Volatile Organic Compound Profiling of Traditional Multi-Herbal Prescriptions for Chemical Differentiation and Ethnopharmacological Insights
Abstract
1. Introduction
2. Materials and Methods
2.1. Herbal Medicine Prescriptions
2.2. Headspace Solid-Phase Microextraction–Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) Analysis
2.3. GC-MS Data Processing and Multivariate Analysis
3. Results
3.1. Comprehensive Analysis of Herbal Medicines
3.2. Identification of VOCs via HS-SPME-GC-MS Analysis
3.3. Results of Multivariate Data Analysis
3.4. Acute Condition-Related Prescriptions (Cold and Inflammation)
3.4.1. Cold-Related Prescriptions
3.4.2. Inflammation-Related Prescriptions

3.5. Metabolic and Hormonal Regulation-Related Prescriptions (Fatigue and Women’s Health)
3.5.1. Fatigue-Related Prescriptions

3.5.2. Women’s Health-Related Prescriptions
3.6. Metabolic Disorder-Related Prescriptions (Diabetes and Kidney Disorders)
3.6.1. Diabetes Prescriptions
3.6.2. Kidney Disorder-Related Prescriptions

3.7. Other Functional Prescriptions (Cognitive Disorder, Digestion and Muscle Relaxation)
3.7.1. Cognitive Disorder-Related Prescriptions
3.7.2. Digestion-Related Prescriptions
3.7.3. Muscle Relaxation-Related Prescriptions
3.8. Ethnopharmacological Implications

4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, S.Y.; Zhou, S.F.; Gao, S.H.; Yu, Z.L.; Tang, M.K.; Sun, J.N.; Zhou, J.; Ko, K.M. New perspectives on innovative drug discovery: An overview. Asian J. Pharmacol. 2010, 13, 450–471. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.A.; Urban, S.; Roessner, U.J.M. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [PubMed]
- Guenard, D.; Gueritte-Voegelein, F.; Potier, P.J. Taxol and taxotere: Discovery, chemistry, and structure-activity relationships. Acc. Chem. Res. 1993, 26, 160–167. [Google Scholar] [CrossRef]
- Ahmadi, A.; Daryabari, A.M.; Gholizadeh, B.; Farajnia, S.; Ebrahimi, M.; Ghasemnejad, T. The role of hesperidin in cell signal transduction pathway for the prevention or treatment of cancer. Curr. Pharm. Des. 2015, 22, 3462–3471. [Google Scholar] [CrossRef]
- Neha; Jaggi, A.S.; Singh, N. Silymarin and its role in chronic diseases. In Drug Development for Modern Medicine, 1st ed.; Panda, V., Ed.; Springer: Cham, Switzerland, 2016; pp. 25–44. [Google Scholar] [CrossRef]
- Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its main pharmacological activity and potential application in clinical medicine. Evid. Based Complement. Altern. Med. 2020, 2020, 8825387. [Google Scholar] [CrossRef]
- Dash, D.K.; Dash, S.; Pradhan, S.K.; Panda, S.K. Revisiting the medicinal value of terpenes and terpenoids. In Revisiting Plant Biostimulants; Pradhan, S.K., Ed.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Cox-Georgian, D.; Ramadoss, N.; Donoviel, M.; Basu, C. Therapeutic and medicinal uses of terpenes. In Nutraceuticals: Efficacy, Safety and Toxicity; Gupta, R.C., Lall, R., Srivastava, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 333–359. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef]
- David, B.; Wolfender, J.-L.; Dias, D.A. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem. Rev. 2015, 14, 299–315. [Google Scholar] [CrossRef]
- Taylor, J.; Rabe, T.; McGaw, L.J.; Jäger, A.K.; Van Staden, J. Towards the scientific validation of traditional medicinal plants. Plant Growth Regul. 2001, 34, 23–37. [Google Scholar] [CrossRef]
- Lai, X.; Liu, R.; Cui, J.; Tang, J.; Wang, J. Network pharmacology and traditional medicine. Front. Pharmacol. 2020, 11, 1194. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhao, C.; Lu, F.; Wu, M.; Liu, S.; Wang, T.; Wang, T.; Peng, C.; Chen, X. Traditional Chinese medicine in treating influenza: From basic science to clinical applications. Front. Pharmacol. 2020, 11, 575803. [Google Scholar] [CrossRef] [PubMed]
