clinical Efficacy of Leukocyte-Rich Platelet-Rich Fibrin with Advanced Platelet-Rich Fibrin in Management of Gingival Recession Defects: A Randomized Controlled Trial. Med. Princ. Pract. Int. J. Kuwait Univ. Health Sci. Cent. 2022, 31, 376–383. [Google Scholar] [CrossRef]
- Yavuz, A.; Güngörmek, H.S.; Kuru, L.; Doğan, B. Treatment of Multiple Adjacent Gingival Recessions Using Leucocyte- and Platelet-Rich Fibrin with Coronally Advanced Flap: A 12-Month Split-Mouth Controlled Randomized Clinical Trial. Clin. Oral Investig. 2024, 28, 291. [Google Scholar] [CrossRef]
- Eminoglu, D.O.; Arabaci, T.; Sahiner, G.A.O. The Effect of Titanium-Platelet Rich Fibrin on Periodontal Intrabony Defects: A Randomized Controlled Split-Mouth Clinical Study. PLoS ONE 2024, 19, e0304970. [Google Scholar] [CrossRef]
- Aldommari, E.A.; Omair, A.; Qasem, T. Titanium-Prepared Platelet-Rich Fibrin Enhances Alveolar Ridge Preservation: A Randomized Controlled Clinical and Radiographic Study. Sci. Rep. 2025, 15, 24065. [Google Scholar] [CrossRef]
- Bommala, M.; Koduganti, R.R.; Panthula, V.N.R.; Jammula, S.P.; Gireddy, H.; Ambati, M.; Ganachari, B. Efficacy of Root Coverage with the Use of the Conventional versus Laser-Assisted Flap Technique with Platelet-Rich Fibrin in Class I and Class II Gingival Recession: A Randomized Clinical Trial. Dent. Med. Probl. 2023, 60, 583–592. [Google Scholar] [CrossRef]
- Sherif, M.A.; Anter, E.; Graetz, C.; El-Sayed, K.F. Injectable Platelet-Rich Fibrin with Vitamin C as an Adjunct to Non-Surgical Periodontal Therapy in the Treatment of Stage-II Periodontitis: A Randomized Controlled Clinical Trial. BMC Oral Health 2025, 25, 772. [Google Scholar] [CrossRef]
- Elbehwashy, M.T.; Hosny, M.M.; Elfana, A.; Nawar, A.; El-Sayed, K.F. Clinical and Radiographic Effects of Ascorbic Acid-Augmented Platelet-Rich Fibrin versus Platelet-Rich Fibrin Alone in Intra-Osseous Defects of Stage-III Periodontitis Patients: A Randomized Controlled Clinical Trial. Clin. Oral Investig. 2021, 25, 6309–6319. [Google Scholar] [CrossRef] [PubMed]
- Naidu, N.S.S.; Kancharla, A.K.; Nandigam, A.R.; Tasneem, S.M.; Gummaluri, S.S.; Dey, S.; Prathipaty, R.J. Comparative Study of Demineralized Freeze-Dried Bone Allograft and Its Combination with Platelet-Rich Fibrin in the Treatment of Intrabony Defects: A Randomized Clinical Trial. Dent. Med. Probl. 2024, 61, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Torkzaban, P.; Rabienejad, N.; Cheraghi, Z.; Lahoorpoor, K. Effectiveness of Using Platelet-Rich Fibrin to Increase Keratinized Tissue around the Tooth in the Modified Apical Reposition Flap Method: A Split-Mouth, Randomized Controlled Trial. Clin. Exp. Dent. Res. 2023, 9, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, R.; Adel-Khattab, D.; Abdel-Ghaffar, K.A.; Gamal, A.Y. Adjunctive Effect of Collagen Membrane Coverage to L-PRF in the Treatment of Periodontal Intrabony Defects: A Randomized Controlled Clinical Trial with Biochemical Assessment. BMC Oral Health 2023, 23, 631. [Google Scholar] [CrossRef]
- Culhaoglu, R.; Taner, L.; Guler, B. Evaluation of the Effect of Dose-Dependent Platelet-Rich Fibrin Membrane on Treatment of Gingival Recession: A Randomized, Controlled Clinical Trial. J. Appl. Oral Sci. Rev. FOB 2018, 26, e20170278. [Google Scholar] [CrossRef] [PubMed]
- Yusri, S.; Elbattawy, W.; Zaaya, S.; Mokhtar, M.; Ramzy, A.; El-Sayed, K.M.F. Modified Minimally Invasive Surgical Technique with Clindamycin-Augmented or Non-Augmented Platelet-Rich Fibrin in Periodontal Regeneration: A Randomized Clinical Trial. J. Periodontal Res. 2025, 60, 326–339. [Google Scholar] [CrossRef]
- Albatal, W.; Qasem, T.; Tolibah, Y.A. Liquid Platelet-Rich Fibrin in Root Surface Biomodification during Gingival Recession Treatment: Randomized, Controlled, Split-Mouth, Clinical Trial. Clin. Exp. Dent. Res. 2023, 9, 772–782. [Google Scholar] [CrossRef]
