Accelerated Discovery of Energy Materials via Graph Neural Network
Abstract
1. Introduction
2. Computational Tools
2.1. Basic Framework of GNN

2.2. Advanced Technology of GNN


2.3. Database
3. GNN Utility in Accelerating Materials Discovery
3.1. Property Prediction
3.2. Molecular Dynamics
3.3. Inverse Design from Generative Models

4. Accelerated Discovery of Materials
4.1. Battery Electrolytes and Electrode

4.2. Solar Cells Materials

4.3. Thermoelectric Materials
4.4. Heterogeneous Catalysis

5. Limitations of GNNs on Materials Discovery
- (i.)
- High training cost: Deeper/equivariant GNNs and foundation-style potentials improve accuracy but raise training cost and make mechanistic interpretation harder compared with descriptor-based models (e.g., scaling relations, linear models). For the training cost, the data requirements of GNNs can be two orders of magnitude higher than other simpler regression algorithms [73]. Equivariant GNN interatomic potentials (e.g., NequIP, MACE, CHGNet) scale roughly linearly with system size under local cutoffs, yet their spherical-tensor products and message-passing layers impose high per-interaction costs so million-atom MD typically necessitates multi-GPU distribution and kernel/communication optimizations [29], which is almost undoable for most of research group.
- (ii.)
- Poor interpretability: For interpretability, classical ML methods built on hand-crafted, physically meaningful descriptors affords inherent interpretability: linear/ensemble models permit straightforward feature attribution, partial-dependence analysis, and domain-aligned narratives (e.g., electronegativity spread, or valence electron counts driving trends). This transparency is a key reason such models remain popular for mechanism-seeking studies, even when they sacrifice some accuracy on complex tasks [74]. By contrast, GNNs embed atomic graphs and learn task-specific representations end-to-end; their decisions are not immediately legible. Attention mechanisms provide an appealing window, yet attention weights are not universally reliable proxies for causal importance, so care is required when interpreting them [75].
- (iii.)
- The validity of generative models: Generative GNNs and diffusion models can satisfy formal validity and property targets while proposing candidates that are kinetically inaccessible, unstable under processing, or incompatible with available precursors. Synthesis-aware models and autonomous labs narrow—but do not close—the gap: even tightly integrated systems (e.g., A-Lab) report partial success rates (74%) and require expert oversight for recipe design, safety, and failure diagnosis [28].
- (iv.)
- Performance Dependency on Data Modality: Classical ML models (e.g., fully connected neural networks, convolutional neural networks) often require extensive and potentially lossy feature engineering to handle such non-Euclidean data, forcing structural information into fixed-dimensional vectors, which can obscure critical topological and relational details [2,3].
6. Conclusions and Perspectives
Funding
Data Availability Statement
Conflicts of Interest
References
- Choudhary, K.; DeCost, B. Atomistic Line Graph Neural Network for improved materials property predictions. npj Comput. Mater. 2021, 7, 185. [Google Scholar] [CrossRef]
- Xie, T.; Grossman, J.C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 2018, 120, 145301. [Google Scholar] [CrossRef]
- Chen, C.; Ye, W.; Zuo, Y.; Zheng, C.; Ong, S.P. Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals. Chem. Mater. 2019, 31, 3564–3572. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, X.; Li, Y.; Lv, Q.; Chen, C.Y.-C.; Shen, L. Efficient equivariant model for machine learning interatomic potentials. npj Comput. Mater. 2025, 11, 49. [Google Scholar] [CrossRef]