- Zhaoguo, L.; Qing, W.; Yurui, X. Key concepts in traditional Chinese medicine Ii. In Key Concepts in Traditional Chinese Medicine II; Springer: Singapore, 2021; pp. 1–121. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, X.; Zhang, T.; Liu, X.; Li, Y.; Liu, D. Hypericum sampsonii Hance: A review of its botany, traditional uses, phytochemistry, biological activity, and safety. Front. Pharmacol. 2023, 14, 1247675. [Google Scholar] [CrossRef] [PubMed]
- Le, H.-G.; Huynh, T.H.; Peng, B.-R.; Pham, N.-T.; El-Shazly, M.; Chen, L.-Y.; Wang, L.-S.; Yen, P.-T.; Lai, K.-H. Investigating the therapeutic potential of terpene metabolites in hot-natured herbal medicines and their mechanistic impact on circulatory disorders. Phytochem. Rev. 2025, 24, 5343–5390. [Google Scholar] [CrossRef]
- Wen, B.; Gorycki, P. Bioactivation of herbal constituents: Mechanisms and toxicological relevance. Drug Metab. Rev. 2019, 51, 453–497. [Google Scholar] [CrossRef]
- Al-Shuhaib, M.B.S.; Al-Shuhaib, J.M. Assessing therapeutic value and side effects of key botanical compounds for optimized medical treatments. Chem. Biodivers. 2025, 22, e202401754. [Google Scholar] [CrossRef]
- de Santana Souza, M.T.; de Souza Siqueira Quintans, J.; da Silva, F.P.; Oliveira, E.R.A.; Menezes-Filho, J.E.C.; Santos, M.R.V.; Piuvezam, M.R.; Gonsalves, A.P.S.; Quintans-Júnior, L.J. Structure–activity relationship of terpenes with anti-inflammatory profile–A systematic review. Basic Clin. Pharmacol. Toxicol. 2014, 115, 244–256. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.M.; Endringer, D.C.; Scherer, R.; Romanha, B.S.; Kaplum, V.; De Simone, G.A.; Caliari, M. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef]
- Harada, H.; Kashiwadani, H.; Kanemaru, K.; Nihei, H.; Nakamura, T. Linalool odor-induced anxiolytic effects in mice. Front. Behav. Neurosci. 2018, 12, 414763. [Google Scholar] [CrossRef]
- Koyama, S.; Heinbockel, T. The effects of essential oils and terpenes in relation to their routes of intake and application. Int. J. Mol. Sci. 2020, 21, 1558. [Google Scholar] [CrossRef]
- Maffei, M.E.; Gertsch, J.; Appendino, G. Plant volatiles: Production, function and pharmacology. Nat. Prod. Rep. 2011, 28, 1359–1380. [Google Scholar] [CrossRef]
- Zhong, L.-J.; Hua, Y.-L.; Ji, P.; Yao, W.-L.; Zhang, W.-Q.; Li, J.; Wei, Y.-M. Evaluation of the anti-inflammatory effects of volatile oils from processed products of Angelica sinensis radix by GC–MS-based metabolomics. J. Ethnopharmacol. 2016, 191, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, R.; Wang, X.; Li, W.; Chen, D.; Xiao, Z. Natural volatile oils derived from herbal medicines: A promising therapy way for treating depressive disorder. Pharmacol. Res. 2021, 164, 105376. [Google Scholar] [CrossRef] [PubMed]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Aksenov, A.A.; Laponogov, I.; Zhang, M.; Doran, S.L.; Traub, J.; Mast, T.J.; Liu, X.; Warth, B.; Kuzmanov, I.; Nothias, L.-F. Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nat. Biotechnol. 2021, 39, 169–173. [Google Scholar] [CrossRef]
- KP, R.F.; Suresh, M.; Prabhu, V.; Meenakshisundaram, M. PHYTOCHEMICAL SCREENING AND ANTIMICROBIAL ACTIVITY IN PENNISETUM POLYSTACHION. L. World J. Pharm. Res. 2025, 14, 1162–1179. [Google Scholar]
- Zhang, A.; Zuo, H.; Peng, X.; Zhang, C.; Deng, Y.; Huang, S.; Luo, D.; Zhu, H. Studying the efficacy of JBOL volatile components in idiopathic pulmonary fibrosis (IPF) using GC-MS and network pharmacology. Sci. Rep. 2025, 15, 13188. [Google Scholar] [CrossRef]
- Young, E.G.; Li, F.F.; Brimble, M.A. Spiroketal natural products isolated from traditional Chinese medicine: Isolation, biological activity, biosynthesis, and synthesis. Nat. Prod. Rep. 2025, 42, 1786–1810. [Google Scholar] [CrossRef]