- Wehner, C.; Tur, D.; Durstberger, G.; Laky, M.; Laky, B.; Andrukhov, O.; Moritz, A.; Rausch-Fan, X. Effects of Enamel Matrix Derivative in Nonsurgical Periodontal Therapy on Pro-Inflammatory Profiles, Microbial Environment and Clinical Outcome: A Randomized Clinical Trial. Clin. Oral Investig. 2023, 27, 6493–6502. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-A, M.; Montiel-Company, J.M.; Alpiste-Illueca, F.; Rodríguez-A, L.; Paredes-Gallardo, V.; López-Roldán, A. Comparision of Crosslinked Hyaluronic Acid vs. Enamel Matrix Derivative for Periodontal Regeneration: An 18-Month Follow-up Randomized Clinical Trial. Clin. Oral Investig. 2025, 29, 197. [Google Scholar] [CrossRef]
- Avila-Ortiz, G.; Ambruster, J.; Barootchi, S.; Chambrone, L.; Chen, C.-Y.; Dixon, D.R.; Geisinger, M.L.; Giannobile, W.V.; Goss, K.; Gunsolley, J.C.; et al. American Academy of Periodontology Best Evidence Consensus Statement on the Use of Biologics in Clinical Practice. J. Periodontol. 2022, 93, 1763–1770. [Google Scholar] [CrossRef]
- Pilloni, A.; Rojas, M.A.; Marini, L.; Russo, P.; Shirakata, Y.; Sculean, A.; Iacono, R. Healing of Intrabony Defects Following Regenerative Surgery by Means of Single-Flap Approach in Conjunction with Either Hyaluronic Acid or an Enamel Matrix Derivative: A 24-Month Randomized Controlled Clinical Trial. Clin. Oral Investig. 2021, 25, 5095–5107. [Google Scholar] [CrossRef]
- Vela, O.-C.; Boariu, M.; Rusu, D.; Iorio-Siciliano, V.; Sculean, A.; Stratul, S.-I. Clinical and Radiographic Evaluation of Intrabony Periodontal Defects Treated with Hyaluronic Acid or Enamel Matrix Proteins: A 6-Month Prospective Study. Oral Health Prev. Dent. 2024, 22, b5569745. [Google Scholar] [CrossRef]
- Pilloni, A.; Marini, L.; Gagliano, N.; Canciani, E.; Dellavia, C.; Cornaghi, L.B.; Costa, E.; Rojas, M.A. Clinical, Histological, Immunohistochemical, and Biomolecular Analysis of Hyaluronic Acid in Early Wound Healing of Human Gingival Tissues: A Randomized, Split-Mouth Trial. J. Periodontol. 2023, 94, 868–881. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, S. Long-Term Stability of Adjunctive Use of Enamel Matrix Protein Derivative on Porcine-Derived Xenograft for the Treatment of One-Wall Intrabony Defects: A 4-Year Extended Follow-up of a Randomized Controlled Trial. J. Periodontol. 2022, 93, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Windisch, P.; Iorio-Siciliano, V.; Palkovics, D.; Ramaglia, L.; Blasi, A.; Sculean, A. The Role of Surgical Flap Design (Minimally Invasive Flap vs. Extended Flap with Papilla Preservation) on the Healing of Intrabony Defects Treated with an Enamel Matrix Derivative: A 12-Month Two-Center Randomized Controlled Clinical Trial. Clin. Oral Investig. 2022, 26, 1811–1821. [Google Scholar] [CrossRef]
- Ferrarotti, F.; Romano, F.; Gamba, M.N.; Quirico, A.; Giraudi, M.; Audagna, M.; Aimetti, M. Human Intrabony Defect Regeneration with Micrografts Containing Dental Pulp Stem Cells: A Randomized Controlled Clinical Trial. J. Clin. Periodontol. 2018, 45, 841–850. [Google Scholar] [CrossRef]
- Sánchez, N.; Fierravanti, L.; Núñez, J.; Vignoletti, F.; González-Zamora, M.; Santamaría, S.; Suárez-Sancho, S.; Fernández-Santos, M.E.; Figuero, E.; Herrera, D.; et al. Periodontal Regeneration Using a Xenogeneic Bone Substitute Seeded with Autologous Periodontal Ligament-Derived Mesenchymal Stem Cells: A 12-Month Quasi-Randomized Controlled Pilot Clinical Trial. J. Clin. Periodontol. 2020, 47, 1391–1402. [Google Scholar] [CrossRef] [PubMed]
- Sreeparvathy, R.; Belludi, S.A.; Prabhu, A. Platelet Rich Fibrin Matrix (PRFM) and Peripheral Blood Mesenchymal Stem Cells (PBMSCs) in the Management of Intraosseous Defects—A Randomized Clinical Trial. J. Appl. Oral Sci. 2024, 32, e20230442. [Google Scholar] [CrossRef] [PubMed]
- Urbashi, R.C.; Deepa, K.; Pooja, R.; Suchitra, S.M.; Ramya, S. Indocyanine Green Based Antimicrobial Photodynamic Therapy as an Adjunct to Non-Surgical Periodontal Treatment in Periodontal Maintenance Patients: A Clinico-Microbiological Study. F1000Research 2023, 12, 949. [Google Scholar] [CrossRef]
