Excitons in Shallow GaAs/Al0.03Ga0.97As Quantum Wells
Abstract
1. Introduction
2. Sample and Experimental Setup
3. Results and Discussion
3.1. Photoluminescence Excitation Spectroscopy
3.2. Reflectivity
3.3. Photon Echo
3.4. Special Aspects of Shallow QWs
- The reduced aluminum content in the AlGaAs ternary alloy significantly diminishes compositional disorder in the barrier material. This leads to smoother potential profiles, reduced interface roughness scattering, and improved spectral homogeneity of confined excitonic states, which are advantageous for high-resolution spectroscopy and coherent optical experiments.
- Although mechanical stresses within the GaAs/AlGaAs heteropair are generally low, in structures with shallow QWs, they are reduced by more than an order of magnitude compared with conventional QWs with . Such low stress not only minimizes strain-induced band mixing but also improves structural stability and reproducibility, which are essential for precision optical and spin-dependent measurements.
- The reduced AlGaAs barrier height leads to a small HH–LH exciton splitting, which strongly influences the probability of phonon-assisted intersubband scattering of excitonic holes. This feature can be exploited in schemes of optical upconversion and laser cooling [44]. Furthermore, the near-absence of strain suppresses additional spin-relaxation channels, making shallow QWs attractive platforms for spin optics and quantum information applications.
- The low barrier height promotes substantial penetration of carrier wave functions into the surrounding AlGaAs layers. This enhances interwell coupling and facilitates tunneling-assisted transport, the formation of extended excitonic states, and collective many-body effects. Such properties can be deliberately engineered to explore coherent coupling, condensation, or transport in coupled QW arrays.
- Shallow QWs demonstrate remarkable robustness against above-barrier illumination, which does not result in appreciable recharging of the QWs. This robustness preserves the purity of exciton states and prevents the formation of unwanted trions, which is a critical requirement for applications in information photonics and coherent control, where the presence of free carriers would degrade performance.
- The bulk and excitonic resonances of the AlGaAs barriers lie within the spectral range of standard Ti–sapphire infrared lasers, enabling straightforward two-beam and pump–probe configurations with above-barrier excitation. By contrast, structures with typically require additional visible-range laser sources for such experiments. This spectral compatibility simplifies experimental setups and broadens the scope of nonlinear and multi-color excitation techniques.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frenkel, J. On the Transformation of Light into Heat in Solids. I. Phys. Rev. 1931, 37, 17–44. [Google Scholar] [CrossRef]
- Wannier, G.H. The Structure of Electronic Excitation Levels in Insulating Crystals. Phys. Rev. 1937, 52, 191–197. [Google Scholar] [CrossRef]
- Gross, E.F. Optical spectrum of excitons in the crystal lattice. Il Nuovo Cimento 1956, 3, 672–701. [Google Scholar] [CrossRef]
- Rozenman, G.G.; Peisakhov, A.; Zadok, N. Dispersion of organic exciton polaritons—A novel undergraduate experiment. Eur. J. Phys. 2022, 43, 035301. [Google Scholar] [CrossRef]
- Xie, Y.; Ersu, G.; Pucher, T.; Kuriakose, S.; Zhang, W.; Al-Enizi, A.M.; Albrithen, H.A.H.; Nafady, A.; Bratschitsch, R.; Island, J.O.; et al. Making exciton physics easy and affordable. Eur. J. Phys. 2023, 44, 055501. [Google Scholar] [CrossRef]