- Lv, C.; Wu, Y.; Wang, J.; Lu, F.; Zhang, X.; Xiao, D.; Liang, W. Psoralen and Isopsoralen Activate Nuclear Factor Erythroid 2-Related Factor 2 Through Interaction with Kelch-Like ECH-Associated Protein 1. Food Sci. Nutr. 2025, 13, e4768. [Google Scholar] [CrossRef]
- Fukai, S.; Sakamoto, S.; Miyoshi, Y.; Fukuda, Y.; Miki, J.; Tanaka, A.; Nomura, M. Pharmacological activity of compounds extracted from persimmon peel (Diospyros kaki THUNB.). J. Oleo Sci. 2009, 58, 213–219. [Google Scholar] [CrossRef]
- Nafis, A.; Elgadiry, M.H.; Oukhrib, M.; Aoujil, J.; Amamra, H.; Benali, T.; Aboulghazi, A.; Lhadi, E.K.; El Hajaji, R. New insight into antimicrobial activities of Linaria ventricosa essential oil and its synergetic effect with conventional antibiotics. Arch. Microbiol. 2021, 203, 4361–4366. [Google Scholar] [CrossRef]
- Yang, L.; Wu, X.; Chen, S.; Ma, R.; Hu, T.; Li, Z.; Sun, X. Color-reflected chemical regulations of the scorched rhubarb (Rhei Radix et Rhizoma) revealed by the integration analysis of visible spectrophotometry, Fourier transform infrared spectroscopy and high-performance liquid chromatography. Food Chem. 2022, 367, 130730. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.N.K.; Kim, M.S.; Ryoo, S.Y.; Oh, W.K.; Kim, Y.H. Anti-inflammatory activity of compounds from the rhizome of Cnidium officinale. Arch. Pharm. Res. 2018, 41, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Wu, C.; Gong, S.; Wang, X.; Liu, J.; Qu, Y.; Huang, S.; Sun, W. Recent advances in Panax ginseng CA Meyer as a herb for anti-fatigue: An effects and mechanisms review. Foods 2021, 10, 1030. [Google Scholar] [CrossRef] [PubMed]
- Arring, N.M.; Millstine, D.; Marks, L.A.; Fick, L.J. Ginseng as a treatment for fatigue: A systematic review. J. Altern. Complement. Med. 2018, 24, 624–633. [Google Scholar] [CrossRef]
- Shapla, U.M.; Solayman, M.; Alam, N.; Khalil, M.I.; Gan, S.H. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, G.; Lin, Y.; Yao, H.; Zhu, H.; Lu, C.; Qin, H.; Zhang, L. Rehmannia glutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice. J. Ethnopharmacol. 2015, 164, 229–238. [Google Scholar] [CrossRef]
- Qin, Z.; Li, Z.; Wang, S.; Chen, J.; Liu, S.; Lu, F.; Zhao, Z.; Zuo, Z. UPLC-Q/TOF-MS-based serum metabolomics reveals hypoglycemic effects of Rehmannia glutinosa, Coptis chinensis and their combination on high-fat-diet-induced diabetes in KK-Ay mice. Int. J. Mol. Sci. 2018, 19, 3984. [Google Scholar] [CrossRef]
- Poon, T.Y.C.; Ong, K.L.; Cheung, B.M.Y. Review of the effects of the traditional Chinese medicine Rehmannia Six Formula on diabetes mellitus and its complications. J. Diabetes 2011, 3, 184–200. [Google Scholar] [CrossRef]
- Kwon, M.J.; Lee, J.Y.; Jeon, K.H.; Kim, S.Y. The role of the herbal medicines, Rehmanniae radix, Citrus unshiu peel, and Poria cocos wolf, in high-fat diet-induced obesity. Pharmacogn. Mag. 2019, 15, 363–368. [Google Scholar] [CrossRef]
- Koonrungsesomboon, N.; Na-Bangchang, K.; Karbwang, J. Therapeutic potential and pharmacological activities of Atractylodes lancea (Thunb.) DC. Asian Pac. J. Trop. Med. 2014, 7, 421–428. [Google Scholar] [CrossRef]
- Suryawanshi, J.A.S. An overview of Citrus aurantium used in treatment of various diseases. Afr. J. Plant Sci. 2011, 5, 390–395. [Google Scholar]
- Mok, D.K.; Chau, F.-T. Chemical information of Chinese medicines: A challenge to chemist. Chemom. Intell. Lab. Syst. 2006, 82, 210–217. [Google Scholar] [CrossRef]
- Chaachouay, N. Synergy, additive effects, and antagonism of drugs with plant bioactive compounds. Drugs Drug Candidates 2025, 4, 4. [Google Scholar] [CrossRef]



| No. | Prescription | Sample Code | Number of Batches | Lot Codes | Therapeutic Category | ||
|---|---|---|---|---|---|---|---|
| 1 | Paedoksan | PDS | 3 | AC-DE-2101~2103 | Cold | Inflammation | Pain |
| 2 | Hyungbang Paedoksan | HBPDS | 3 | BC-DE-2101~2103 | Cold | Pain | - |
| 3 | Insam Paedoksan | IPDS | 3 | CC-DE-2101~2103 | Cold | - | - |