- Chiang, C.-P.; Hsieh, O.; Tai, W.-C.; Chen, Y.-J.; Chang, P.-C. Clinical Outcomes of Adjunctive Indocyanine Green-Diode Lasers Therapy for Treating Refractory Periodontitis: A Randomized Controlled Trial with in Vitro Assessment. J. Formos. Med. Assoc. 2020, 119, 652–659. [Google Scholar] [CrossRef]
- Skurska, A.; Dolinska, E.; Pietruska, M.; Pietruski, J.K.; Dymicka, V.; Kemona, H.; Arweiler, N.B.; Milewski, R.; Sculean, A. Effect of Nonsurgical Periodontal Treatment in Conjunction with Either Systemic Administration of Amoxicillin and Metronidazole or Additional Photodynamic Therapy on the Concentration of Matrix Metalloproteinases 8 and 9 in Gingival Crevicular Fluid in Patients with Aggressive Periodontitis. BMC Oral Health 2015, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Dadas, F.K.; Kocaayan, S.G.; Saglam, M.; Dadas, O.F.; Koseoglu, S. Evaluating Efficacy of Laser-Assisted New Attachment Procedure and Adjunctive Low-Level Laser Therapy in Treating Periodontitis: A Single-Blind Randomized Controlled Clinical Study. Lasers Med. Sci. 2025, 40, 208. [Google Scholar] [CrossRef]
- Zou, Q.; Zhang, S.; Jiang, C.; Xiao, S.; Wang, Y.; Wen, B. Low-Level Laser Therapy on Soft Tissue Healing after Implantation: A Randomized Controlled Trial. BMC Oral Health 2024, 24, 1477. [Google Scholar] [CrossRef]
- Dervisbegovic, S.; Lettner, S.; Tur, D.; Laky, M.; Georgopoulos, A.; Moritz, A.; Sculean, A.; Rausch-Fan, X. Adjunctive Low-Level Laser Therapy in Periodontal Treatment—A Randomized Clinical Split-Mouth Trial. Clin. Oral Investig. 2025, 29, 273. [Google Scholar] [CrossRef]
- Chambrone, L.; Wang, H.-L.; Romanos, G.E. Antimicrobial Photodynamic Therapy for the Treatment of Periodontitis and Peri-Implantitis: An American Academy of Periodontology Best Evidence Review. J. Periodontol. 2018, 89, 783–803. [Google Scholar] [PubMed]
- Annunziata, M.; Donnarumma, G.; Guida, A.; Nastri, L.; Persico, G.; Fusco, A.; Sanz-Sánchez, I.; Guida, L. Clinical and Microbiological Efficacy of Indocyanine Green-Based Antimicrobial Photodynamic Therapy as an Adjunct to Non-Surgical Treatment of Periodontitis: A Randomized Controlled Clinical Trial. Clin. Oral Investig. 2023, 27, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
- Shingnapurkar, S.H.; Mitra, D.K.; Kadav, M.S.; Shah, R.; Rodrigues, S.V.; Prithyani, S.S. The Effect of Indocyanine Green-Mediated Photodynamic Therapy as an Adjunct to Scaling and Root Planing in the Treatment of Chronic Periodontitis: A Comparative Split-Mouth Randomized Clinical Trial. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2016, 27, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Malgikar, S.; Reddy, S.H.; Sagar, S.V.; Satyanarayana, D.; Reddy, G.V.; Josephin, J.J. Clinical Effects of Photodynamic and Low-Level Laser Therapies as an Adjunct to Scaling and Root Planing of Chronic Periodontitis: A Split-Mouth Randomized Controlled Clinical Trial. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2016, 27, 121–126. [Google Scholar] [CrossRef]
- Wu, Y.; Li, H.; Wang, Y.; Zhang, B.; Bi, C.; Li, X. Evaluation of the Therapeutic Effect of Repeated Photodynamic Therapy-Assisted SRP Treatments on Class II Furcation. Photodiagnos. Photodyn. Ther. 2025, 53, 104629. [Google Scholar] [CrossRef]

—women,
;—men, PTFE—polytetrafluoroethylene, d-PTFE—dense polytetrafluoroethylene, e-PTFE—expanded polytetrafluoroethylene, VBG—vertical bone gain, MPM—modified perforated membrane, CM—collagen membrane, CAL—clinical attachment loss, PPD—periodontal pocket depth, RDD—radiographic defect depth, CXP—creos xenoprotect, PRF—platelet-rich fibrin L-PRF—leukocyte platelet-rich fibrin, GR—gingival recession, ABG—autologous bone graft, CAF—coronally advanced flap, CGF—concentrated growth factor, CTG—connective tissue graft, KTT—keratinized tissue thickness, KTW—keratinized tissue width, RC—recession coverage, GTR—guided tissue regeneration.
