A Comprehensive GC-MS Approach for Monitoring Legacy and Emerging Halogenated Contaminants in Human Biomonitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Standard Solutions
2.3. Design of Experiment Method
2.4. Instrumental Conditions
2.4.1. GC-EI-MS Condition
2.4.2. GC-EI-HRMS Condition
2.5. Sample Extraction
- (1)
- Aliquot was thawed, 10 μL of IS (at 10 MQL concentration) was added, and the freeze-dried sample was added with 3 mL of hexane and 1 mL of ACN for protein precipitation. The sample was sonicated for 5 min, vortexed for 2 min, and centrifuged at 3500 rpm for 5 min. Three identical extractions were performed, and the supernatants were merged. The hexane fractions were separated and concentrated to 1 mL with N2.
- (2)
- SPE was performed on the first fraction containing hexane by using SupercleanTM ENVI-Florisil SPE Tube cartridge (Merck, Darmstadt, Germany). The cartridge was conditioned with 8 mL of DCM/acetone 1:1 and 2 mL of hexane, sample was eluted with 12 mL of 15%DCM in hexane and dried under a gentle stream of N2.
- (3)
- The polar fraction, after hexane extraction, was added with 1.75 mL of EtAC, sonicated for 5 min, vortexed for 2 min, and centrifuged at 4000 rpm for 20 min. The supernatants, obtained from three identical replicated extractions, were collected and dried.
- (4)
- EtAC extract was reconstituted in 400 μL of 1:1 isooctane/toluene mixture and used to reconstitute the dryness hexane extract.
- (5)
- After dryness, final 100 μL of 1:1 isooctane/toluene was used to reconstitute the sample.
2.6. Optimization of GC-MS Assay
- Resolution between PCB 128 and PCB 167.
- Method sensitivity and peak shape: peak area/full width at half maximum (A/FWHM).
2.7. Optimization Extraction Procedures
2.8. Method Validation
2.8.1. D-Optimal Design Validation
2.8.2. Analytical Method Validation
3. Results
3.1. Analytical Separation Method Development
3.1.1. First D-Optimal Design
(1) Resolution Between PCB128-PCB167
(2) Method Sensitivity and Peak Shape
3.1.2. Second D-Optimal Design
(1) Resolution Between PCB128-PCB167
(2) Method Sensitivity and Peak Shape
3.2. Extraction and Purification Method Development
Design of Experiment
3.3. Method Validation
3.3.1. Linearity, Accuracy, and Precision
3.3.2. Selectivity
3.3.3. Method Detection Limits and Method Quantification Limits
3.3.4. Recovery
3.3.5. Matrix Effect
3.4. Analysis of Certified Serum Sample
3.5. GC-HR-MS
4. Discussion
4.1. Analytical Separation Method Development
4.2. Extraction and Purification Method Development
4.3. Method Validation
Method Performance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| GC-EI-MS | Gas chromatography-Electron impact-Mass spectrometry |
| DoE | Directory of open access journals |
| PCB | Polychlorinated biphenyl |
| BFR | Brominated flame retardants |
| NBFR | Novel brominated flame retardants |
| PoP | Persistent organic pollutants |
| GC-HR-MS | Gas chromatography- high resolution- mass spectrometry |
References
- Comito, R.; Porru, E.; Violante, F.S. Analytical Methods Employed in the Identification and Quantification of Per- and Polyfluoroalkyl Substances in Human Matrices—A Scoping Review. Chemosphere 2023, 345, 140433. [Google Scholar] [CrossRef]