| 4 | Cheonghwabo Eumtang | CHBE | 3 | DC-DE-2101~2103 | Cold | Inflammation | Pain |
| 5 | Yeongyopaedoksan | YY-PDS | 3 | FC-DE-2101~2103 | Cold | Inflammation | - |
| 6 | Samsoeum | SSE | 3 | GC-DE-2101~2103 | Cold | - | - |
| 7 | Sosihotang | SHT | 3 | HC-DE-2101~2103 | Cold | Fatigue | Pain |
| 8 | Sipsintang | SST | 3 | IC-DE-2101~2103 | Cold | - | - |
| 9 | Ssanggeumtang | SGT | 3 | JC-DE-2101~2103 | Cold | - | - |
| 10 | Dangguisusan | DGS | 3 | EC-DE-2101~2103 | Inflammation | - | - |
| 11 | Samultang | SMT | 3 | MC-DE-2201~2203 | Women’s diseases | - | - |
| 12 | Gamisinki Hwan | GSH | 3 | RC-DE-2201~2203 | Fatigue | Diabetes | Pain |
| 13 | Palmijihwang Hwan | PMJH | 3 | LC-DE-2201~2203 | Fatigue | Diabetes | Pain |
| 14 | Cheongsangbohahwan | CSBH | 3 | TC-DE-2201~2203 | Respiratory | - | - |
| 15 | Baekchultang | BCT | 3 | KC-DE-2201~2203 | Cold | Respiratory | - |
| 16 | Ockcheonhwan | OCH | 3 | SC-DE-2201~2203 | Diabetes | - | - |
| 17 | Gagam Palmihwan | GPMH | 3 | QC-DE-2201~2203 | Fatigue | Diabetes | Pain |
| 18 | Injin Oryeongsan | IOS | 3 | OC-DE-2201~2203 | Fatigue | Kidney disorders | - |
| 19 | Sipjeon Daebotang | SDBT | 3 | PC-DE-2201~2203 | Women’s diseases | Fatigue | Cognitive disorder |
| 20 | Yukmijihwang Tang | YMJH | 3 | NC-DE-2201~2203 | Fatigue | Diabetes | Kidney disorders |
| 21 | Ijungtang | IJT | 3 | UC-DE-2301~2303 | Digestive disorders | - | - |
| 22 | Socheongryongtang | SCRT | 3 | VC-DE-2301~2303 | Cold | Respiratory | - |
| 23 | Gumiganghwaltang | GGHT | 3 | XC-DE-2301~2303 | Cold | - | - |
| 24 | Hwangnyeonhaedoktang | HNHDT | 3 | YC-DE-2301~2303 | Cold | Inflammation | - |
| 25 | Jakhyakgamchotang | JGCT | 3 | ZC-DE-2301~2303 | Digestive disorders | Muscle relaxation | - |
| 26 | Pyeongwisan | PWS | 3 | AAC-DE-2301~2303 | Digestive disorders | - | - |
| 27 | Hyangsapyeongwisan | HSPWS | 3 | ABC-DE-2301~2303 | Digestive disorders | - | - |
| 28 | Yukgunjatang | YGJT | 3 | ACC-DE-2301~2303 | Digestive disorders | - | - |
| 29 | Takrisodogeum | TSD | 3 | ADC-DE-2301~2303 | Inflammation | - | - |
| 30 | Banhasasimtang | BHST | 3 | AEC-DE-2301~2303 | Digestive disorders | Muscle relaxation | - |
| Compound * | Content a (%) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| PDS | HBPDS | IPDS | CHBE | YY-PDS | SSE | SHT | SST | SGT | DGS | |
| 2-furaldehyde | 0.25 ± 0.08 | 0.28 ± 0.02 | 0.06 ± 0.01 | 2.08 ± 0.15 | 0.05 ± 0.03 | 0.19 ± 0.06 | 0.24 ± 0.09 | 0.42 ± 0.19 | 0.84 ± 0.45 | 0.55 ± 0.4 |
| 1-(1H-pyrrol-2-yl)ethanone | 0.13 ± 0.02 | 0.12 ± 0.04 | 0.16 ± 0.06 | 1.28 ± 0.06 | 0.13 ± 0.08 | 0.23 ± 0.07 | 0.27 ± 0.02 | 1 ± 1.23 | 0.44 ± 0.24 | 0.3 ± 0.08 |
| methyl furan-3-carboxylate | 0.03 ± 0.03 | 0.01 ± 0.01 | 0.02 ± 0.02 | 0.25 ± 0.01 | - | 0.01 ± 0 | 0.05 ± 0.03 | 0.05 ± 0.06 | 0.04 ± 0.02 | 0.02 ± 0.01 |
| pyridin-3-ol | 0.9 ± 0.9 | 0.56 ± 0.36 | 0.43 ± 0.49 | 2.62 ± 1.65 | 0.2 ± 0.13 | 0.12 ± 0.07 | 0.79 ± 0.52 | 0.54 ± 0.13 | 1.12 ± 0.21 | 0.62 ± 0.52 |
| 3-methyl-2(1H)-pyridinone | 0.01 ± 0 | 0.02 ± 0.02 | 0.03 ± 0.02 | 1.03 ± 0.33 | 0.06 ± 0.07 | 0.04 ± 0.03 | 0.01 ± 0 | 0.02 ± 0 | 0.1 ± 0.11 | 0.02 ± 0.01 |
| 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one | 0.11 ± 0.03 | 0.03 ± 0.02 | 0.02 ± 0.01 | 0.18 ± 0.09 | 0.04 ± 0.03 | 0.11 ± 0.03 | 0.02 ± 0.01 | 0.05 ± 0.05 | 0.22 ± 0.13 | 0.07 ± 0.05 |
| dehydromevalonic lactone | 0.25 ± 0.1 | 0.32 ± 0.06 | 0.21 ± 0.03 | 3.61 ± 0.55 | 0.19 ± 0.06 | 0.16 ± 0.03 | 0.39 ± 0.17 | 0.36 ± 0.22 | 0.19 ± 0.07 | 0.73 ± 0.41 |
| 2-methylbenzofuran | 0.01 ± 0 | - | 0.01 ± 0 | 0.06 ± 0.02 | 0.02 ± 0.01 | 0.01 ± 0 | 0.01 ± 0.01 | 0.36 ± 0.46 | 0.05 ± 0.02 | 0.31 ± 0.22 |
| 5-Hydroxymethylfurfural | 6.07 ± 1.13 | 39.48 ± 1.09 | 3.13 ± 0.34 | 49.06 ± 4.51 | 5.86 ± 3.88 | 3.49 ± 0.43 | 6.94 ± 1.65 | 33.18 ± 26.03 | 74.1 ± 4.31 | 48.28 ± 22.58 |