—women,
;—men, PTFE—polytetrafluoroethylene, d-PTFE—dense polytetrafluoroethylene, e-PTFE—expanded polytetrafluoroethylene, VBG—vertical bone gain, MPM—modified perforated membrane, CM—collagen membrane, CAL—clinical attachment loss, PPD—periodontal pocket depth, RDD—radiographic defect depth, CXP—creos xenoprotect, PRF—platelet-rich fibrin L-PRF—leukocyte platelet-rich fibrin, GR—gingival recession, ABG—autologous bone graft, CAF—coronally advanced flap, CGF—concentrated growth factor, CTG—connective tissue graft, KTT—keratinized tissue thickness, KTW—keratinized tissue width, RC—recession coverage, GTR—guided tissue regeneration.| Study | No. of Patients | Group A | Group B | Outcome | Conclusions |
|---|---|---|---|---|---|
| Alessandro, C. et al. [23] | 40 (27 and 13 ) | d-PTFE titanium-reinforced membrane (n = 20) | titanium mesh (Ti mesh) + cross-linked CM (n = 20) | VBG at 9 months: 4.2 ± 1 mm (Group A) vs. 4.1 ± 1 mm (Group B) | Similar VBG were achieved in both groups. |
| Bartłomiej, G. et al. [24] | 15 (10 and 5 ) | xenogenic graft + MPM (n = 15) | xenogenic graft + CM (n = 15) | PPD reduction at 12 months: 4 ± 2.1 mm vs. 3.5 ± 1.2 mm CAL gain 4.7 ± 2.1 vs. 4.3 ± 1.3 | Both GTR with MPM and CM membranes led to significant clinical improvements at 12 months. |
| Bastian, W. et al. [20] | 49 (20 and 29 ) | xenogenic graft + CXP (n = 24) | xenogenic graft + CM (n = 25) | VBG at 6 months: 4.1 ± 2.2 mm (Group A) vs. 3.3 ± 2.8 mm (Group B) | Both collagen membranes resulted in safe bone augmentation. |
| Giuseppe, B. et al. [26] | 64 | L-PRF+ ABG (n = 32) | CM + ABG (n = 32) | PPD reduction at 12 months: 4.28 ± 1.22 mm (Group A) vs. 4.5 ± 1.37 mm (Group B) CAL gain 3.44 ± 0.8 mm (Group A) vs. 3.75 ± 1.37 mm (Group B) | Both techniques were found to be effective in the treatment of intrabony defects. |
| Istvan A, U. et al. [27] | 30 (21 and 9 ) | perforated titanium-reinforced d-PTFE mesh + CM (n = 15) | PTFE alone (n = 15) | VBG at 9 months: 4.11 ± 2.69 mm (Group A) vs. 4.47 ± 2.05 mm (Group B) | Both techniques led to comparable outcomes for VBG |
| Ramya Naga Shivani, C. et al. [28] | 35 (17 and 18 ) | non-submerged implants with a PRF membrane (n = 18) | non-submerged implants alone (n = 17) | KTT at 6 months: 0.97 ± 0.12 mm (Group A) vs. KTT 0.59 ± 0.57 (Group B) KTW at 6 months: 1.25 ± 0.67 mm (Group A) vs. 0.59 ± 0.36 mm (Group B) | The PRF membrane enhances peri-implant tissue wound healing, with gains in soft tissue width and thickness around non-submerged implants |
| Serap Karakış, A. et al. [29] | 19 (8 and 11 ), 74 Miller Class I GRs | CAF + CGF membrane (n = 37) | CAF + CTG (n = 37) | KTT at 6 months: 1.63 ± 0.31 mm (Group A) vs. 1.38 ± 0.34 mm (Group B) KTW at 6 months: 3.03 ± 1.02 mm (Group A) vs. 3.57 ± 1.14 (Group B) | CTG is superior to CGF with CAF for increasing KTT, KTW, and RC. CGF may be preferable due to decreased postoperative pain |
| Tobias, B. et al. [30] | 23 (12 and 11 ) | xenogenic graft + resorbable CM | xenogenic graft + non-resorbable ePTFE-membrane | Interproximal marginal bone levels at 3 years: 0.19 ± 0.21 mm (Group A) vs. 0.16 ± 0.10 mm (Group B) | Stable interproximal bone levels and healthy tissues can be obtained with membranes up to 3 years |
| Santhi P, P. et al. [31] | 15 | CAF (n = 15) | CAF + CM (n = 15) | Root coverage percentage at 6 months: 71.6 ± 5.9% (Group A) vs. 73.13 ± 25.5% (Group B) | Integrating this approach with placing a bio-absorbable membrane does not seem to improve the results following surgical treatment of Miller’s Class I and II recessions |
—women,
;—men, GPCGF—gel phase concentrated growth factor, DBBM—deproteinized bovine bone mineral, LPCGF—liquid phase concentrated growth factor, GBR—guided bone regeneration, CM—collagen membrane, e-PTFE—expanded polytetrafluoroethylene, DPBM—deproteinized porcine bone material, HT- horizontal thickness, SBS—synthetic bone substitute.