- Yuan, B.; Bignert, A.; Andersson, P.L.; West, C.E.; Domellöf, M.; Bergman, Å. Polychlorinated Alkanes in Paired Blood Serum and Breast Milk in a Swedish Cohort Study: Matrix Dependent Partitioning Differences Compared to Legacy POPs. Environ. Int. 2024, 183, 108440. [Google Scholar] [CrossRef]
- Génard-Walton, M.; Warembourg, C.; Duros, S.; Mercier, F.; Lefebvre, T.; Guivarc’h-Levêque, A.; Le Martelot, M.-T.; Le Bot, B.; Jacquemin, B.; Chevrier, C.; et al. Serum Persistent Organic Pollutants and Diminished Ovarian Reserve: A Single-Exposure and Mixture Exposure Approach from a French Case–Control Study. Hum. Reprod. 2023, 38, 701–715. [Google Scholar] [CrossRef]
- Everett, C.J.; Thompson, O.M.; Dismuke, C.E. Exposure to DDT and Diabetic Nephropathy among Mexican Americans in the 1999–2004 National Health and Nutrition Examination Survey. Environ. Pollut. 2017, 222, 132–137. [Google Scholar] [CrossRef]
- Rossi, M.; Scarselli, M.; Fasciani, I.; Maggio, R.; Giorgi, F. Dichlorodiphenyltrichloroethane (DDT) Induced Extracellular Vesicle Formation: A Potential Role in Organochlorine Increased Risk of Parkinson’s Disease. Acta Neurobiol. Exp. 2017, 77, 113–117. [Google Scholar] [CrossRef]
- Cohn, B.A.; Cirillo, P.M.; Terry, M.B. DDT and Breast Cancer: Prospective Study of Induction Time and Susceptibility Windows. JNCI J. Natl. Cancer Inst. 2019, 111, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Pessah, I.N.; Lein, P.J.; Seegal, R.F.; Sagiv, S.K. Neurotoxicity of Polychlorinated Biphenyls and Related Organohalogens. Acta Neuropathol. 2019, 138, 363–387. [Google Scholar] [CrossRef] [PubMed]
- Klocke, C.; Lein, P.J. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. Int. J. Mol. Sci. 2020, 21, 1013. [Google Scholar] [CrossRef]
- Hornbuckle, K.; Robertson, L. Polychlorinated Biphenyls (PCBs): Sources, Exposures, Toxicities. Environ. Sci. Technol. 2010, 44, 2749–2751. [Google Scholar] [CrossRef]
- Frederiksen, M.; Andersen, H.V.; Haug, L.S.; Thomsen, C.; Broadwell, S.L.; Egsmose, E.L.; Kolarik, B.; Gunnarsen, L.; Knudsen, L.E. PCB in Serum and Hand Wipes from Exposed Residents Living in Contaminated High-Rise Apartment Buildings and a Reference Group. Int. J. Hyg. Environ. Health 2020, 224, 113430. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Polychlorinated Biphenyls and Polybrominated Bipheny; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Lyon, France, 2016. [Google Scholar]
- Zhang, D.; Saktrakulkla, P.; Marek, R.F.; Lehmler, H.-J.; Wang, K.; Thorne, P.S.; Hornbuckle, K.C.; Duffel, M.W. PCB Sulfates in Serum from Mothers and Children in Urban and Rural U.S. Communities. Environ. Sci. Technol. 2022, 56, 6537–6547. [Google Scholar] [CrossRef]
- Sharkey, M.; Harrad, S.; Abou-Elwafa Abdallah, M.; Drage, D.S.; Berresheim, H. Phasing-out of Legacy Brominated Flame Retardants: The UNEP Stockholm Convention and Other Legislative Action Worldwide. Environ. Int. 2020, 144, 106041. [Google Scholar] [CrossRef]
- Dong, L.; Wang, S.; Qu, J.; You, H.; Liu, D. New Understanding of Novel Brominated Flame Retardants (NBFRs): Neuro(Endocrine) Toxicity. Ecotoxicol. Environ. Saf. 2021, 208, 111570. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Flame Retardants Used in Flexible Polyurethane Foam: An Alternatives Assessment Update; USEPA: Washington, DC, USA, 2015.
