Controlling Film Formation of Ag-Chalcogenate Coordination Polymer via Ag Ion-Doped Polymer Substrates
Abstract
1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Preparation of KGF-24 Using Ag+-Doped Polymer Substrate
2.3. Characterization
3. Results and Discussion
3.1. Preparation of Ag+-Doped Polymer Substrate
3.2. Preparation of KGF-24 Crystal Films on Ag+-Doped Polymer Substrate
3.3. Effect of Concentration of Organic Ligand and Reaction Temperature
3.4. Time-Resolved Analysis of Nucleation and Growth of KGF-24 Crystals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Framework. Science 2013, 341, 1230444. [Google Scholar] [CrossRef]
- Kitagawa, S.; Kitaura, R.; Noro, S. Functional Porous Coordination Polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375. [Google Scholar] [CrossRef]
- Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Crystallized Frameworks with Giant Pores: Are There Limits to the Possible? Acc. Chem. Res. 2005, 38, 217–225. [Google Scholar] [CrossRef]
- Raptopoulou, C.P. Metal-Organic Frameworks: Synthetic Methods and Potential Applications. Materials 2021, 14, 310. [Google Scholar] [CrossRef]
- Moulton, B.; Zaworotko, M.J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids. Chem. Rev. 2001, 101, 1629–1658. [Google Scholar] [CrossRef]
- Janiak, C. Engineering coordination polymers towards applications. Dalton Trans. 2003, 2781–2804. [Google Scholar] [CrossRef]
- Leong, W.L.; Vittal, J.J. One-Dimensional Coordination Polymers: Complexity and Diversity in Structures, Properties, and Applications. Chem. Rev. 2011, 111, 688–764. [Google Scholar] [CrossRef]
- Daglar, H.; Gulbalkan, H.C.; Avci, G.; Aksu, G.O.; Altundal, O.F.; Altintas, C.; Erucar, I.; Keskin, S. Effect of Metal–Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs. Angew. Chem. Int. Ed. 2021, 60, 7828–7837. [Google Scholar] [CrossRef]
- Pei, J.; Wen, H.-M.; Gu, X.-W.; Qian, Q.-L.; Yang, Y.; Cui, Y.; Li, B.; Chen, B.; Qian, G. Dense Packing of Acetylene in a Stable and Low-Cost Metal–Organic Framework for Efficient C2H2/CO2 Separation. Angew. Chem. Int. Ed. 2021, 60, 25068–25074. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, Z.; Chen, Z.; Rimoldi, M.; Howarth, A.J.; Chen, H.; Alayoglu, S.; Snurr, R.Q.; Farha, O.K.; Hupp, J.T. Ammonia Capture within Zirconium Metal–Organic Frameworks: Reversible and Irreversible Uptake. ACS Appl. Mater. Interfaces 2021, 13, 20081–20093. [Google Scholar] [CrossRef] [PubMed]
- Jial, L.; Wang, J.; Jiang, H.-L. Microenvironment Modulation in Metal–Organic Framework-Based Catalysis. Acc. Mater. Res. 2021, 2, 327–339. [Google Scholar]
- Zou, Y.-H.; Huang, Y.-B.; Si, D.-H.; Wu, Q.-J.; Weng, Z.; Cao, R. Porous Metal–Organic Framework Liquids for Enhanced CO2Adsorption and Catalytic Conversion. Angew. Chem. Int. Ed. 2021, 60, 20915–20920. [Google Scholar] [CrossRef]
- Ehsani, A.; Nejatbakhsh, S.; Soodmand, A.M.; Farshchi, M.E.; Aghdasinia, H. High-performance catalytic reduction of 4-nitrophenol to 4-aminophenol using M-BDC (M = Ag, Co, Cr, Mn, and Zr) metal–organic frameworks. Environ. Res. 2023, 227, 115736. [Google Scholar] [CrossRef]