—women,
;—men, GPCGF—gel phase concentrated growth factor, DBBM—deproteinized bovine bone mineral, LPCGF—liquid phase concentrated growth factor, GBR—guided bone regeneration, CM—collagen membrane, e-PTFE—expanded polytetrafluoroethylene, DPBM—deproteinized porcine bone material, HT- horizontal thickness, SBS—synthetic bone substitute.| Study | No. of Patients | Group A | Group B | Group C | Outcome | Conclusions |
|---|---|---|---|---|---|---|
| Lingshan, Z. et al. [32] | 57 (28 and 29 ) | GPCGF + DBBM (n = 19) | LPCGF + DBBM (n = 19) | DBBM alone (n = 19) | Buccal lateral bone thickness at 6 months after surgery: 2.74 ± 0.91 mm (Group A) vs. 2.98 ± 1.23 mm (Group B) vs. 2.87 ± 0.87 mm (Group C) | GPCGF + DBBM enhances the outcomes of simultaneous GBR in implant therapy by reducing bone resorption, promoting bone regeneration, and mitigating postoperative complications compared to DBBM alone |
| Strauss, F.J. et al. [39] | 27 (14 and 13 ) | xenogenic graft + CM (n = 13) | xenogenic graft + titanium reinforced e-PTFE membrane (n = 14) | - | Bone thickness difference at 6 months: 0.7 ± 0.7 mm (Group A) vs. 0.1 ± 0.3 mm (Group B) | e-PTFE membrane seems to provide greater dimensional stability compared to CM |
| Ji-Young, J. et al. [38] | 69 | particulate DPBM (n= 34) | cross-linked collagenated DPBM (n = 35) | - | HT at 4 months: 1.96 ± 0.79 mm (Group A) vs. 2.43 ± 1.02 mm (Group B) | No significant differences between cross-linked collagenated and particulated DPBMs |
| Jae-Kook, C. et al. [36] | 49 (31 and 18 ) | SBS + CM (n = 24) | DBBM + CM (n = 25) | - | Bone height gain at 6 months 3.8 ± 3.7 mm (Group A) vs. 2.6 ± 2.7 (Group B) | The SBS is noninferior to DBBM for simultaneous GBR to implant placement |
—women,
;—men, AA—ascorbic acid, ADM—acellular dermal matrix, CAF—coronally advanced flap, OFD—open-flap debridement, PMPR—professional mechanical plaque removal, PRF—Platelet-Rich Fibrin, 2PRF—two layers of stacked PRF membranes, 4PRF—four layers of stacked PRF membranes, A-PRF—advanced platelet-rich fibrin, I-PRF—injectable platelet-rich fibrin, L-PRF—leukocyte platelet-rich fibrin, T-PRF—titanium prepared platelet-rich fibrin, CTG—connective tissue graft, MAGR—multiple adjacent gingival recessions, EMD—enamel matrix derivatives, DFDBA—demineralized freeze-dried bone allograft, MARF—modified apically repositioned flap, CM—collagen membrane, FGG—free gingival graft, CLN—clindamycin, SRP—scaling and root planing.
—women,
;—men, AA—ascorbic acid, ADM—acellular dermal matrix, CAF—coronally advanced flap, OFD—open-flap debridement, PMPR—professional mechanical plaque removal, PRF—Platelet-Rich Fibrin, 2PRF—two layers of stacked PRF membranes, 4PRF—four layers of stacked PRF membranes, A-PRF—advanced platelet-rich fibrin, I-PRF—injectable platelet-rich fibrin, L-PRF—leukocyte platelet-rich fibrin, T-PRF—titanium prepared platelet-rich fibrin, CTG—connective tissue graft, MAGR—multiple adjacent gingival recessions, EMD—enamel matrix derivatives, DFDBA—demineralized freeze-dried bone allograft, MARF—modified apically repositioned flap, CM—collagen membrane, FGG—free gingival graft, CLN—clindamycin, SRP—scaling and root planing.| Study | No. of Patients | Group A | Group B | Group C | Outcome | Conclusions |
|---|---|---|---|---|---|---|
| Anupama, T. et al. [51] | 30 (12 and 18 ) | CAF + L-PRF (n = 15) | CAF + A-PRF (n = 15) | - | At 6 months root coverage of 67.2 ± 32.81% (Group A) vs. 81.66 ± 28.21% (Group B) | Both groups may be suggested as treatment for maxillary gingival recessions. |
| Atacan, Y. et al. [52] | 12 (7 and 5 ), 59 defects | CAF + L-PRF (n = 30) | CAF + CTG (n = 29) | - | PPD at 12 months of 1.60 ± 0.62 mm (Group A) vs. 1.83 ± 0.59 mm (Group B) | L-PRF were equally effective as CTG in treating MAGRs |
| Csifó-Nagy, B.K. et al. [42] | 18 (9 and 9 ), 30 sites | A-PRF (n = 15) | EMD (n = 15) | - | CAL gain at 6 months: 2.33 ± 1.58 mm (Group A) vs. 2.6 ± 1.18 mm (Group B) | A-PRF seems to be as clinically effective as EMD during surgical treatment of intrabony defects |
| Ozkal Eminoglu, D. et al. [53] | 20 (9 and 11 ) | OFD + T-PRF (n = 20) | OFD alone (n = 20) | - | Bone filling ratio at 9 months: 0.27 ± 0.11 (Group A) vs. 0.11 ± 0.04 (Group B) | OFD+ T-PRF group obtained better clinical outcomes |
| Emad Aldden, A. et al. [54] | 30 (14 and 16 ) | T-PRF (n = 10) | L-PRF (n = 10) | spontaneous healing (n = 10) | Radiographic bone density at 4 months: 984.90 ± 14.39 (Group A) vs. 756.80 ± 16.81 (Group B) vs. 730.30 ± 14.14 (Group C) | T-PRF group demonstrated greater preservation of ridge dimensions, higher bone density, improved soft-tissue healing. |
