Conceptual Design and Optimization of Reactive Distillation-Based Processes for the Separation of Methanol/Methyl Acetate/Ethyl Acetate with an Ethyl Acetate-Rich Feed Composition
Abstract
1. Introduction
2. Methodology
2.1. Thermodynamics Insights
2.2. Conceptual Design
2.2.1. Existing RD-Based Processes
2.2.2. Proposed RD-Based Processes
2.3. Process Optimization
2.4. Economic and Environmental Performance Evaluation Index
3. Results and Discussion
3.1. Results of Process Optimization
3.2. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
| AD | Azeotropic distillation | NT | Total number of stages |
| CB | Chlorobenzene | NF | Feed location |
| DCPSRD | Double-column pre-separation-reactive distillation | Nside-draw | Side-draw location |
| EA | Ethyl acetate | PGME | Propylene glycol monomethyl ether |
| ECO2 | CO2 emission | PGMEA | Propylene glycol monomethyl ether acetate |
| ED | Extractive distillation | PSD | Pressure-swing distillation |
| EO | Ethylene oxide | QR | Reboiler duty |
| FD | Flowrate of distillate | RD | Reactive distillation |
| Fentrainer | Flowrate of entrainer | RR | Reflux ratio |
| FPGME | Flowrate of reactant PGME | TAC | Total annual cost |
| Fside-draw | Flowrate of side-draw | TCC | Total capital cost |
| Fside-line reflux | Flowrate of side-line reflux | TCERD | Tripe-column extractive–reactive distillation |
| GA | Genetic algorithm | TCERD-SP | Triple-column extractive–reactive distillation with a side-draw product |
| MA | Methyl acetate | TCERD-SP-HI | Triple-column extractive–reactive distillation with a side-draw product and heat-integration |
| ME | Methanol | TCRED | Triple-column reactive–extractive distillation |
| MINLP | Mixed integer nonlinear programming | TEC | Total energy costs |
| M&S | Marshall and Swift index | ID | Column diameter |
References
- Tavan, Y.; Hosseini, S.H. A novel integrated process to break the ethanol/water azeotrope using reactive distillation—Part I: Parametric study. Sep. Purif. Technol. 2013, 118, 455–462. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Rao, J.; Shi, K.; Sun, Y.; Liu, W.; Liu, J. Vapor Liquid Equilibrium Measurement and Distillation Simulation for Azeotropic Distillation Separation of H2O/EM Azeotrope. Separations 2025, 12, 273. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, Q.; Jin, Z.; Liu, Y.; Dai, Y. Economic; Environmental, and Safety Multi-Objective Optimization Design for Separation of Tetrahydrofuran/Methanol/Water Mixture. Separations 2025, 12, 255. [Google Scholar] [CrossRef]
- Sander, A.; Petračić, A.; Rogošić, M.; Župan, M.; Frljak, L.; Cvetnić, M. Feasibility of Different Methods for Separatingn-Hexane and Ethanol. Separations 2024, 11, 151. [Google Scholar] [CrossRef]
- Kiss, A.A.; Bildea, C.S. Reactive distillation: Stepping up to the next level of process intensification. Ind. Eng. Chem. Res. 2018, 57, 15811–15825. [Google Scholar] [CrossRef]
- Kong, Z.Y.; Sunarso, J.; Yang, A. Recent progress on hybrid reactive-extractive distillation for azeotropic separation: A short review. Front. Chem. Eng. 2022, 4, 986411. [Google Scholar] [CrossRef]
- Malone, M.F.; Doherty, M.F. Reactive distillation. Ind. Eng. Chem. Res. 2000, 39, 3953–3957. [Google Scholar] [CrossRef]
- Yang, A.; Su, Y.; Sun, S.; Shen, W.; Bai, M.; Ren, J. Towards sustainable separation of the ternary azeotropic mixture based on the intensified reactive-extractive distillation configurations and multi-objective particle swarm optimization. J. Clean. Prod. 2022, 332, 130116. [Google Scholar] [CrossRef]
- Huang, J.H.; Zhang, Q.; Liu, C.; Yin, T.; Xiang, W. Optimal design of a ternary azeotrope separation process assisted by reactive-extractive distillation for ethyl acetate/isopropanol/water. Sep. Purif. Technol. 2023, 307, 122941. [Google Scholar] [CrossRef]
- Su, Y.; Yang, A.; Jin, S.; Shen, W.; Cui, P.; Ren, J. Investigation on ternary system tetrahydrofuran/ethanol/water with three azeotropes separation via the combination of reactive and extractive distillation. J. Clean. Prod. 2020, 273, 123145. [Google Scholar] [CrossRef]