| 2,6-dimethylocta-2,6-diene-1,8-diol | 0.03 ± 0.01 | 0.02 ± 0 | 0.07 ± 0.03 | 0.24 ± 0.11 | 0.04 ± 0.02 | 0.03 ± 0.01 | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.07 ± 0.04 | 0.06 ± 0.03 |
| 3-phenylprop-2-en-1-ol | 0.14 ± 0.12 | 0.05 ± 0.01 | 0.05 ± 0.03 | 0.76 ± 0.4 | 0.08 ± 0.03 | 0.22 ± 0.16 | 0.08 ± 0.05 | 5.09 ± 6.58 | 0.32 ± 0.06 | 12.26 ± 9.81 |
| 4-ethenyl-2-methoxyphenol | 15.68 ± 5.37 | 4.49 ± 0.68 | 9.15 ± 3.9 | 28 ± 4.64 | 11.14 ± 4.86 | 27.16 ± 1.82 | 15.83 ± 2.4 | 9.37 ± 5.59 | 18.93 ± 4.89 | 7.55 ± 3.07 |
| 1-(2-hydroxy-4-methoxyphenyl)ethanone | 0.04 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0 | 0.13 ± 0.05 | 0.01 ± 0.01 | 0.01 ± 0 | 0.02 ± 0 | 0.01 ± 0 | 0.02 ± 0 | 0.08 ± 0.08 |
| 3-(2-hydroxyphenyl)prop-2-enoic acid | 0.01 ± 0.01 | 0.02 ± 0 | 0.03 ± 0.01 | 0.52 ± 0.26 | 0.04 ± 0.03 | 0.05 ± 0.02 | 0.11 ± 0.09 | 0.07 ± 0.04 | 0.09 ± 0.03 | 0.11 ± 0.04 |
| methyl tetradeca-4,6-diynoate | 0.03 ± 0.02 | 0.01 ± 0.01 | 0.08 ± 0.04 | 0.99 ± 0.27 | 0.04 ± 0.01 | 0.03 ± 0 | 0.12 ± 0.07 | 0.22 ± 0.17 | 0.1 ± 0.06 | 0.49 ± 0.51 |
| ethyl N-(2-methoxyphenyl)formimidate | 0.19 ± 0.13 | 0.49 ± 0.48 | 0.04 ± 0.03 | 0.74 ± 0.57 | 0.14 ± 0.12 | 0.29 ± 0.32 | 0.06 ± 0.03 | 0.08 ± 0.02 | 0.08 ± 0.05 | 0.26 ± 0.04 |
| 2-isopropenyl-2,3-dihydrofuro [3,2-g]chromen-7-one (tentative) | 0.44 ± 0.24 | 0.01 ± 0 | 0.3 ± 0.02 | 0.07 ± 0.03 | 0.31 ± 0.3 | 0.03 ± 0 | 0.85 ± 0.3 | 0.05 ± 0.06 | 0.12 ± 0.08 | 0.16 ± 0.1 |
| 1-ethenyl-2-hexenylcyclopropane | 4.29 ± 0.45 | 3.98 ± 0.29 | 4.18 ± 0.46 | 1.11 ± 0.16 | 7.16 ± 1.75 | 6.55 ± 0.28 | 3.46 ± 0.22 | 3.95 ± 2.42 | 0.34 ± 0.32 | 2.31 ± 2.32 |
| fenipentol | 27.27 ± 1.96 | 21.53 ± 3.72 | 26.42 ± 2.74 | 2.44 ± 0.21 | 28.31 ± 1.12 | 29.16 ± 1 | 24.24 ± 0.96 | 21.09 ± 13.44 | 0.64 ± 0.22 | 11.75 ± 13.21 |
| senkyunolide | 27.2 ± 1.89 | 21.49 ± 3.73 | 26.31 ± 2.64 | 2.83 ± 0.52 | 28.28 ± 1.05 | 29.15 ± 0.9 | 24.19 ± 1.01 | 21 ± 13.41 | 0.62 ± 0.23 | 11.66 ± 13.25 |
| 3,4-bis(methylene)cyclopentanone | 1.92 ± 0.23 | 6.61 ± 7 | 1.68 ± 0.28 | 1.28 ± 0.2 | 3 ± 0.76 | 2.62 ± 0.09 | 1.35 ± 0.03 | 2.06 ± 0.82 | 0.47 ± 0.11 | 0.96 ± 0.96 |
| spathulenol | 0.1 ± 0.01 | - | 0.06 ± 0.02 | 0.29 ± 0.28 | 0.14 ± 0.11 | 0.15 ± 0.07 | 0.29 ± 0.23 | 0.36 ± 0.28 | 0.52 ± 0.11 | 0.73 ± 0.5 |
| isopsoralen | 14.66 ± 1.06 | 0.2 ± 0.21 | 27.35 ± 6.38 | 0.1 ± 0.02 | 14.59 ± 0.66 | 0.05 ± 0.02 | 20.42 ± 0.39 | 0.02 ± 0.02 | 0.41 ± 0.21 | 0.03 ± 0.01 |
| 2-hydroxy-5-(3-methylbut-2-enyl)-4-(prop-1-en-2-yl)cyclohepta-2,4,6-trien-1-one | 0.07 ± 0.03 | - | 0.03 ± 0.02 | 0.14 ± 0.12 | 0.01 ± 0 | - | 0.02 ± 0.01 | 0.12 ± 0.06 | 0.02 ± 0.01 | 0.16 ± 0.15 |
| 8,8-dimethyl-2-oxo-7,8-dihydro-2H,6H-pyrano [3,2-g]chromen-7-yl 3-methylbut-2-enoate | - | 0.09 ± 0.02 | - | 0.01 ± 0 | - | - | - | 0.26 ± 0.24 | - | 0.24 ± 0.11 |
| Compound * | Content a (%) | |||||||||
| SMT | GSH | PMJH | CSBH | BCT | OCH | GPMH | IOS | SDBT | YMJH | |
| 2-furaldehyde | 0.13 ± 0.06 | 0.34 ± 0.2 | 0.16 ± 0.1 | 0.2 ± 0.09 | 0.07 ± 0.02 | 0.42 ± 0.05 | 1.91 ± 2.53 | 0.3 ± 0.2 | 0.37 ± 0.16 | 0.19 ± 0.08 |
| 1-(1H-pyrrol-2-yl)ethanone | 0.2 ± 0.03 | 0.18 ± 0.09 | 0.02 ± 0.01 | 0.08 ± 0 | 0.08 ± 0 | 0.18 ± 0.11 | 0.39 ± 0.44 | 0.44 ± 0.06 | 0.19 ± 0.08 | 0.08 ± 0.01 |
| methyl furan-3-carboxylate | - | 0.01 ± 0.01 | - | 0.01 ± 0.01 | - | 0.01 ± 0.02 | 0.03 ± 0.03 | 0.04 ± 0.03 | - | - |
| pyridin-3-ol | 0.32 ± 0.11 | 0.15 ± 0.08 | 0.06 ± 0.03 | 0.08 ± 0.05 | 0.02 ± 0.02 | 0.67 ± 0.5 | 0.4 ± 0.51 | 0.31 ± 0.18 | 0.09 ± 0.01 | 0.15 ± 0.17 |
| 3-methyl-2(1H)-pyridinone | - | 0.04 ± 0 | 0.01 ± 0 | 0.11 ± 0.07 | - | 0.03 ± 0.03 | 0.03 ± 0.04 | 0.55 ± 0.09 | 0.06 ± 0.04 | 0.13 ± 0.08 |
| 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one | 0.24 ± 0.02 | 0.02 ± 0.01 | - | 0.01 ± 0.01 | - | 0.03 ± 0.03 | 0.15 ± 0.19 | 0.12 ± 0.02 | 0.06 ± 0.01 | - |