| Farid, S. et al. [44] | 20 (13 and 7 ) | PRF membrane (n = 10) | ADM (n = 10) | - | Gingival thickness after 3 months: 3.300 ± 0.758 mm (Group A) vs. 3.300 ± 0.758 mm (Group B) | Both groups increased gingival thickness |
| Justina P, L. et al. [45] | 30 (14 and 16 ) | PRF matrix (n = 15) | CTG (n = 15) | - | At 12 months root coverage of 86.20 ± 24.24% (Group A) vs. 91.56 ± 22.32 (Group B) | The study outcomes suggest comparable gains in root coverage and attached gingiva between groups. |
| Manisha, B. et al. [55] | 24 | CAF + PRF (n = 12) | laser-assisted CAF + PRF (n = 12) | - | CAL at 6 months: 3.19 ± 0.89 mm (Group A) vs. 3.26 ± 1.75 mm (Group B) | Both treatments improved clinical parameters post-surgery with no significant differences between groups. |
| Mashaal Mohammed, A. et al. [35] | 20 (13 and 7 ) | I-PRF + DFDBA (n = 10) | DFDBA (n = 10) | - | CAL gain at 9 months: 3.20 ± 0.63 mm (Group A) vs. 3.70 ± 1.16 mm (Group B) | Addition of I-PRF to DFDBA does not appear to significantly enhance the DFDBA’s regenerative outcomes |
| Mohamed Abdulhakim, S. et al. [56] | 45 (29 and 16 ) | PMPR + I-PRF/AA (n = 15) | PMPR + I-PRF (n = 15) | PMPR alone (n = 15) | CAL gain at 6 months: 1.33 ± 0.49 mm (Group A) vs. 1.20 ± 0.56 mm (Group B) vs. 0.93 ± 0.59 mm (Group C) | No intergroup differences were notable regarding clinical improvements |
| Mohamed Talaat, E. et al. [57] | 20 (17 and 3 ) | OFD + AA/PRF (n = 10) | OFD + PRF (n = 10) | - | Radiographic linear defect depth reduction at 6 months: 2.29 ± 0.61 mm (Group A) vs. 1.63 ± 0.46 mm (Group B) | Augmenting PRF with AA additionally enhanced gingival tissue gain and radiographic defect fill |
| Naidu, N.S.S. et al. [58] | 12 (4 and 8 ) | DFDBA + PRF (n = 12) | DFDBA (n = 12) | - | Radiographic bone fill at 9 months: 3.22 ± 1.63 mm (Group A) vs. 3.01 ± 2.37 mm (Group B) | The adjunctive use of PRF did not show any additional benefit in terms of reconstructive output |
| Parviz, T. et al. [59] | 10 (4 and 6 ) | MARF + PRF membrane (n = 10) | MARF (n = 10) | - | Gingival thickness difference at 8 weeks: 0.29 ± 0.15 mm (Group A) vs. 0.11 ± 0.17 (Group B) | Using PRF with the MARF method significantly increased the width and thickness of the gingiva and reduced shrinkage compared to MARF only. |
| Ramy, M. et al. [60] | 30 (18 and 12 ) | OFD (n = 10) | PRF alone (n = 10) | PRF + CM (n = 10) | Radiographic defect height change: 7.25% (Group A) vs. 12.6% (Group B) vs. 32.6% (Group C) | GTR membranes in association with L-PRF improved intrabony defect fill |
| Rana, C. et al. [61] | 22 (12 and 10 ), 63 teeth | 2PRF + CAF (n = 21) | 4PRF + CAF (n = 21) | CTG + CAF (n = 21) | CAL at 6 months: 2.86 ± 0.74 mm (Group A) vs. 1.93 ± 0.69 mm (Group B) vs. 1.57 ± 0.71 mm (Group C) | PRF membranes should use as many layers as possible |
| Sarah, Y. et al. [62] | 28 (8 and 20 ) | CLN/I-PRF + M-MIST (n = 14) | I-PRF + M-MIST (n = 14) | - | CAL Median (IQR) at 9 months: 1 (0–1) mm (Group A) vs. 1.5 (1–2.25) mm (Group B) | CLN does not appear to further positively impact these observed I-PRF effects |
| Çağıran Gürbüz, T. et al. [47] | 25 (8 and 17 ), 100 sites | SRP + I-PRF (n = 50) | SRP + saline (n = 50) | - | CAL gain at 3 months: 3.32 ± 0.78 mm (Group A) vs. 2.54 ± 0.80 mm (Group B) | PRF may play a beneficial role in improving the clinical outcomes of nonsurgical periodontal treatment in smokers |
| Wajeha, A. et al. [63] | 16 (10 and 6 ) | I-PRF + FGG (n = 16) | FGG alone (n = 16) | - | Percentage of root coverage at 6 months: 70.83% ± 20.64% (Group A) vs. 65.62% ± 18.48% (Group B) | The addition of I-PRF improved clinical parameters |
| Omar, Y.K. et al. [50] | 24 (10 and 14 ) | SRP + L-PRF/Metronidazole (n = 12) | SRP + L-PRF (n = 12) | - | CAL percentage change at 6 months: 87.96% (Group A) vs. 75.19% (Group B) | The combination of MTZ with L-PRF was superior to L-PRF alone in managing periodontal diseases |
—women,
;—men, HA—hyaluronic acid, EMD—enamel matrix derivative, NT—no treatment, ECM—extracellular matrix, G- gingival, SRP—scaling and root planing, CAL- clinical attachment level, DPBM—deproteinized porcine bone material, xHyA—cross-linked hyaluronic acid, MIST—minimally invasive surgical technique, M-MIST—modified minimally invasive surgical technique, MPP—modified papilla preservation technique, SPP—simplified papilla preservation technique.