- Wang, C.; Zhuang, Y.; Liu, L.; Zhang, L.; Du, J. Design and comparison of energy-saving double-column and triple-column reactive-extractive hybrid distillation processes for ternary multi-azeotrope dehydration. Sep. Purif. Technol. 2021, 259, 118211. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Ye, C.; Dong, X.; Qiu, T. Feasibility study of reactive distillation for the production of propylene glycol monomethyl ether acetate through transesterification. Ind. Eng. Chem. Res. 2017, 56, 7149–7159. [Google Scholar] [CrossRef]
- Chaniago, Y.D.; Hussain, A.; Andika, R.; Lee, M. Reactive pressure-swing distillation toward sustainable process of novel continuous ultra-high-purity electronic-grade propylene glycol monomethyl ether acetate manufacture. ACS Sustain. Chem. Eng. 2019, 7, 18677–18689. [Google Scholar] [CrossRef]
- Chaniago, Y.D.; Naquash, A.; Nhien, L.C.; Naquash, A.; Riaz, A.; Kim, G.S.; Lim, H.; Lee, M. Pressure swing-based reactive distillation and dividing wall column for improving manufacture of propylene glycol monomethyl ether acetate. Energies 2021, 14, 7416. [Google Scholar] [CrossRef]
- Zhu, J.; Lin, H.; Zhu, Z.; Wei, H. Development of novel hybrid pre-separation/extractive reactive distillation processes for the separation of methanol/methyl acetate/ethyl acetate. Sep. Purif. Technol. 2024, 348, 127496. [Google Scholar] [CrossRef]
- Renon, H.; Prausnitz, J.M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968, 14, 135–144. [Google Scholar] [CrossRef]
- Wang, C.; Zhuang, Y.; Qin, Y.; Dong, Y.; Liu, L.; Zhang, L.; Du, J. Optimization and ecoefficiency analysis of extractive distillation processes with different solvents for separating the ternary mixture embedding two azeotropes. Sep. Purif. Technol. 2021, 269, 118763. [Google Scholar] [CrossRef]
- Hussain, A.; Chaniago, Y.D.; Riaz, A.; Lee, M. Process design alternatives for producing ultra-high-purity electronic-grade propylene glycol monomethyl ether acetate. Ind. Eng. Chem. Res. 2019, 58, 2246–2257. [Google Scholar] [CrossRef]
- Jing, C.; Liao, L.; Yang, H. Process design, intensification and control of triple-column pressure-swing distillation for the separation of methyl acetate/methanol/ethyl acetate. Sep. Purif. Technol. 2025, 361, 131361. [Google Scholar] [CrossRef]
- Cao, J.; Yu, G.; Chen, X.; Abdeltawab, A.A.; Al-Enizi, A.M. Determination of vapor liquid equilibrium of methyl acetate + methanol + 1-alkyl-3-methylimidazolium dialkylphosphates at 101.3 kPa. J. Chem. Eng. Data. 2017, 62, 816–824. [Google Scholar] [CrossRef]
- Nishi, Y. Vapor-liquid equilibria accompanied by hypothetical chemical reaction. J. Chem. Eng. Jpn. 1972, 5, 334–339. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Liu, Y.; Jian, C.; Wang, W. Experimental isobaric vapor-liquid equilibrium for the binary and ternary systems with methanol, methyl acetate and dimethyl sulfoxide at 101.3 kPa. Fluid Phase Equilib. 2016, 408, 52–57. [Google Scholar] [CrossRef]
- Reddy, B.S.; Rao, B.V.S. Isoharic vapour-liquid equilibrium data of ethyl acetatechlorobenzene and toluene-n-butyl acetate mixtures at 101.3 kPa pressure. Indian Chem. Eng. 1988, 30, 50–52. [Google Scholar]
- Feng, Y.; Mao, S. Vapor-liquid equilibria for binary systems of methanol-chlorobenzene and chlorobenzene-dimethyl sulfoxide. J. Chem. Eng. Chinese Univ. 1991, 5, 73–78. [Google Scholar]
- Ye, C.; Dong, X.; Zhu, W.; Cai, D.; Qiu, T. Isobaric vapor-liquid equilibria of the binary mixtures propylene glycol methyl ether + propylene glycol methyl ether acetate, methyl acetate + propylene glycol methyl ether and methanol + propylene glycol methyl ether acetate at 101.3 kPa. Fluid Phase Equilib. 2014, 367, 45–50. [Google Scholar] [CrossRef]
- Cantú-Paz, E.; Goldberg, D.E. Efficient parallel genetic algorithms: Theory and practice. Comput. Methods Appl. Mech. Eng. 2000, 186, 221–238. [Google Scholar] [CrossRef]