- Guan, X.; Zhang, G.; Meng, L.; Liu, M.; Zhang, L.; Zhao, C.; Li, Y.; Zhang, Q.; Jiang, G. Novel Biomonitoring Method for Determining Five Classes of Legacy and Alternative Flame Retardants in Human Serum Samples. J. Environ. Sci. 2023, 131, 111–122. [Google Scholar] [CrossRef]
- Lionetto, M.G.; Caricato, R.; Giordano, M.E. Pollution Biomarkers in Environmental and Human Biomonitoring. Open Biomark. J. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Y.; Niu, P.; Wang, J.; Sun, Z.; Zhang, S.; Wu, Y. Concurrent Extraction, Clean-up, and Analysis of Polybrominated Diphenyl Ethers, Hexabromocyclododecane Isomers, and Tetrabromobisphenol A in Human Milk and Serum. J. Sep. Sci. 2013, 36, 3402–3410. [Google Scholar] [CrossRef]
- Fulara, I.; Czaplicka, M. Methods for Determination of Polybrominated Diphenyl Ethers in Environmental Samples—Review. J. Sep. Sci. 2012, 35, 2075–2087. [Google Scholar] [CrossRef] [PubMed]
- Svarcova, A.; Lankova, D.; Gramblicka, T.; Stupak, M.; Hajslova, J.; Pulkrabova, J. Integration of Five Groups of POPs into One Multi-Analyte Method for Human Blood Serum Analysis: An Innovative Approach within Biomonitoring Studies. Sci. Total Environ. 2019, 667, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Brennan, E.; Kumar, N.; Drage, D.S.; Cunningham, T.K.; Sathyapalan, T.; Mueller, J.F.; Atkin, S.L. A Case-Control Study of Polychlorinated Biphenyl Association with Metabolic and Hormonal Outcomes in Polycystic Ovary Syndrome. J. Environ. Sci. Health Part C 2022, 40, 86–105. [Google Scholar] [CrossRef]
- Gao, L.; Li, J.; Wu, Y.; Yu, M.; Chen, T.; Shi, Z.; Zhou, X.; Sun, Z. Determination of Novel Brominated Flame Retardants and Polybrominated Diphenyl Ethers in Serum Using Gas Chromatography–Mass Spectrometry with Two Simplified Sample Preparation Procedures. Anal. Bioanal. Chem. 2016, 408, 7835–7844. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, Y.; Chen, T.; Shi, Z.; Zhou, X.; Sun, Z.; Zhang, L.; Li, J. Determination of Polybrominated Diphenyl Ethers and Novel Brominated Flame Retardants in Human Serum by Gas Chromatography-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry. J. Chromatogr. B 2018, 1099, 64–72. [Google Scholar] [CrossRef]
- Leardi, R. Experimental Design. In Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 28, pp. 9–53. ISBN 978-0-444-59528-7. [Google Scholar]
- Mac Namara, K.; Leardi, R.; Sabuneti, A. Fast GC Analysis of Major Volatile Compounds in Distilled Alcoholic Beverages. Anal. Chim. Acta 2005, 542, 260–267. [Google Scholar] [CrossRef]
- Godula, M.; Hajšlová, J.; Alterová, K. Pulsed Splitless Injection and the Extent of Matrix Effects in the Analysis of Pesticides. J. High Resolut. Chromatogr. 1999, 22, 395–402. [Google Scholar] [CrossRef]
- Cruse, C.A.; Tipple, C.A.; Miller, M.L. Confirmation of Solid Phase Extracted Post-Blast Explosives Residues Analyzed Using Pulsed Split Injection GC/MS. Propellants Explos. Pyrotech. 2025, 50, e202400184. [Google Scholar] [CrossRef]
- Meyers, R.A. (Ed.) Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; Wiley: Chichester, UK, 2000; ISBN 978-0-470-02731-8. [Google Scholar]
- Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool), R version 3.1.2; Società Chimica Italiana: Roma, Italy. Available online: http://gruppochemiometria.it/index.php/software (accessed on 5 January 2025).
- Magoni, M.; Donato, F.; Apostoli, P.; Rossi, G.; Comba, P.; Fazzo, L.; Speziani, F.; Leonardi, L.; Orizio, G.; Scarcella, C.; et al. Serum Levels of Polychlorinated Biphenyls and Risk of Non-Hodgkin Lymphoma: A Hospital-Based Case-Control Study. Chemosphere 2019, 235, 969–975. [Google Scholar] [CrossRef]