- Gasteiger, J.; Shuaibi, M.; Sriram, A.; Günnemann, S.; Ulissi, Z.; Zitnick, C.L.; Das, A. GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets. arXiv 2022, arXiv:2204.02782. [Google Scholar]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Abed, J.; Kim, J.; Shuaibi, M.; Wander, B.; Duijf, B.; Mahesh, S.; Lee, H.; Gharakhanyan, V.; Hoogland, S.; Irtem, E.; et al. Open Catalyst Experiments 2024 (OCx24): Bridging Experiments and Computational Models. arXiv 2024, arXiv:2411.11783. [Google Scholar] [CrossRef]
- Chanussot, L.; Das, A.; Goyal, S.; Lavril, T.; Shuaibi, M.; Riviere, M.; Tran, K.; Heras-Domingo, J.; Ho, C.; Hu, W.; et al. Open Catalyst 2020 (OC20) Dataset and Community Challenges. ACS Catal. 2021, 11, 6059–6072. [Google Scholar] [CrossRef]
- Sriram, A.; Das, A.; Wood, B.M.; Goyal, S.; Zitnick, C.L. Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations. arXiv 2022, arXiv:2203.09697. [Google Scholar] [CrossRef]
- Rollins, Z.A.; Cheng, A.C.; Metwally, E. MolPROP: Molecular Property prediction with multimodal language and graph fusion. J. Cheminformatics 2024, 16, 56. [Google Scholar] [CrossRef]
- Liu, G.; Sun, M.; Matusik, W.; Jiang, M.; Chen, J. Multimodal Large Language Models for Inverse Molecular Design with Retrosynthetic Planning. arXiv 2024, arXiv:2410.04223. [Google Scholar] [CrossRef]
- Reiser, P.; Neubert, M.; Eberhard, A.; Torresi, L.; Zhou, C.; Shao, C.; Metni, H.; van Hoesel, C.; Schopmans, H.; Sommer, T.; et al. Graph neural networks for materials science and chemistry. Commun. Mater. 2022, 3, 93. [Google Scholar] [CrossRef]
- Tao, S.; Zhu, L. EOSnet: Embedded Overlap Structures for Graph Neural Networks in Predicting Material Properties. J. Phys. Chem. Lett. 2025, 16, 717–724. [Google Scholar] [CrossRef]
- Shermukhamedov, S.; Mamurjonova, D.; Probst, M. Accurate classification of materials with elEmBERT: Element embeddings for chemical benchmarks. APL Mach. Learn. 2025, 3, 026104. [Google Scholar] [CrossRef]
- Louis, S.-Y.; Zhao, Y.; Nasiri, A.; Wang, X.; Song, Y.; Liu, F.; Hu, J. Graph convolutional neural networks with global attention for improved materials property prediction. Phys. Chem. Chem. Phys. 2020, 22, 18141–18148. [Google Scholar] [CrossRef]
- Cheng, D.; Sha, W.; Han, Q.; Tang, S.; Zhong, J.; Du, J.; Tian, J.; Cao, Y.-C. ACGNet: An interpretable attention crystal graph neural network for accurate oxidation potential prediction. Electrochim. Acta 2024, 473, 143459. [Google Scholar] [CrossRef]
- Madani, M.; Lacivita, V.; Shin, Y.; Tarakanova, A. Accelerating materials property prediction via a hybrid Transformer Graph framework that leverages four body interactions. npj Comput. Mater. 2025, 11, 15. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, D.-B. Multimodal machine learning with large language embedding model for polymer property prediction. arXiv 2025, arXiv:2503.22962. [Google Scholar] [CrossRef]
- Rahman, C.M.A.; Bhandari, G.; Nasrabadi, N.M.; Romero, A.H.; Gyawali, P.K. Enhancing material property prediction with ensemble deep graph convolutional networks. Front. Mater. 2024, 11, 1474609. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Li, Y.-P. Uncertainty quantification with graph neural networks for efficient molecular design. Nat. Commun. 2025, 16, 3262. [Google Scholar] [CrossRef]
- Kirklin, S.; Saal, J.E.; Meredig, B.; Thompson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. npj Comput. Mater. 2015, 1, 15010. [Google Scholar] [CrossRef]