- Lázaro, I.A.; Wells, C.J.R.; Forgan, R.S. Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery. Angew. Chem. Int. Ed. 2020, 59, 5211–5217. [Google Scholar] [CrossRef]
- Javanbakht, S.; Hemmati, A.; Namazi, H.; Heydari, A. Carboxymethylcellulose-coated 5-fluorouracil@MOF-5 nano-hybrid as a bio-nanocomposite carrier for the anticancer oral delivery. Int. J. Bio. Macromole. 2020, 155, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.S.; Dode, T.; Kawashima, S.; Fukuoka, M.; Tsuruoka, T.; Nagahama, K. Metal–organic framework-injectable hydrogel hybrid scaffolds promote accelerated angiogenesis for in vivo tissue engineering. RSC Adv. 2025, 15, 32143–32154. [Google Scholar] [CrossRef]
- Xie, L.S.; Skorupskii, G.; Dincă, M. Electrically Conductive Metal–Organic Frameworks. Chem. Rev. 2020, 120, 8536–8580. [Google Scholar] [CrossRef]
- Datta, S.; Dutta, B.; Paul, R.; Mir, M.H. Charge transport and device fabrication of 2D coordination polymeric materials. Dalton Trans. 2025, 54, 13401–13420. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, Y.; Qin, Z.; Liu, D.; Xu, H.; Dong, H.; Hu, W. Electrically Conductive Coordination Polymers for Electronic and Optoelectronic Device Applications. J. Phys. Chem. Lett. 2021, 12, 1612–1630. [Google Scholar] [CrossRef] [PubMed]
- Henfling, S.; Kempt, R.; Klose, J.; Kuc, A.; Kersting, B.; Krautscheid, H. Dithiol–Dithione Tautomerism of 2,3-Pyrazinedithiol in the Synthesis of Copper and Silver Coordination Compounds. Inorg. Chem. 2020, 59, 16441–16453. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, X.; Jin, Y.; Li, Y.; Li, Z.; Zou, Y.; Sun, Y.; Xu, W. Highly Conductive Organic–Inorganic Hybrid Silver Sulfide with 3D Silver–Sulfur Networks Constructed from Benzenehexathiol: Structural Topology Regulation via Ligand Oxidation. Inorg. Chem. 2022, 61, 5060–5066. [Google Scholar] [CrossRef]
- Kadota, K.; Chen, T.; Gormley, E.L.; Hendon, C.H.; Dincă, M.; Brozek, C.K. Electrically conductive [Fe4S4]-based organometallic polymers. Chem. Sci. 2023, 14, 11410–11416. [Google Scholar] [CrossRef] [PubMed]
- Veselska, O.; Demessence, A. d10 coinage metal organic chalcogenolates: From oligomers to coordination polymers. Coord. Chem. Rev. 2018, 355, 240–270. [Google Scholar] [CrossRef]
- Rubio-Giménez, V.; Arnauts, G.; Wang, M.; Mata, E.S.O.; Huang, X.; Lan, T.; Tietze, M.L.; Kravchenko, D.E.; Smets, J.; Wauteraerts, N.; et al. Chemical Vapor Deposition and High-Resolution Patterning of a Highly Conductive Two-Dimensional Coordination Polymer Film. J. Am. Chem. Soc. 2023, 145, 152–159. [Google Scholar] [CrossRef]
- Li, Z.; Jin, Y.; Li, C.; Chang, Z.; Wu, S.; Sun, Y.; Jiang, L.; Xu, W. Synthesis of a highly conductive coordination polymer film via a vapor–solid phase chemical conversion process. Chem. Commun. 2024, 60, 8720–8723. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Un, H.-I.; Liu, T.-J.; Liang, B.; Polozij, M.; Hambsch, M.; Pöhls, J.F.; Weitz, R.T.; Mannsfeld, S.C.B.; Kaiser, U.; et al. A Low-Synmmetry Copper Benzenhexathiol Coordination Polymer with In-Plane Electrical Anisotropy. Angew. Chem. Int. Ed. 2025, 64, e202423341. [Google Scholar] [CrossRef]