- Wu, T.-W.; Chien, I.L. CO2 utilization feasibility study: Dimethyl carbonate direct synthesis process with dehydration reactive distillation. Ind. Eng. Chem. Res. 2020, 59, 1234–1248. [Google Scholar] [CrossRef]
- Douglas, J. Conceptual Design of Chemical Processes; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Turton, R.; Bailie, R.C.; Whiting, W.B.; Shaeiwitz, J.A. Analysis, Synthesis and Design of Chemical Processes, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2003. [Google Scholar]
- Zhu, J.; Huang, J.; Zhao, X.; Hao, L.; Yang, A.; Shen, W. Energy-Efficient Extractive Pressure-Swing Distillation with Integrated Preconcentration Column and Natural Decanter for Ternary Heterogeneous Mixtures. Energy 2025, 337, 138602. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Liu, Z.; Hao, L.; Wei, H. Synergy of electrification and energy efficiency improvement via vapor recompression heat pump and heat exchanger network to achieve decarbonization of extractive distillation. Sep. Purif. Technol. 2022, 293, 121065. [Google Scholar] [CrossRef]
















| Parameters | Values |
|---|---|
| Population size | 250 |
| Population type | double vector |
| Elite count | 0.05 |
| Crossover fraction | 0.8 |
| Maximum generations | 600 |
| Maximum stall generations | 100 |
| Function tolerance | 1 × 10−5 |
| TCERD | DCPSRD | TCERD-SP | TCERD-SP-HI | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C101 | C102 | C103 | Cooler | C101 | C102 | C101 | C102 | C103 | Cooler | C101 | C102 | C103 | Cooler | |
| P (atm) | 1 | 3.084 | 1 | 3.204 | 4.434 | 1 | 1 | 3.543 | 1 | 1 | 3.543 | |||
| NT | 51 | 44 | 21 | 57 | 51 | 52 | 43 | 43 | 52 | 43 | 43 | |||
| ID (m) | 1.146 | 0.805 | 0.869 | 1.026 | 0.803 | 0.774 | 1.026 | 0.803 | 0.774 | |||||
| Entrainer flowrate (kmol/h) | 80.585 | 36.790 | 36.790 | |||||||||||
| QR (kW) | 1807 | 1054 | 955 | 3554 | 940 | 325 | 918 | 1004 | 325 | 918 | 1004 | |||
| QC (kW) | −1442 | −818 | −938 | −3289 | −708 | −1195 | −785 | −747 | −1195 | −785 | 0 | |||
| Side reboiler duty (kW) | 1016 | 269 | ||||||||||||
| Cooler duty (kW) | −327 | −162 | −162 | |||||||||||
| Sub-item capital cost (106 USD/year) | 0.884 | 0.492 | 0.429 | 0.047 | 1.219 | 0.516 | 0.782 | 0.555 | 0.477 | 0.029 | 0.895 | 0.555 | 0.427 | 0.029 |
| Total capital cost (106 USD/year) | 1.852 | 1.735 | 1.844 | 1.906 | ||||||||||
| Sub-item energy cost (106 USD/year) | 0.420 | 0.308 | 0.224 | 0.003 | 0.830 | 0.275 | 0.317 | 0.214 | 0.293 | 0.002 | 0.149 | 0.214 | 0.286 | 0.002 |
| Total energy cost (106 USD/year) | 0.955 | 1.104 | 0.825 | 0.650 | ||||||||||
| TAC of process (106 USD/year) | 1.572 | 1.683 | 1.440 | 1.286 | ||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jing, C.; Wei, L.; Xiang, W.; Liu, K. Conceptual Design and Optimization of Reactive Distillation-Based Processes for the Separation of Methanol/Methyl Acetate/Ethyl Acetate with an Ethyl Acetate-Rich Feed Composition. Separations 2026, 13, 7. https://doi.org/10.3390/separations13010007
Jing C, Wei L, Xiang W, Liu K. Conceptual Design and Optimization of Reactive Distillation-Based Processes for the Separation of Methanol/Methyl Acetate/Ethyl Acetate with an Ethyl Acetate-Rich Feed Composition. Separations. 2026; 13(1):7. https://doi.org/10.3390/separations13010007
Chicago/Turabian StyleJing, Cong, Liangxiao Wei, Wei Xiang, and Keyan Liu. 2026. "Conceptual Design and Optimization of Reactive Distillation-Based Processes for the Separation of Methanol/Methyl Acetate/Ethyl Acetate with an Ethyl Acetate-Rich Feed Composition" Separations 13, no. 1: 7. https://doi.org/10.3390/separations13010007
APA StyleJing, C., Wei, L., Xiang, W., & Liu, K. (2026). Conceptual Design and Optimization of Reactive Distillation-Based Processes for the Separation of Methanol/Methyl Acetate/Ethyl Acetate with an Ethyl Acetate-Rich Feed Composition. Separations, 13(1), 7. https://doi.org/10.3390/separations13010007