—women,
;—men, HA—hyaluronic acid, EMD—enamel matrix derivative, NT—no treatment, ECM—extracellular matrix, G- gingival, SRP—scaling and root planing, CAL- clinical attachment level, DPBM—deproteinized porcine bone material, xHyA—cross-linked hyaluronic acid, MIST—minimally invasive surgical technique, M-MIST—modified minimally invasive surgical technique, MPP—modified papilla preservation technique, SPP—simplified papilla preservation technique.| Study | No. of Patients | Group A | Group B | Outcome | Conclusion |
|---|---|---|---|---|---|
| Andrea, P. et al. [67] | 32 (17 and 15 ) | HA (n = 16) | EMD (n = 16) | CAL at 24 months: 5.19 ± 1.42 mm (Group A) vs. 4.44 ± 1.03 mm (Group B) | EMD resulted in statistically significantly higher reduction values compared with HA, the clinical relevance of this difference remains unclear. |
| Andrea, P.; Lorenzo, M. et al. [69] | 8 (4 and 4 ) | HA (n = 8) | NT (n = 8) | Early wound healing score (EHS) at 1 week: 10(IQR:0) (Group A) vs. 9(IQR:2) (Group B) | HA application resulted in an enhancement of ECM remodeling and collagen maturation, that could act as key drivers of the early wound healing of G tissues |
| Christian, W. et al. [64] | 22 (8 and 3 ), 89 sites | SRP + EMD (n = 45) | SRP alone (n = 44) | CAL gain at 6 months: 1.13 ± 1.58 mm (Group A) vs. 0.47 ± 1.06 (Group B) | EMD in addition to SRP showed an improvement of CAL gain. |
| Jae-Hong, L. et al. [37] | 42 (22 and 20 ) | DPBM + EMD (n = 20) | DPBM alone (n = 22) | CAL at 24 months: 6.9 ± 0.86 mm (Group A) vs. 7 ± 0.9 mm (Group B) | The adjunctive use of EMD significantly reduced the postoperative discomfort compared to DPBM alone group. |
| Jae-Hong, L.; Seong-Nyum, J. [70] | 34 (11 and 12 ) | DPBM + EMD (n = 16) | DPBM alone (n = 18) | CAL at 4 years: 6.6 ± 1.0 mm (Group A) vs. 6.6 ± 0.8 (Group B) | No additional clinical and radiographic benefits were observed with the adjunctive use of EMD |
| Rodríguez-A, M. et al. [65] | 53 (28 and 25 ) | HA (n = 27) | EMD (n = 26) | CAL gain at 18 months: 3.43 ± 1.62 mm (Group A) vs. 3.50 ± 1.81 (Group B) | HA, when used at the right concentration and in suitable cases, shows outcomes comparable to EMD, making it a viable option for regular clinical use. |
| Vela, O.-C. et al. [68] | 54 (31 and 22 ) | xHyA (n = 27) | EMD (n = 27) | CAL gain at 6 months: 3.18 ± 1.49 mm (Group A) vs. 2.58 ± 1.39 mm (Group B) | xHyA may serve as a promising alternative to EMD for treating intrabony periodontal defects, particularly due to its ease of surgical handling and comparable regenerative potential. |
| Peter, W. et al. [71] | 47 (28 and 19 ) | MIST/M-MIST + EMD (n = 23) | MPP/SPP + EMD (n = 24) | CAL gain at 12 months: 4.09 ± 1.68 mm (Group A) vs. 3.79 ± 1.67 (Group B) | The results have shown no significant differences in clinical outcomes when using EMD, regardless of the surgical technique employed. |
—women,
;—men, SRP—scaling and root planing, AB—antibiotics (systemic administration), GCF—gingival crevicular fluid, MMP—matrix metalloproteinase, LANAP—Laser-Assisted New Attachment Procedure, LLLT—Low-Level Laser Therapy, ICG—indocyanine green, aPDT—antimicrobial photodynamic therapy, FMUD—full-mouth ultrasonic debridement, mSBI—modified sulcus bleeding index, NT—no treatment.