| dehydromevalonic lactone | 0.06 ± 0.01 | 5.22 ± 2.37 | 4.01 ± 0.12 | 1.14 ± 0.21 | 0.09 ± 0.01 | 0.48 ± 0.28 | 20.05 ± 26.67 | 7.14 ± 0.42 | 0.26 ± 0.1 | 3.78 ± 0.56 |
| 2-methylbenzofuran | - | 0.09 ± 0.03 | - | - | - | 0.09 ± 0.12 | 0.03 ± 0.01 | 3.64 ± 0.21 | 0.81 ± 0.42 | - |
| 5-(hydroxymethyl)furan-2-carbaldehyde | 28.52 ± 1.53 | 84.19 ± 3.99 | 93.79 ± 0.13 | 96.49 ± 0.78 | 98.95 ± 0.31 | 94.75 ± 2.26 | 64.41 ± 45.43 | 3.55 ± 0.69 | 10.24 ± 0.44 | 93.29 ± 0.57 |
| 5-Hydroxymethylfurfural | 0.01 ± 0 | 0.05 ± 0.02 | 0.01 ± 0 | - | - | 0.01 ± 0 | 0.12 ± 0.16 | 0.41 ± 0.07 | 0.17 ± 0.04 | - |
| 3-phenylprop-2-en-1-ol | 0.05 ± 0 | 2.76 ± 0.43 | 0.05 ± 0 | 0.01 ± 0 | 0.01 ± 0 | 0.04 ± 0.02 | 2.07 ± 2.71 | 66.64 ± 2 | 47.89 ± 0.71 | 0.08 ± 0.01 |
| 4-ethenyl-2-methoxyphenol | 3.57 ± 0.15 | 0.14 ± 0.06 | 0.08 ± 0.03 | 0.12 ± 0.04 | 0.43 ± 0.31 | 0.87 ± 1.03 | 0.58 ± 0.8 | 0.52 ± 0.07 | 6.68 ± 0.75 | 0.09 ± 0.01 |
| 1-(2-hydroxy-4-methoxyphenyl)ethanone | - | 0.38 ± 0.06 | 0.08 ± 0.03 | 0.31 ± 0.39 | 0.01 ± 0 | 0.41 ± 0.39 | 0.86 ± 1.06 | 0.13 ± 0.08 | 0.04 ± 0.01 | 0.08 ± 0 |
| 3-(2-hydroxyphenyl)prop-2-enoic acid | 0.08 ± 0.05 | 0.05 ± 0 | 0.01 ± 0.01 | 0.13 ± 0.17 | - | 0.08 ± 0.05 | 0.42 ± 0.49 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.01 ± 0 |
| methyl tetradeca-4,6-diynoate | 0.01 ± 0 | 1 ± 1.28 | 0.01 ± 0 | 0.24 ± 0.32 | 0.01 ± 0 | 0.03 ± 0.02 | 0.58 ± 0.67 | 0.94 ± 0.12 | 0.84 ± 0.07 | 0.01 ± 0 |
| ethyl N-(2-methoxyphenyl)formimidate | 0.18 ± 0.15 | 0.33 ± 0.24 | 0.11 ± 0.06 | 0.1 ± 0.03 | 0.03 ± 0.01 | 0.2 ± 0.21 | 0.97 ± 1.24 | 0.35 ± 0.09 | 0.15 ± 0.16 | 0.28 ± 0.15 |
| 2-isopropenyl-2,3-dihydrofuro [3,2-g]chromen-7-one (tentative) | - | - | - | - | - | 0.01 ± 0.01 | 0.01 ± 0.02 | 0.02 ± 0 | - | - |
| 1-ethenyl-2-hexenylcyclopropane | 3.76 ± 0.2 | 0.39 ± 0.17 | 0.05 ± 0 | 0.04 ± 0.01 | 0.01 ± 0 | 0.13 ± 0.04 | 0.75 ± 0.98 | 1.04 ± 0.7 | 3.51 ± 0.14 | 0.03 ± 0 |
| fenipentol | 30.41 ± 0.65 | 0.95 ± 0.63 | 0.13 ± 0.06 | 0.17 ± 0.06 | 0.02 ± 0.02 | 0.35 ± 0.18 | 1.23 ± 1.65 | 0.59 ± 0.31 | 13.22 ± 0.35 | 0.12 ± 0.06 |
| senkyunolide | 30.43 ± 0.65 | 0.94 ± 0.62 | 0.12 ± 0.05 | 0.15 ± 0.07 | 0.05 ± 0 | 0.35 ± 0.18 | 1.08 ± 1.43 | 0.2 ± 0.06 | 13.21 ± 0.34 | 0.13 ± 0.05 |
| 3,4-bis(methylene)cyclopentanone | 1.56 ± 0.13 | 0.13 ± 0.04 | 0.03 ± 0.03 | 0.07 ± 0.04 | - | 0.1 ± 0.05 | 0.13 ± 0.14 | 0.22 ± 0.1 | 1.36 ± 0.11 | 0.09 ± 0.02 |
| spathulenol | 0.03 ± 0.03 | 2.12 ± 1.17 | 0.91 ± 0.05 | 0.2 ± 0.01 | 0.01 ± 0.01 | 0.09 ± 0.06 | 3.19 ± 4.04 | 11.79 ± 0.22 | 0.06 ± 0.02 | 1.1 ± 0.13 |
| isopsoralen | 0.01 ± 0 | 0.27 ± 0.21 | 0.09 ± 0.05 | - | - | 0.01 ± 0 | 0.18 ± 0.24 | 0.28 ± 0.3 | 0.03 ± 0 | 0.12 ± 0.08 |
| 2-hydroxy-5-(3-methylbut-2-enyl)-4-(prop-1-en-2-yl)cyclohepta-2,4,6-trien-1-one | 0.01 ± 0.01 | 0.01 ± 0 | - | 0.01 ± 0 | 0.08 ± 0.02 | 0.53 ± 0.71 | 0.04 ± 0.05 | 0.39 ± 0.2 | 0.18 ± 0.11 | - |
| 8,8-dimethyl-2-oxo-7,8-dihydro-2H,6H-pyrano [3,2-g]chromen-7-yl 3-methylbut-2-enoate | 0.24 ± 0.1 | - | - | - | - | 0.01 ± 0 | 0.01 ± 0.02 | 0.01 ± 0 | 0.24 ± 0.12 | 0.02 ± 0 |
| Compound * | Content a (%) | |||||||||
| IJT | SCRT | GGHT | HNHDT | JGCT | PWS | HSPWS | YGJT | TSD | BHST | |
| 2-furaldehyde | 0.76 ± 0.32 | 0.16 ± 0.05 | 0.07 ± 0.05 | 0.63 ± 0.26 | 0.57 ± 0.31 | 0.35 ± 0.14 | 0.41 ± 0.09 | 0.22 ± 0.06 | 0.37 ± 0.05 | 0.55 ± 0.33 |
| 1-(1H-pyrrol-2-yl)ethanone | 10.09 ± 12.52 | 0.88 ± 0.45 | 1.37 ± 0.84 | 7.38 ± 5.01 | 0.68 ± 0.29 | 0.6 ± 0.16 | 0.7 ± 0.31 | 0.31 ± 0.05 | 0.67 ± 0.1 | 3.09 ± 3.38 |
| methyl furan-3-carboxylate | 0.33 ± 0.24 | 0.09 ± 0.1 | 0.09 ± 0.1 | 0.03 ± 0.02 | 0.27 ± 0.22 | 0.08 ± 0.04 | 0.09 ± 0.05 | 0.05 ± 0.01 | 0.41 ± 0.38 | 0.32 ± 0.18 |
| pyridin-3-ol | 0.68 ± 0.43 | 0.1 ± 0.02 | 0.19 ± 0.16 | 0.19 ± 0.08 | 1.62 ± 0.55 | 0.04 ± 0.01 | 0.17 ± 0.09 | 0.12 ± 0.14 | 0.27 ± 0.21 | 0.3 ± 0.27 |
| 3-methyl-2(1H)-pyridinone | 0.71 ± 0.34 | 0.26 ± 0.32 | 0.03 ± 0 | 0.13 ± 0.09 | 1.07 ± 0.91 | 0.09 ± 0.07 | 0.11 ± 0.07 | 0.08 ± 0.05 | 0.12 ± 0.04 | 0.11 ± 0.11 |