- Haug, H.; Koch, S.W. Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th ed.; World Scientific: Singapore, 2009. [Google Scholar]
- Weisbuch, C.; Vinter, B. Quantum Semiconductor Structures: Fundamentals and Applications; Academic Press: London, UK, 1991. [Google Scholar]
- Prete, P.; Wolf, D.; Marzo, F.; Lovergine, N. Nanoscale spectroscopic imaging of GaAs-AlGaAs quantum well tube nanowires: Correlating luminescence with nanowire size and inner multishell structure. Nanophotonics 2019, 8, 1567–1577. [Google Scholar] [CrossRef]
- Weisbuch, C.; Nishioka, M.; Ishikawa, A.; Arakawa, Y. Observation of the Coupled Exciton-Photon Mode Splitting in a Semiconductor Microcavity. Phys. Rev. Lett. 1992, 69, 3314–3317. [Google Scholar] [CrossRef]
- Savvidis, P.G.; Baumberg, J.J.; Stevenson, R.M.; Skolnick, M.S.; Whittaker, D.M.; Roberts, J.S. Angle-Resonant Stimulated Polariton Amplifier. Phys. Rev. Lett. 2000, 84, 1547–1550. [Google Scholar] [CrossRef]
- Amo, A.; Lefrère, J.; Pigeon, S.; Adrados, C.; Ciuti, C.; Carusotto, I.; Houdré, R.; Giacobino, E.; Bramati, A. Superfluidity of Polaritons in Semiconductor Microcavities. Nat. Phys. 2009, 5, 805–810. [Google Scholar] [CrossRef]
- Schneider, C.; Rahimi-Iman, A.; Kim, N.Y.; Fischer, J.; Savenko, I.G.; Amthor, M.; Lermer, M.; Wolf, A.; Worschech, L.; Kulakovskii, V.D.; et al. An Electrically Pumped Polariton Laser. Nature 2013, 497, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Solovev, I.A.; Yanibekov, I.I.; Efimov, Y.P.; Eliseev, S.A.; Lovtcius, V.A.; Yugova, I.A.; Poltavtsev, S.V.; Kapitonov, Y.V. Long-Lived Dark Coherence Brought to Light by Magnetic-Field Controlled Photon Echo. Phys. Rev. B 2021, 103, 235312. [Google Scholar] [CrossRef]
- Langer, L.; Poltavtsev, S.V.; Yugova, I.A.; Yakovlev, D.R.; Karczewski, G.; Wojtowicz, T.; Kossut, J.; Akimov, I.A.; Bayer, M. Magnetic-Field Control of Photon Echo from the Electron-Trion System in a CdTe Quantum Well: Shuffling Coherence between Optically Accessible and Inaccessible States. Phys. Rev. Lett. 2012, 109, 157403. [Google Scholar] [CrossRef]
- Langer, L.; Poltavtsev, S.V.; Yugova, I.A.; Salewski, M.; Yakovlev, D.R.; Karczewski, G.; Wojtowicz, T.; Akimov, I.A.; Bayer, M. Access to Long-Term Optical Memories Using Photon Echoes Retrieved from Semiconductor Spins. Nat. Photonics 2014, 8, 851–857. [Google Scholar] [CrossRef]
- Kapitonov, Y.V.; Shapochkin, P.Y.; Beliaev, L.Y.; Petrov, Y.V.; Efimov, Y.P.; Eliseev, S.A.; Lovtcius, V.A.; Petrov, V.V.; Ovsyankin, V.V. Ion-Beam-Assisted Spatial Modulation of Inhomogeneous Broadening of a Quantum Well Resonance: Excitonic Diffraction Grating. Opt. Lett. 2016, 41, 104–106. [Google Scholar] [CrossRef]
- Kuech, T.F.; Wolford, D.J.; Potemski, R.; Bradley, J.A.; Kelleher, K.H.; Yan, D.; Farrell, J.P.; Lesser, P.M.S.; Pollak, F.H. Dependence of the AlxGa1−xAs band edge on alloy composition based on the absolute measurement of x. Appl. Phys. Lett. 1987, 51, 505. [Google Scholar] [CrossRef]
- Greene, R.L.; Bajaj, K.K.; Phelps, D.E. Energy levels of Wannier excitons in GaAs–GaAlAs quantum-well structures. Phys. Rev. B 1984, 29, 1807. [Google Scholar] [CrossRef]
- Koteles, E.S.; Chi, J.Y. Experimental exciton binding energies in GaAs/AlxGa1−xAs quantum wells as a function of well width. Phys. Rev. B 1988, 37, 6332. [Google Scholar] [CrossRef] [PubMed]