—women,
;—men, SRP—scaling and root planing, AB—antibiotics (systemic administration), GCF—gingival crevicular fluid, MMP—matrix metalloproteinase, LANAP—Laser-Assisted New Attachment Procedure, LLLT—Low-Level Laser Therapy, ICG—indocyanine green, aPDT—antimicrobial photodynamic therapy, FMUD—full-mouth ultrasonic debridement, mSBI—modified sulcus bleeding index, NT—no treatment.| Study | No. of Patients | Group A | Group B | Group C | Outcome | Conclusion |
|---|---|---|---|---|---|---|
| Anna, S. et al. [77] | 36 (24 and 12 ) | SRP + AB (n = 18) | SRP + PDT (n = 18) | - | MMP-8 levels at 6 months: 13.23 ± 8.71 (Group A) vs. 30.32 ± 29.77 (Group B) | Adjunctive systemic administration of amoxicillin and metronidazole is more effective in reducing GCF MMP-8 levels compared to the adjunctive use of PDT |
| Fadime, K.D. et al. [78] | 60 | SRP alone (n = 20) | LANAP (n = 20) | LLLT (n = 20) | CAL gain Median (IQR) at 3 months: 2 (−2/7) (Group A) vs. 3 (−3/8) (Group B) vs. 4 (−3/9) (Group C) | Laser-treated groups provide additional benefits to SRP. The application of LLLT positively affected recession. |
| Marco, A. et al. [82] | 24 (15 and 9 ) | ICG-aPDT (n = 12) | off-mode aPDT (n = 12) | - | CAL gain at 6 months: 1.06 ± 1.63 mm (Group A) vs. 0.77 ± 0.81 mm (Group B) | Repeated ICG-aPDT combined with FMUD showed no additional overall benefit compared to FMUD alone, apart from some selective clinical and microbiological improvements. |
| Qiaoru, Z. et al. [79] | 58, 70 implants | LLLT (n = 35) | NT (n = 35) | - | mSBI at 14 day: 0.63 ± 0.35 (Group A) vs. 0.84 ± 0.35 (Group B) | LLLT (Nd: YAG, 1064 nm) supports soft tissue healing after implantation, reduces postoperative pain, and enhances clinical outcomes. |
| Selma, D. et al. [80] | 40 (18 and 22 ) | SRP + LLLT (n = 20) | SRP alone (n = 20) | - | CAL at 3 months: 3.18 ± 1.54 mm (Group A) vs. 3.15 ± 1.58 mm (Group B) | LLLT (Diode Laser 980 nm) with the chosen settings did not show a beneficial effect during the initial nonsurgical treatment of periodontitis. |
| Saurabh H, S. et al. [83] | 60 sites | SRP + aPDT (n = 30) | SRP alone (n = 30) | - | PPD at 3 months: 2.23 ± 0.67 mm (Group A) vs. 3.67 ± 0.75 mm (Group B) | In patients with chronic periodontitis, clinical outcomes of conventional SRP can be improved by adjunctive PDT (using 810 nm diode laser and Indocyanine green as photosensitizer). |
| Suryakanth, M. et al. [84] | 24 (9 and 15 ) | SRP only (n = 24) | SRP and aPDT (n = 24) | SRP, PDT, and LLLT (n = 24) | CAL gain at 6 months: 2.63 ± 0.47 (Group A) vs. 2.55 ± 0.44 (Group B) vs. 3.07 ± 0.55 (Group C) | A single application of PDT (with a 980 nm laser and methylene blue), combined with LLLT, offered added clinical benefits to SRP at 6 months post-treatment. |
| Urbashi, R.C. et al. [75] | 24 (10 and 14 ), 130 teeth | SRP + aPDT (n = 66) | SRP alone (n = 64) | - | PPD at 3 months: 3.33 ± 0.31 (Group A) vs. 2.84 ± 0.44 (Group B) | ICG-based aPDT (810 nm diode laser) did not show additional advantage over SRP alone at 3 months. |
| Yikuan, W. et al. [85] | 27 (14 and 13 ), 74 sites | SRP + aPDT (n = 42) | SRP alone (n = 43) | - | PPD reduction at 3 months: 1.26 ± 0.62 (Group A) vs. 0.95 ± 0.65 (Group B) | Repeated PDT-assisted SRP improves soft tissue healing and comfort in Class II furcation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bădărău-Șuster, A.-M.; Bechir, E.S.; Bardocz-Veres, Z.; Lazăr, A.P.; Vlasa, A.; Suciu, M.; Coman, T.-M.; Lazăr, L. Recent Advances in Regenerative Therapies in Periodontology. Dent. J. 2025, 13, 564. https://doi.org/10.3390/dj13120564
Bădărău-Șuster A-M, Bechir ES, Bardocz-Veres Z, Lazăr AP, Vlasa A, Suciu M, Coman T-M, Lazăr L. Recent Advances in Regenerative Therapies in Periodontology. Dentistry Journal. 2025; 13(12):564. https://doi.org/10.3390/dj13120564
Chicago/Turabian StyleBădărău-Șuster, Andrei-Mario, Edwin Sever Bechir, Zsuzsanna Bardocz-Veres, Ana Petra Lazăr, Alexandru Vlasa, Mircea Suciu, Tatiana-Maria Coman, and Luminița Lazăr. 2025. "Recent Advances in Regenerative Therapies in Periodontology" Dentistry Journal 13, no. 12: 564. https://doi.org/10.3390/dj13120564
APA StyleBădărău-Șuster, A.-M., Bechir, E. S., Bardocz-Veres, Z., Lazăr, A. P., Vlasa, A., Suciu, M., Coman, T.-M., & Lazăr, L. (2025). Recent Advances in Regenerative Therapies in Periodontology. Dentistry Journal, 13(12), 564. https://doi.org/10.3390/dj13120564