| 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one | 0.67 ± 0.3 | 0.3 ± 0.28 | 0.15 ± 0.17 | 0.18 ± 0.09 | 0.45 ± 0.07 | 0.27 ± 0.24 | 0.09 ± 0.05 | 0.15 ± 0.06 | 0.14 ± 0.02 | 0.21 ± 0.04 |
| dehydromevalonic lactone | 3.66 ± 1.24 | 1.52 ± 0.38 | 0.44 ± 0.06 | 1.75 ± 0.49 | 10.12 ± 2.48 | 0.79 ± 0.37 | 0.6 ± 0.34 | 0.44 ± 0.15 | 1.6 ± 0.8 | 2.58 ± 0.74 |
| 2-methylbenzofuran | 0.74 ± 0.45 | 0.66 ± 0.28 | 0.05 ± 0.03 | 0.06 ± 0.01 | 0.46 ± 0.21 | 0.07 ± 0.05 | 0.11 ± 0.07 | 0.05 ± 0 | 0.3 ± 0.19 | 0.11 ± 0.02 |
| 5-Hydroxymethylfurfural | 5.15 ± 1.96 | 58.42 ± 3.63 | 3.92 ± 3.38 | 8.95 ± 4.57 | 29.73 ± 10.71 | 21.73 ± 4.12 | 20.33 ± 1.06 | 30.53 ± 5.43 | 17.08 ± 2.66 | 25.85 ± 3.42 |
| 2,6-dimethylocta-2,6-diene-1,8-diol | 3.01 ± 0.8 | 0.64 ± 0.2 | 0.09 ± 0.07 | 0.29 ± 0.14 | 2.32 ± 1.88 | 0.6 ± 0.41 | 0.26 ± 0.15 | 0.42 ± 0.35 | 0.24 ± 0.06 | 3.16 ± 0.83 |
| 3-phenylprop-2-en-1-ol | 1.09 ± 0.57 | 4.07 ± 1.65 | 0.31 ± 0.1 | 0.93 ± 0.63 | 0.5 ± 0.1 | 0.72 ± 0.21 | 0.39 ± 0.06 | 0.4 ± 0.2 | 0.29 ± 0.09 | 0.74 ± 0.36 |
| 4-ethenyl-2-methoxyphenol | 28.81 ± 7.57 | 4.87 ± 1.73 | 30.44 ± 6.2 | 72.47 ± 3.5 | 7.71 ± 1.24 | 54.8 ± 6.34 | 45.98 ± 11.35 | 36.9 ± 15.47 | 46.66 ± 13.54 | 20.06 ± 1.98 |
| 1-(2-hydroxy-4-methoxyphenyl)ethanone | 0.98 ± 0.7 | 0.16 ± 0.12 | 0.09 ± 0.07 | 0.33 ± 0.08 | 0.94 ± 0.71 | 0.07 ± 0.05 | 0.18 ± 0.08 | 0.34 ± 0.2 | 0.25 ± 0.19 | 0.26 ± 0.17 |
| 3-(2-hydroxyphenyl)prop-2-enoic acid | 2.69 ± 2.17 | 0.3 ± 0.23 | 0.2 ± 0.13 | 0.26 ± 0.11 | 1.6 ± 1.18 | 0.24 ± 0.18 | 0.34 ± 0.21 | 0.2 ± 0.12 | 0.78 ± 0.62 | 0.46 ± 0.29 |
| methyl tetradeca-4,6-diynoate | 4.8 ± 2.71 | 0.26 ± 0.13 | 0.23 ± 0.04 | 0.32 ± 0.25 | 6.34 ± 1.88 | 1.41 ± 0.99 | 1.19 ± 0.99 | 1.11 ± 0.93 | 1.9 ± 1.08 | 0.74 ± 0.2 |
| ethyl N-(2-methoxyphenyl)formimidate | 19.94 ± 12.75 | 21.02 ± 4.43 | 6.25 ± 5.97 | 3.54 ± 1.9 | 14.83 ± 7.91 | 10.98 ± 1.75 | 16.52 ± 4.8 | 24.2 ± 7.45 | 17.96 ± 3.24 | 29.82 ± 3.54 |
| 2-isopropenyl-2,3-dihydrofuro [3,2-g]chromen-7-one (tentative) | 0.11 ± 0.03 | 0.07 ± 0.04 | 0.08 ± 0.01 | 0.01 ± 0 | 0.34 ± 0.23 | 0.09 ± 0.03 | 0.09 ± 0.07 | 0.05 ± 0.03 | 0.05 ± 0.03 | 0.04 ± 0.02 |
| 1-ethenyl-2-hexenylcyclopropane | 6.68 ± 5.12 | 1.77 ± 1.14 | 6.19 ± 1.83 | 0.82 ± 0.37 | 6.15 ± 3.09 | 1.16 ± 0.63 | 1.6 ± 1.44 | 0.63 ± 0.38 | 1.5 ± 0.99 | 1.27 ± 0.4 |
| fenipentol | 0.7 ± 0.13 | 0.91 ± 0.48 | 23.62 ± 5.76 | 0.5 ± 0.23 | 2.7 ± 0.86 | 1.39 ± 0.7 | 1.21 ± 0.49 | 0.8 ± 0.29 | 0.88 ± 0.58 | 4.16 ± 1.7 |
| senkyunolide | 1.21 ± 0.75 | 0.94 ± 0.48 | 23.75 ± 5.91 | 0.4 ± 0.42 | 2.32 ± 1.19 | 1.45 ± 0.73 | 4.61 ± 2.96 | 0.83 ± 0.29 | 2.02 ± 1.46 | 3.85 ± 1.37 |
| 3,4-bis(methylene)cyclopentanone | 1.49 ± 0.74 | 1.86 ± 1.26 | 1.97 ± 0.38 | 0.45 ± 0.23 | 4.71 ± 4.56 | 0.22 ± 0.05 | 1.45 ± 0.74 | 0.94 ± 0.46 | 1.37 ± 0.75 | 0.95 ± 0.45 |
| spathulenol | 2.72 ± 2.95 | 0.35 ± 0.2 | 0.12 ± 0.01 | 0.1 ± 0.09 | 3.12 ± 1.97 | 2.19 ± 1.48 | 2.32 ± 0.9 | 0.75 ± 0.55 | 0.36 ± 0.29 | 0.95 ± 0.4 |
| isopsoralen | 0.66 ± 0.48 | 0.08 ± 0.05 | 0.07 ± 0.03 | 0.06 ± 0.04 | 0.32 ± 0.16 | 0.11 ± 0.08 | 0.24 ± 0.2 | 0.08 ± 0.08 | 0.05 ± 0.04 | 0.06 ± 0.02 |
| 2-hydroxy-5-(3-methylbut-2-enyl)-4-(prop-1-en-2-yl)cyclohepta-2,4,6-trien-1-one | 1.66 ± 0.55 | 0.08 ± 0.08 | 0.06 ± 0.02 | 0.03 ± 0 | 0.37 ± 0.25 | 0.33 ± 0.15 | 0.54 ± 0.46 | 0.15 ± 0.06 | 0.19 ± 0.13 | 0.15 ± 0.17 |
| 8,8-dimethyl-2-oxo-7,8-dihydro-2H,6H-pyrano [3,2-g]chromen-7-yl 3-methylbut-2-enoate | 0.01 ± 0.02 | 0.01 ± 0 | - | - | 0.06 ± 0.06 | - | - | - | 0.02 ± 0.03 | - |
| Compounds * | CAS No. | Nature of the Compound | Molecular Formula | Molecular Weight (g/mol) | Retention Time (min) | Related Prescription |
|---|---|---|---|---|---|---|
| 2-furaldehyde | 98-01-1 | Aldehyde | C5H4O2 | 96.09 | 11.51 | Diabetes ↑ |