- Curtarolo, S.; Setyawan, W.; Hart, G.L.W.; Jahnatek, M.; Chepulskii, R.V.; Taylor, R.H.; Wang, S.; Xue, J.; Yang, K.; Levy, O.; et al. AFLOW: An automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 2012, 58, 218–226. [Google Scholar] [CrossRef]
- Draxl, C.; Scheffler, M. The NOMAD laboratory: From data sharing to artificial intelligence. J. Phys. Mater. 2019, 2, 036001. [Google Scholar] [CrossRef]
- Choudhary, K.; Garrity, K.F.; Reid, A.C.E.; DeCost, B.; Biacchi, A.J.; Hight Walker, A.R.; Trautt, Z.; Hattrick-Simpers, J.; Kusne, A.G.; Centrone, A.; et al. The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Comput. Mater. 2020, 6, 173. [Google Scholar] [CrossRef]
- Dunn, A.; Wang, Q.; Ganose, A.; Dopp, D.; Jain, A. Benchmarking materials property prediction methods: The Matbench test set and Automatminer reference algorithm. npj Comput. Mater. 2020, 6, 138. [Google Scholar] [CrossRef]
- Omprakash, P.; Manikandan, B.; Sandeep, A.; Shrivastava, R.; P, V.; Panemangalore, D.B. Graph representational learning for bandgap prediction in varied perovskite crystals. Comput. Mater. Sci. 2021, 196, 110530. [Google Scholar] [CrossRef]
- Wen, M.; Horton, M.K.; Munro, J.M.; Huck, P.; Persson, K.A. An equivariant graph neural network for the elasticity tensors of all seven crystal systems. Digit. Discov. 2024, 3, 869–882. [Google Scholar] [CrossRef]
- Szymanski, N.J.; Rendy, B.; Fei, Y.; Kumar, R.E.; He, T.; Milsted, D.; McDermott, M.J.; Gallant, M.; Cubuk, E.D.; Merchant, A.; et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 2023, 624, 86–91. [Google Scholar] [CrossRef]
- Batzner, S.; Musaelian, A.; Sun, L.; Geiger, M.; Mailoa, J.P.; Kornbluth, M.; Molinari, N.; Smidt, T.E.; Kozinsky, B. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 2022, 13, 2453. [Google Scholar] [CrossRef]
- Maevskiy, A.; Carvalho, A.; Sataev, E.; Turchyna, V.; Noori, K.; Rodin, A.; Castro Neto, A.H.; Ustyuzhanin, A. Predicting ionic conductivity in solids from the machine-learned potential energy landscape. Phys. Rev. Res. 2025, 7, 023167. [Google Scholar] [CrossRef]
- Musaelian, A.; Batzner, S.; Johansson, A.; Sun, L.; Owen, C.J.; Kornbluth, M.; Kozinsky, B. Learning local equivariant representations for large-scale atomistic dynamics. Nat. Commun. 2023, 14, 579. [Google Scholar] [CrossRef] [PubMed]
- Bihani, V.; Mannan, S.; Pratiush, U.; Du, T.; Chen, Z.; Miret, S.; Micoulaut, M.; Smedskjaer, M.M.; Ranu, S.; Krishnan, N.M.A. EGraFFBench: Evaluation of equivariant graph neural network force fields for atomistic simulations. Digit. Discov. 2024, 3, 759–768. [Google Scholar] [CrossRef]
- Schreiner, M.; Winther, O.; Olsson, S. Implicit Transfer Operator Learning: Multiple Time-Resolution Models f or Molecular Dynamics; Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2023; Volume 36, pp. 36449–36462. [Google Scholar]
- Gebauer, N.W.A.; Gastegger, M.; Hessmann, S.S.P.; Müller, K.-R.; Schütt, K.T. Inverse design of 3d molecular structures with conditional generative neural networks. Nat. Commun. 2022, 13, 973. [Google Scholar] [CrossRef]
- Merchant, A.; Batzner, S.; Schoenholz, S.S.; Aykol, M.; Cheon, G.; Cubuk, E.D. Scaling deep learning for materials discovery. Nature 2023, 624, 80–85. [Google Scholar] [CrossRef]
- Strandgaard, M.; Linjordet, T.; Kneiding, H.; Burnage, A.L.; Nova, A.; Jensen, J.H.; Balcells, D. A Deep Generative Model for the Inverse Design of Transition Metal Ligands and Complexes. JACS Au 2025, 5, 2294–2308. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Huang, Q.; Huang, C.; Li, C.; Liu, K.; Sa, B.; Yu, Y.; Xue, D.; Liu, Z.; Dai, M. Deep generative model for the inverse design of Van der Waals heterostructures. Sci. Rep. 2025, 15, 23023. [Google Scholar] [CrossRef]