- Sibeldin, N.N.; Skorikov, M.L.; Tsvetkov, V.A. Formation of charged excitonic complexes in shallow quantum wells of undoped GaAs/AlGaAs structures under below-barrier and above-barrier photoexcitation. Nanotechnology 2001, 12, 591–596. [Google Scholar] [CrossRef]
- Lourenço, S.A.; da Silva, M.A.T.; Dias, I.F.L.; Duarte, J.L.; Laureto, E.; Quivy, A.A.; Lamas, T.E. Correlation between luminescence properties of AlxGa1−xAs/GaAs single quantum wells and barrier composition fluctuation. J. Appl. Phys. 2007, 101, 113536. [Google Scholar] [CrossRef]
- da Silva, M.A.T.; Morais, R.R.O.; Dias, I.F.L.; Lourenço, S.A.; Duarte, J.L.; Laureto, E.; Quivy, A.A.; da Silva, E.C.F. The effect of confinement on the temperature dependence of the excitonic transition energy in GaAs/AlxGa1−xAs quantum wells. J. Phys. Condens. Matter. 2008, 20, 255246. [Google Scholar] [CrossRef]
- Kochiev, M.V.; Tsvetkov, V.A.; Sibeldin, N.N. Accumulation of the excess of one type of charge carriers and the formation of trions in GaAs/AlGaAs shallow quantum wells. JETP Lett. 2012, 95, 481–485. [Google Scholar] [CrossRef]
- Kochiev, M.V.; Tsvetkov, V.A.; Sibeldin, N.N. Kinetics of accumulation of excess holes under photoexcitation and their relaxation in GaAs/AlGaAs shallow quantum wells. JETP Lett. 2015, 101, 207–212. [Google Scholar] [CrossRef]
- Solovev, I.A.; Davydov, V.G.; Kapitonov, Y.V.; Shapochkin, P.Y.; Efimov, Y.P.; Eliseev, S.A.; Lovcjus, V.A.; Petrov, V.V.; Ovsyankin, V.V. Increasing of AlGaAs/GaAs Quantum Well Robustness to Resonant Excitation by Lowering Al Concentration in Barriers. J. Phys. Conf. Ser. 2015, 643, 012085. [Google Scholar] [CrossRef]
- Bar-Joseph, I. Comparative Study of Negatively and Positively Charged Excitons in Quantum Wells. Phys. Rev. B 1999, 59, R10425–R10428. [Google Scholar] [CrossRef]
- Trifonov, A.V.; Khramtsov, E.S.; Kavokin, K.V.; Ignatiev, I.V.; Kavokin, A.V.; Yugova, I.A.; Yakovlev, D.R.; Bayer, M. Nanosecond Spin Coherence Time of Nonradiative Excitons in GaAs/AlGaAs Quantum Wells. Phys. Rev. Lett. 2019, 122, 147401. [Google Scholar] [CrossRef] [PubMed]
- Kurdyubov, A.S.; Trifonov, A.V.; Gerlovin, I.Y.; Gribakin, B.F.; Grigoryev, P.S.; Mikhailov, A.V.; Ignatiev, I.V.; Efimov, Y.P.; Eliseev, S.A.; Lovtcius, V.A.; et al. Optical control of a dark exciton reservoir. Phys. Rev. B 2021, 104, 035414. [Google Scholar] [CrossRef]
- Mikhailov, A.V.; Trifonov, A.V.; Sultanov, O.S.; Yugova, I.A.; Ignatiev, I.V. Long-Lived Coherent Dynamics of Heavy- and Light-Hole Excitons in GaAs Quantum Wells. Phys. Rev. B 2023, 107, 075302. [Google Scholar] [CrossRef]
- Poltavtsev, S.V.; Yugova, I.A.; Akimov, I.A.; Yakovlev, D.R.; Bayer, M. Photon Echo from Localized Excitons in Semiconductor Nanostructures. Phys. Solid State 2018, 60, 1635–1644. [Google Scholar] [CrossRef]
- Ivchenko, E.L.; Nesvizhskii, A.I.; Jorda, S. Exciton longitudinal-transverse splitting in GaAs/AlGaAs superlattices and multiple quantum wells. Solid State Commun. 1989, 70, 529–534. [Google Scholar] [CrossRef]
- Langbein, W.; Hvam, J.M. Measuring Excitonic Coherence in Nanostructures: Time-Resolved Speckle Analysis versus Four-Wave Mixing. Phys. Status Solidi 2000, 178, 13–20. [Google Scholar] [CrossRef]
- Cingolani, R.; Lomascolo, M.; Lovergine, N.; Dabbicco, M.; Ferrara, M.; Suemune, I. Excitonic properties of ZnSe/ZnSeS superlattices. Appl. Phys. Lett. 1994, 64, 2439–2441. [Google Scholar] [CrossRef]
- Adachi, S. GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications. J. Appl. Phys. 1985, 58, R1–R29. [Google Scholar] [CrossRef]