- Apostoli, P.; Magoni, M.; Bergonzi, R.; Carasi, S.; Indelicato, A.; Scarcella, C.; Donato, F. Assessment of Reference Values for Polychlorinated Biphenyl Concentration in Human Blood. Chemosphere 2005, 61, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Esser, A.; Schettgen, T.; Kraus, T. Assessment of a Potential PCB Exposure among (Former) Underground Miners by Hydraulic Fluids. J. Toxicol. Environ. Health A 2020, 83, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Kiridena, W.; Wiegand, P.; Booth, M.; Lindelien, C. A Comparative Assessment of Low- and High-Resolution Gas Chromatography/Mass Spectrometry Methods for Polychlorinated Biphenyl Congener Analysis in Industry Wastewater. J. Chromatogr. Open 2024, 5, 100124. [Google Scholar] [CrossRef]
- Tan, Q.; Wang, M.; Yu, L.; Liang, R.; Liu, W.; Dong, C.; Zhang, Y.; Li, M.; Ye, Z.; Wang, B.; et al. Associations of Polychlorinated Biphenyls Exposure with Plasma Glucose and Diabetes in General Chinese Population: The Mediating Effect of Lipid Peroxidation. Environ. Pollut. 2022, 308, 119660. [Google Scholar] [CrossRef]
- Turci, R.; Finozzi, E.; Catenacci, G.; Marinaccio, A.; Balducci, C.; Minoia, C. Reference Values of Coplanar and Non-Coplanar PCBs in Serum Samples from Two Italian Population Groups. Toxicol. Lett. 2006, 162, 250–255. [Google Scholar] [CrossRef]
- Muir, D.; Sverko, E. Analytical Methods for PCBs and Organochlorine Pesticides in Environmental Monitoring and Surveillance: A Critical Appraisal. Anal. Bioanal. Chem. 2006, 386, 769–789. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 709/2014 of 20 June 2014 Amending Regulation (EC) No 152/2009 as Regards the Determination of the Levels of Dioxins and Polychlorinated Biphenyls. Off. J. Eur. Union 2014, 188, 1–18. [Google Scholar]
- Pulkrabová, J.; Hrádková, P.; Hajšlová, J.; Poustka, J.; Nápravníková, M.; Poláček, V. Brominated Flame Retardants and Other Organochlorine Pollutants in Human Adipose Tissue Samples from the Czech Republic. Environ. Int. 2009, 35, 63–68. [Google Scholar] [CrossRef]
- Barontini, F.; Cozzani, V.; Petarca, L. Thermal Stability and Decomposition Products of Hexabromocyclododecane. Ind. Eng. Chem. Res. 2001, 40, 3270–3280. [Google Scholar] [CrossRef]
- Xiong, P.; Yan, X.; Zhu, Q.; Qu, G.; Shi, J.; Liao, C.; Jiang, G. A Review of Environmental Occurrence, Fate, and Toxicity of Novel Brominated Flame Retardants. Environ. Sci. Technol. 2019, 53, 13551–13569. [Google Scholar] [CrossRef] [PubMed]
- Turci, R.; Angeleri, F.; Minoia, C. A Rapid Screening Method for Routine Congener-specific Analysis of Polychlorinated Biphenyls in Human Serum by High-resolution Gas Chromatography with Mass Spectrometric Detection. Rapid Commun. Mass Spectrom. 2002, 16, 1957–1964. [Google Scholar] [CrossRef] [PubMed]
- Alaee, M.; Backus, S.; Cannon, C. Potential Interference of PBDEs in the Determination of PCBs and Other Organochlorine Contaminants Using Electron Capture Detection. J. Sep. Sci. 2001, 24, 465–469. [Google Scholar] [CrossRef]
- Choi, J.; Aarøe Mørck, T.; Polcher, A.; Knudsen, L.E.; Joas, A. Review of the State of the Art of Human Biomonitoring for Chemical Substances and Its Application to Human Exposure Assessment for Food Safety. EFSA Support. Publ. 2015, 12, 724E. [Google Scholar] [CrossRef]
- Schulz, C.; Angerer, J.; Ewers, U.; Kolossa-Gehring, M. The German Human Biomonitoring Commission. Int. J. Hyg. Environ. Health 2007, 210, 373–382. [Google Scholar] [CrossRef]
- DeCaprio, A.P.; Tarbell, A.M.; Bott, A.; Wagemaker, D.L.; Williams, R.L.; O’Hehir, C.M. Routine Analysis of 101 Polychlorinated Biphenyl Congeners in Human Serum by Parallel Dual-Column Gas Chromatography with Electron Capture Detection. J. Anal. Toxicol. 2000, 24, 403–420. [Google Scholar] [CrossRef]