- Yang, Z.; Ye, W.; Lei, X.; Schweigert, D.; Kwon, H.-K.; Khajeh, A. De novo design of polymer electrolytes using GPT-based and diffusion-based generative models. npj Comput. Mater. 2024, 10, 296. [Google Scholar] [CrossRef]
- Louis, S.-Y.; Siriwardane, E.M.D.; Joshi, R.P.; Omee, S.S.; Kumar, N.; Hu, J. Accurate Prediction of Voltage of Battery Electrode Materials Using Attention-Based Graph Neural Networks. ACS Appl. Mater. Interfaces 2022, 14, 26587–26594. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, L.; Huang, Y.; Wu, C.; Wu, Y.; Li, J.; Hong, Z. Machine learning assisted screening of binary alloys for metal-based anode materials. J. Energy Chem. 2025, 104, 62–68. [Google Scholar] [CrossRef]
- Meng, K.; Bai, K.; Sun, S. Artificial intelligence driven design of cathode materials for sodium-ion batteries using graph deep learning method. J. Energy Storage 2024, 101, 113809. [Google Scholar] [CrossRef]
- Shim, Y.; Jeong, I.; Hur, J.; Jeen, H.; Myung, S.T.; Lee, K.T.; Hong, S.; Yuk, J.M.; Lee, C.W. Data-Driven Design of NASICON-Type Electrodes Using Graph-Based Neural Networks. Batter. Supercaps 2024, 7, e202400186. [Google Scholar] [CrossRef]
- Chen, W.; Lin, Z.; Zhang, X.; Zhou, H.; Zhang, Y. AI-driven accelerated discovery of intercalation-type cathode materials for magnesium batteries. J. Energy Chem. 2025, 108, 40–46. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Lu, J.; Shen, L. Interpretable learning of voltage for electrode design of multivalent metal-ion batteries. npj Comput. Mater. 2022, 8, 175. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Tawfik, S.A.; Tran, T.; Gupta, S.; Rana, S.; Venkatesh, S. The search for superionic solid-state electrolytes using a physics-informed generative model. Mater. Horiz. 2025, 17, 6945–6955. [Google Scholar] [CrossRef]
- Xie, S.R.; Honrao, S.J.; Lawson, J.W. High-Throughput Screening of Li Solid-State Electrolytes with Bond Valence Methods and Machine Learning. Chem. Mater. 2024, 36, 9320–9329. [Google Scholar] [CrossRef]
- Xie, T.; France-Lanord, A.; Wang, Y.; Lopez, J.; Stolberg, M.A.; Hill, M.; Leverick, G.M.; Gomez-Bombarelli, R.; Johnson, J.A.; Shao-Horn, Y.; et al. Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties. Nat. Commun. 2022, 13, 3415. [Google Scholar] [CrossRef]
- Okabe, R.; Chotrattanapituk, A.; Boonkird, A.; Andrejevic, N.; Fu, X.; Jaakkola, T.S.; Song, Q.; Nguyen, T.; Drucker, N.; Mu, S.; et al. Virtual node graph neural network for full phonon prediction. Nat. Comput. Sci. 2024, 4, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Feng, J.; Dong, Z.; Jin, L.; Li, M.; Yuan, J.; Li, Y. Efficient screening framework for organic solar cells with deep learning and ensemble learning. npj Comput. Mater. 2023, 9, 200. [Google Scholar] [CrossRef]
- Talapatra, A.; Uberuaga, B.P.; Stanek, C.R.; Pilania, G. Band gap predictions of double perovskite oxides using machine learning. Commun. Mater. 2023, 4, 46. [Google Scholar] [CrossRef]
- Zhang, W.; Zou, Y.; Wang, X.; Chen, J.; Xu, D. Deep learning accelerated high-throughput screening of organic solar cells. J. Mater. Chem. C 2025, 13, 5295–5306. [Google Scholar] [CrossRef]
- Qiu, J.; Hei Lam, H.; Hu, X.; Li, W.; Fu, S.; Zeng, F.; Zhang, H.; Wang, X. Accelerating High-Efficiency Organic Photovoltaic Discovery via Pretrained Graph Neural Networks and Generative Reinforcement Learning. arXiv 2025, arXiv:2503.23766. [Google Scholar] [CrossRef]
- Hung, N.T.; Okabe, R.; Chotrattanapituk, A.; Li, M. Universal Ensemble-Embedding Graph Neural Network for Direct Prediction of Optical Spectra from Crystal Structures. Adv. Mater. 2024, 36, 2409175. [Google Scholar] [CrossRef]