| 1-(1H-pyrrol-2-yl)ethanone | 1072-83-9 | Ketone | C6H7NO | 109.13 | 18.89 | Cold ↑, Fatigue ↓ |
| methyl furan-3-carboxylate | 2386-64-3 | Ester | C6H6O3 | 126.11 | 19.57 | Muscle relaxation ↑ |
| pyridin-3-ol | 109-00-2 | Nitrogenous compound | C5H5NO | 95.10 | 19.76 | Women’s Disease ↓ |
| 3-methyl-2(1H)-pyridinone | 1603-40-3 | Nitrogenous compound | C6H7NO | 109.13 | 20.31 | Women’s Disease ↓, Cognitive disorder ↓ |
| 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one | 28564-83-2 | Lactone | C6H8O4 | 144.13 | 21.6 | Cold ↑, Fatigue ↓, Diabetes ↓, Cognitive disorder ↑ |
| dehydromevalonic lactone | 404-14-2 | Lactone | C6H8O3 | 128.13 | 22.06 | Diabetes ↑ |
| 2-methylbenzofuran | 4265-97-8 | Furan derivative | C9H8O | 132.16 | 22.83 | Cognitive disorder ↓ |
| 5-Hydroxymethylfurfural | 67-47-0 | Furan | C6H6O3 | 126.11 | 23.76 | Inflammation ↓, Fatigue ↑, Diabetes ↑ |
| 2,6-dimethylocta-2,6-diene-1,8-diol | 26488-97-1 | Monoterpenoid | C10H18O2 | 170.25 | 26.39 | Digestive disorders ↑ |
| 3-phenylprop-2-en-1-ol | 104-54-1 | Alcohol | C9H10O | 134.18 | 26.42 | Kidney disorders ↓ |
| 4-ethenyl-2-methoxyphenol | 7786-61-0 | Phenol | C9H10O2 | 150.17 | 26.52 | Cold ↑, Inflammation ↑ |
| 1-(2-hydroxy-4-methoxyphenyl)ethanone | 613-60-5 | Ketone | C9H10O3 | 166.18 | 30.23 | Kidney disorders ↓, Muscle relaxation ↓, Diabetes ↑ |
| 3-(2-hydroxyphenyl)prop-2-enoic acid | 614-60-8 | Phenolic acid | C9H8O3 | 164.16 | 30.39 | Cognitive disorder ↓ |
| methyl tetradeca-4,6-diynoate | CAS not available | Ester | C15H22O2 | 234.34 | 32.28 | Cognitive disorder ↑ |
| ethyl N-(2-methoxyphenyl)formimidate | 115118-93-9 | Other organic compound | C10H13NO2 | 179.22 | 33.97 | Fatigue ↓ |
| 2-isopropenyl-2,3-dihydrofuro [3,2-g]chromen-7-one (tentative) | 32375-25-0 | Coumarin derivative | C14H10O3 | 214.26 | 35.91 | Cold ↑ |
| 1-ethenyl-2-hexenylcyclopropane | 25047-20-5 | Cyclic hydrocarbon | C11H18 | 150.26 | 36.43 | Cold ↑ |
| fenipentol | 57052-30-7 | Alcohol | C11H16O2 | 180.24 | 37.06 | Women’s Disease ↑ |
| senkyunolide | 120190-89-8 | Phthalide lactone | C12H14O2 | 206.24 | 37.07 | Cold ↑ |
| 3,4-bis(methylene)cyclopentanone | 14489-75-9 | Ketone | C7H6O | 106.12 | 37.26 | Cold ↑ |
| spathulenol | 6750-60-3 | Sesquiterpene | C15H24O | 220.35 | 38.52 | Kidney disorders ↑ |
| isopsoralen | 523-50-2 | Furocoumarin | C11H6O3 | 186.16 | 38.79 | Cold ↑, Inflammation ↑ |
| 2-hydroxy-5-(3-methylbut-2-enyl)-4-(prop-1-en-2-yl)cyclohepta-2,4,6-trien-1-one | 473-15-4 | Other organic compound | C15H16O2 | 230.30 | 47.29 | Cognitive disorder ↑ |
| 8,8-dimethyl-2-oxo-7,8-dihydro-2H,6H-pyrano [3,2-g]chromen-7-yl 3-methylbut-2-enoate | 86230-55-3 | Coumarin lactone | C19H20O5 | 328.40 | 70.54 | Cognitive disorder ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Seo, S.; Kim, U.; Kim, J.; Jeong, C.; Han, S.B. Volatile Organic Compound Profiling of Traditional Multi-Herbal Prescriptions for Chemical Differentiation and Ethnopharmacological Insights. Separations 2026, 13, 8. https://doi.org/10.3390/separations13010008
Seo S, Kim U, Kim J, Jeong C, Han SB. Volatile Organic Compound Profiling of Traditional Multi-Herbal Prescriptions for Chemical Differentiation and Ethnopharmacological Insights. Separations. 2026; 13(1):8. https://doi.org/10.3390/separations13010008
Chicago/Turabian StyleSeo, Sumin, Unyong Kim, Jiyu Kim, Chohee Jeong, and Sang Beom Han. 2026. "Volatile Organic Compound Profiling of Traditional Multi-Herbal Prescriptions for Chemical Differentiation and Ethnopharmacological Insights" Separations 13, no. 1: 8. https://doi.org/10.3390/separations13010008
APA StyleSeo, S., Kim, U., Kim, J., Jeong, C., & Han, S. B. (2026). Volatile Organic Compound Profiling of Traditional Multi-Herbal Prescriptions for Chemical Differentiation and Ethnopharmacological Insights. Separations, 13(1), 8. https://doi.org/10.3390/separations13010008