- Liu, J.; Fu, S.; Fu, Y.; Chen, Y.; Tadayon, K.; Hambsch, M.; Pohl, D.; Yang, Y.; Müller, A.; Zhao, F.; et al. Ammonia-Assisted Chemical Vapor Deposition Growth of Two-Dimensional Conjugated Coordination Polymer Thin Films. J. Am. Chem. Soc. 2025, 147, 18190–18196. [Google Scholar] [CrossRef]
- Crossland, P.M.; Lien, C.-Y.; de Jong, L.O.; Spellberg, J.L.; Czaikowski, M.E.; Wang, L.; Filatov, A.S.; King, S.B.; Anderson, J.S. Processable Coordination Polymer Inks for Highly Conductive and Robust Coatings. J. Am. Chem. Soc. 2024, 146, 33608–33615. [Google Scholar] [CrossRef]
- Tsuruoka, T.; Kumano, M.; Mantani, K.; Matsuyama, T.; Miyanaga, A.; Ohhashi, T.; Takashima, Y.; Minami, H.; Suzuki, T.; Imagawa, K.; et al. Interfacial Synthetic Approach for Constructing Metal-Organic Framework Crystals Using Metal Ion-Doped Polymer Substrate. Cryst. Growth Des. 2016, 16, 2472–2476. [Google Scholar] [CrossRef]
- Tsuruoka, T.; Mantani, K.; Miyanaga, A.; Matsuyama, T.; Ohhashi, T.; Takashima, Y.; Akamatsu, K. Morphology Control of Metal-Organic Frameworks Based on Paddle-Wheel Units on Ion-Doped Polymer Substrate Using An Interfacial Growth Approach. Langmuir 2016, 32, 6068–6073. [Google Scholar] [CrossRef]
- Ohhashi, T.; Tsuruoka, T.; Fujimoto, S.; Takashima, Y.; Akamatsu, K. Controlling the Orientation of Metal-Organic Framework Crystals by an Interfacial Growth Approach Using a Metal Ion-Doped Polymer Substrate. Cryst. Growth Des. 2018, 18, 402–408. [Google Scholar] [CrossRef]
- Akiyoshi, R.; Saeki, A.; Ogasawara, K.; Yoshikawa, H.; Nakamura, Y.; Tanaka, D. Selective synthesis of two-dimensional semiconductive coordination polymers with silver–sulfur network. CrystEngComm 2023, 25, 2990–2994. [Google Scholar] [CrossRef]
- Tsuruoka, T.; Ohhashi, T.; Watanabe, J.; Yamada, R.; Hirao, S.; Takashima, Y.; Demessence, A.; Vaidya, S.; Veselska, O.; Fateeva, A.; et al. Coordination-Driven Self-Assembly on Polymer Surface for Efficient Synthesis of [Au(SPh)]n Coordination Polymer-Based Films. Cryst. Growth Des. 2020, 20, 1961–1968. [Google Scholar] [CrossRef]






| Amount of Adsorbed Ion | |
|---|---|
| After KOH treatment (K+) | 1853 nmol·cm−1 |
| After ion-exchange (Ag+) | 2008 nmol·cm−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuruoka, T.; Oishi, R.; Takashima, Y.; Akamatsu, K. Controlling Film Formation of Ag-Chalcogenate Coordination Polymer via Ag Ion-Doped Polymer Substrates. Inorganics 2025, 13, 396. https://doi.org/10.3390/inorganics13120396
Tsuruoka T, Oishi R, Takashima Y, Akamatsu K. Controlling Film Formation of Ag-Chalcogenate Coordination Polymer via Ag Ion-Doped Polymer Substrates. Inorganics. 2025; 13(12):396. https://doi.org/10.3390/inorganics13120396
Chicago/Turabian StyleTsuruoka, Takaaki, Riko Oishi, Yohei Takashima, and Kensuke Akamatsu. 2025. "Controlling Film Formation of Ag-Chalcogenate Coordination Polymer via Ag Ion-Doped Polymer Substrates" Inorganics 13, no. 12: 396. https://doi.org/10.3390/inorganics13120396
APA StyleTsuruoka, T., Oishi, R., Takashima, Y., & Akamatsu, K. (2025). Controlling Film Formation of Ag-Chalcogenate Coordination Polymer via Ag Ion-Doped Polymer Substrates. Inorganics, 13(12), 396. https://doi.org/10.3390/inorganics13120396