- Jin, J.; Faraji, S.; Liu, B.; Liu, M. Comparative Analysis of Conventional Machine Learning and Graph Neural Network Models for Perovskite Property Prediction. J. Phys. Chem. C 2024, 128, 16672–16683. [Google Scholar] [CrossRef]
- Eremin, R.A.; Humonen, I.S.; Kazakov, A.A.; Lazarev, V.D.; Pushkarev, A.P.; Budennyy, S.A. Graph neural networks for predicting structural stability of Cd- and Zn-doped γ-CsPbI3. Comput. Mater. Sci. 2024, 232, 112672. [Google Scholar] [CrossRef]
- Gu, G.H.; Jang, J.; Noh, J.; Walsh, A.; Jung, Y. Perovskite synthesizability using graph neural networks. npj Comput. Mater. 2022, 8, 71. [Google Scholar] [CrossRef]
- Rahman, W.; Zhong, C.; Liu, H.; Zhang, J.; Liu, J.; Hu, K.; Lin, X. Enhancing perovskite solar cell efficiency and stability: A multimodal prediction approach integrating microstructure, composition, and processing technology. Nanoscale 2025, 17, 15935–15949. [Google Scholar] [CrossRef]
- Vaitesswar, U.S.; Bash, D.; Huang, T.; Recatala-Gomez, J.; Deng, T.; Yang, S.-W.; Wang, X.; Hippalgaonkar, K. Machine learning based feature engineering for thermoelectric materials by design. Digit. Discov. 2024, 3, 210–220. [Google Scholar] [CrossRef]
- Laugier, L.; Bash, D.; Recatala, J.; Ng, H.K.; Ramasamy, S.; Foo, C.-S.; Chandrasekhar, V.R.; Hippalgaonkar, K. Predicting thermoelectric properties from crystal graphs and material descriptors—First application for functional materials. arXiv 2018, arXiv:1811.06219. [Google Scholar]
- Wang, Z.; Hu, R.; Luo, X.; Ma, J. Compositionally restricted atomistic line graph neural network for improved thermoelectric transport property predictions. J. Appl. Phys. 2024, 136, 155103. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Hu, R.; Luo, X. Predicting lattice thermal conductivity of semiconductors from atomic-information-enhanced CGCNN combined with transfer learning. Appl. Phys. Lett. 2023, 122, 152106. [Google Scholar] [CrossRef]
- Pal, K.; Park, C.W.; Xia, Y.; Shen, J.; Wolverton, C. Scale-invariant machine-learning model accelerates the discovery of quaternary chalcogenides with ultralow lattice thermal conductivity. npj Comput. Mater. 2022, 8, 48. [Google Scholar] [CrossRef]
- Fan, T.; Oganov, A.R. Combining machine-learning models with first-principles high-throughput calculations to accelerate the search for promising thermoelectric materials. J. Mater. Chem. C 2025, 13, 1439–1448. [Google Scholar] [CrossRef]
- Ghanekar, P.G.; Deshpande, S.; Greeley, J. Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis. Nat. Commun. 2022, 13, 5788. [Google Scholar] [CrossRef]
- Li, X.; Huang, W.; Lian, Y.; Tao, S. Graph Neural Network Model Accelerates Biomass Adsorption Energy Prediction on Iron-group Hydrotalcite Electrocatalysts. J. Phys. Chem. Lett. 2024, 15, 10725–10733. [Google Scholar] [CrossRef]
- Gariepy, Z.; Chen, Z.; Tamblyn, I.; Singh, C.V.; Tetsassi Feugmo, C.G. Automatic graph representation algorithm for heterogeneous catalysis. APL Mach. Learn. 2023, 1, 036103. [Google Scholar] [CrossRef]
- Li, X.; Chiong, R.; Hu, Z.; Page, A.J. A graph neural network model with local environment pooling for predicting adsorption energies. Comput. Theor. Chem. 2023, 1226, 114161. [Google Scholar] [CrossRef]
- Pablo-García, S.; Morandi, S.; Vargas-Hernández, R.A.; Jorner, K.; Ivković, Ž.; López, N.; Aspuru-Guzik, A. Fast evaluation of the adsorption energy of organic molecules on metals via graph neural networks. Nat. Comput. Sci. 2023, 3, 433–442. [Google Scholar] [CrossRef]