- Nazarov, R.S.; Maksimov, M.A.; Efimov, Y.P.; Eliseev, S.A.; Lovtcius, V.A.; Kapitonov, Y.V. Phonon-Assisted Anti-Stokes Photoluminescence of Light-Hole Excitons in Shallow GaAs/Al0.03Ga0.97As Quantum Well; Manuscript in preparation; Saint Petersburg State University: Saint Petersburg, Russia, 2026. [Google Scholar]
- Bastard, G. Wave Mechanics Applied to Semiconductor Heterostructures; Les Editions de Physique: Les Ulis Cedex, France, 1988. [Google Scholar]
- Poltavtsev, S.V.; Kapitonov, Y.V.; Yugova, I.A.; Akimov, I.A.; Yakovlev, D.R.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Bayer, M. Polarimetry of photon echo on charged and neutral excitons in semiconductor quantum wells. Sci. Rep. 2019, 9, 5666. [Google Scholar] [CrossRef]
- Trifonov, A.V.; Grisard, S.; Kosarev, A.N.; Akimov, I.A.; Yakovlev, D.R.; Höcker, J.; Dyakonov, V.; Bayer, M. Photon Echo Polarimetry of Excitons and Biexcitons in a CH3NH3PbI3 Perovskite Single Crystal. ACS Photonics 2022, 9, 621–629. [Google Scholar] [CrossRef]
- Paul, A.E.; Bolger, J.A.; Smirl, A.L.; Pellegrino, J.G. Time-resolved measurements of the polarization state of four-wave mixing signals from GaAs multiple quantum wells. J. Opt. Soc. Am. B 1996, 13, 1016–1025. [Google Scholar] [CrossRef]
- Poltavtsev, S.V.; Ovsyankin, V.V.; Stroganov, B.V. Coherent resonant scattering and free induction decay of 2D-excitons in GaAs SQW. Phys. Status Solidi C 2009, 6, 483–487. [Google Scholar] [CrossRef]
- Schultheis, L.; Sturge, M.D.; Hegarty, J. Photon echoes from two-dimensional excitons in GaAs-AlGaAs quantum wells. Appl. Phys. Lett. 1985, 47, 995–997. [Google Scholar] [CrossRef]
- Webb, M.D.; Cundiff, S.T.; Steel, D.G. Stimulated-picosecond-photon-echo studies of localized exciton relaxation and dephasing in GaAs/AlxGa1−xAs multiple quantum wells. Phys. Rev. B 1991, 43, 12658–12661. [Google Scholar] [CrossRef] [PubMed]
- Cundiff, S.T.; Wang, H.; Steel, D.G. Polarization-dependent picosecond excitonic nonlinearities and the complexities of disorder. Phys. Rev. B 1992, 46, 7248–7251. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Chen, R.; Xiong, Q. Laser cooling of a semiconductor by 40 kelvin. Nature 2013, 493, 504–508. [Google Scholar] [CrossRef]




| Layer | Material | Thickness |
|---|---|---|
| Substrate | n-GaAs (001) | – |
| Buffer (GaAs bulk) | GaAs | ∼600 nm |
| AlAs barrier | AlAs | 2.8 nm |
| AlGaAs bulk | Al0.03Ga0.97As | 175 nm |
| AlAs barrier | AlAs | 2.8 nm |
| QW barrier | Al0.03Ga0.97As | 51 nm |
| QW | GaAs | 14 nm |
| QW barrier | Al0.03Ga0.97As | 51 nm |
| Cap layer | GaAs | 7 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Nazarov, R.S.; Maksimov, M.A.; Efimov, Y.P.; Eliseev, S.A.; Lovcjus, V.A.; Kapitonov, Y.V. Excitons in Shallow GaAs/Al0.03Ga0.97As Quantum Wells. Photonics 2026, 13, 19. https://doi.org/10.3390/photonics13010019
Nazarov RS, Maksimov MA, Efimov YP, Eliseev SA, Lovcjus VA, Kapitonov YV. Excitons in Shallow GaAs/Al0.03Ga0.97As Quantum Wells. Photonics. 2026; 13(1):19. https://doi.org/10.3390/photonics13010019
Chicago/Turabian StyleNazarov, Roman S., Matthew A. Maksimov, Yurii P. Efimov, Sergei A. Eliseev, Vyacheslav A. Lovcjus, and Yury V. Kapitonov. 2026. "Excitons in Shallow GaAs/Al0.03Ga0.97As Quantum Wells" Photonics 13, no. 1: 19. https://doi.org/10.3390/photonics13010019
APA StyleNazarov, R. S., Maksimov, M. A., Efimov, Y. P., Eliseev, S. A., Lovcjus, V. A., & Kapitonov, Y. V. (2026). Excitons in Shallow GaAs/Al0.03Ga0.97As Quantum Wells. Photonics, 13(1), 19. https://doi.org/10.3390/photonics13010019