- V. Solout, M.; Ghasemi, J.B. Predicting photodegradation rate constants of water pollutants on TiO2 using graph neural network and combined experimental-graph features. Sci. Rep. 2025, 15, 19156. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xu, E.; Yang, D.; Yan, C.; Wei, T.; Chen, H.; Wei, Y.; Chen, M. Chemical environment adaptive learning for optical band gap prediction of doped graphitic carbon nitride nanosheets. Neural Comput. Appl. 2024, 37, 3287–3301. [Google Scholar] [CrossRef]
- Wang, R.; Zhong, Y.; Dong, X.; Du, M.; Yuan, H.; Zou, Y.; Wang, X.; Lin, Z.; Xu, D. Data Mining and Graph Network Deep Learning for Band Gap Prediction in Crystalline Borate Materials. Inorg. Chem. 2023, 62, 4716–4726. [Google Scholar] [CrossRef]
- Wander, B.; Musielewicz, J.; Cheula, R.; Kitchin, J.R. Accessing Numerical Energy Hessians with Graph Neural Network Potentials and Their Application in Heterogeneous Catalysis. J. Phys. Chem. C 2025, 129, 3510–3521. [Google Scholar] [CrossRef] [PubMed]
- Back, S.; Yoon, J.; Tian, N.; Zhong, W.; Tran, K.; Ulissi, Z.W. Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts. J. Phys. Chem. Lett. 2019, 10, 4401–4408. [Google Scholar] [CrossRef]
- Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput. Mater. 2016, 2, 16028. [Google Scholar] [CrossRef]
- Wang, A.Y.-T.; Kauwe, S.K.; Murdock, R.J.; Sparks, T.D. Compositionally restricted attention-based network for materials property predictions. npj Comput. Mater. 2021, 7, 77. [Google Scholar] [CrossRef]
- Dembitskiy, A.D.; Humonen, I.S.; Eremin, R.A.; Aksyonov, D.A.; Fedotov, S.S.; Budennyy, S.A. Benchmarking machine learning models for predicting lithium ion migration. npj Comput. Mater. 2025, 11, 131. [Google Scholar] [CrossRef]
- Shi, X.; Lin, X.; Luo, R.; Wu, S.; Li, L.; Zhao, Z.-J.; Gong, J. Dynamics of Heterogeneous Catalytic Processes at Operando Conditions. JACS Au 2021, 1, 2100–2120. [Google Scholar] [CrossRef] [PubMed]
| Database | Content | Features |
|---|---|---|
| Materials Project [6] | 200,487 inorganic crystals | CIF structures, total/formation E, band gap, elastic tensors, dielectric, ion-migration barriers |
| OQMD [21] | 1,317,811 DFT-relaxed structures | Formation E, stability vs. convex hull, magnetic moments |
| AFLOW [22] | 3,530,330 compounds with various properties. | Phonons, elastic, electronic and thermal transport |
| NOMAD [23] | 19.2 M simulation entries covering 4.34 M materials | Unified parsed outputs from > 60 codes; raw trajectories |
| JARVIS [24] | 80 k optB88vdW + 800 k PBEsol calculated structures | Dielectric, excitonic, exfoliation, interface data |
| Matbench [25] | 13 curated benchmark tasks (e.g., formation E, thermal κ, band gap) | Task-specific splits from MP, JARVIS, and OQMD |
| Open Catalyst Project—OC20/OC22 [7,8] | 1.3 M relaxed adsorbate–surface structures (260 M DFT steps) | Adsorption E, relaxed geometries, forces |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, Z.; Zhu, H.; Shao, B.; He, Y.; Liu, Z.; Wang, S.; Sheng, M. Accelerated Discovery of Energy Materials via Graph Neural Network. Inorganics 2025, 13, 395. https://doi.org/10.3390/inorganics13120395
Sheng Z, Zhu H, Shao B, He Y, Liu Z, Wang S, Sheng M. Accelerated Discovery of Energy Materials via Graph Neural Network. Inorganics. 2025; 13(12):395. https://doi.org/10.3390/inorganics13120395
Chicago/Turabian StyleSheng, Zhenwen, Hui Zhu, Bo Shao, Yu He, Zhuang Liu, Suqin Wang, and Ming Sheng. 2025. "Accelerated Discovery of Energy Materials via Graph Neural Network" Inorganics 13, no. 12: 395. https://doi.org/10.3390/inorganics13120395
APA StyleSheng, Z., Zhu, H., Shao, B., He, Y., Liu, Z., Wang, S., & Sheng, M. (2025). Accelerated Discovery of Energy Materials via Graph Neural Network. Inorganics, 13(12), 395. https://doi.org/10.3390/inorganics13120395