- Rylander, C.; Lund, E.; Frøyland, L.; Sandanger, T.M. Predictors of PCP, OH-PCBs, PCBs and Chlorinated Pesticides in a General Female Norwegian Population. Environ. Int. 2012, 43, 13–20. [Google Scholar] [CrossRef]
- Barmpas, M.; Vakonaki, E.; Tzatzarakis, M.; Sifakis, S.; Alegakis, A.; Grigoriadis, T.; Sodré, D.B.; Daskalakis, G.; Antsaklis, A.; Tsatsakis, A. Organochlorine Pollutants’ Levels in Hair, Amniotic Fluid and Serum Sampless of Pregnant Women in Greece. A Cohort Study. Environ. Toxicol. Pharmacol. 2020, 73, 103279. [Google Scholar] [CrossRef] [PubMed]
- Turci, R.; Balducci, C.; Brambilla, G.; Colosio, C.; Imbriani, M.; Mantovani, A.; Vellere, F.; Minoia, C. A Simple and Fast Method for the Determination of Selected Organohalogenated Compounds in Serum Samples from the General Population. Toxicol. Lett. 2010, 192, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Wong, F.; Suzuki, G.; Michinaka, C.; Yuan, B.; Takigami, H.; De Wit, C.A. Dioxin-like Activities, Halogenated Flame Retardants, Organophosphate Esters and Chlorinated Paraffins in Dust from Australia, the United Kingdom, Canada, Sweden and China. Chemosphere 2017, 168, 1248–1256. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, T.; Yang, B.; Wang, D.; Sun, W.; Wang, Y.; Yang, X.; Wen, S.; Li, J.; Shi, Z. Serum Levels of Novel Brominated Flame Retardants (NBFRs) in Residents of a Major BFR-Producing Region: Occurrence, Impact Factors and the Relationship to Thyroid and Liver Function. Ecotoxicol. Environ. Saf. 2021, 208, 111467. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.H.; Sellström, U.; Papadopoulou, E.; Padilla-Sánchez, J.A.; Haug, L.S.; De Wit, C.A. Serum Concentrations of Legacy and Emerging Halogenated Flame Retardants in a Norwegian Cohort: Relationship to External Exposure. Environ. Res. 2019, 178, 108731. [Google Scholar] [CrossRef]
- Ali, N.; Mehdi, T.; Malik, R.N.; Eqani, S.A.M.A.S.; Kamal, A.; Dirtu, A.C.; Neels, H.; Covaci, A. Levels and Profile of Several Classes of Organic Contaminants in Matched Indoor Dust and Serum Samples from Occupational Settings of Pakistan. Environ. Pollut. 2014, 193, 269–276. [Google Scholar] [CrossRef]
- Porru, E.; Comito, R.; Kassouf, N.; Zappi, A.; Interino, N.; Fiori, J.; Melucci, D.; Violante, F.S. PCB Method Design of Experiments. Available online: https://amsacta.unibo.it/id/eprint/8629/ (accessed on 5 January 2025).












| Variable | Value |
|---|---|
| Pulse pressure (Psi) | 50 |
| Time of pulse pressure (min) | 1 |
| Purge flow to split vent (mL/min) | 55 |
| MSD Transfer line (°C) | 330 |
| Oven Ramp Rate (°C/min) | Temperature (°C) | Hold Time (min) | |
|---|---|---|---|
| Starting point | 100 | 3 | |
| Ramp 1 | 10 | 175 | 5 |
| Ramp 2 | 5 | 300 | 7 |
| Compound | Structure | Retention Time (min) | Quantifier (m/z) | Qualifier (m/z) |
|---|---|---|---|---|
| 2,4,6-Tribromophenol | ![]() | 9.98 | 330 | 332 |
| 2,4,6-Tribromophenol-3,5-d2 | ![]() | 10.01 | 332 | 334 |
| Allyl 2,4,6-tribromophenyl ether | ![]() | 11.88 | 370 | 41 |
| PCB 18 | ![]() | 12.24 | 256 | 258 |
| PCB 31 | ![]() | 14.17 | 256 | 258 |
| PCB 28 | ![]() | 14.25 | 256 | 258 |
| PCB 52 | ![]() | 15.78 | 292 | 290 |
| PCB 44 | ![]() | 16.67 | 292 | 290 |
| PCB 95 | ![]() | 18.54 | 326 | 328 |
| PCB 101 | ![]() | 19.51 | 326 | 328 |
| PCB 99 | ![]() | 19.72 | 326 | 328 |
| Tetrabromo-o-chlorotoluene | ![]() | 19.87 | 442 | 444 |
| PCB 81 | ![]() | 20.56 | 292 | 290 |
| PCB 77 | ![]() | 20.97 | 292 | 290 |
| PCB 77-d6 | ![]() | 20.94 | 298 | 296 |
| PCB 110 | ![]() | 21.03 | 326 | 328 |
| PCB 151 | ![]() | 21.48 | 360 | 362 |
| PCB 123 | ![]() | 21.91 | 326 | 328 |
| PCB 149 | ![]() | 21.96 | 360 | 362 |
| PCB 118 | ![]() | 22.06 | 326 | 328 |
| 2,3,4,5,6-Pentabromotoluene-13C6 | ![]() | 22.18 | 492 | 253 |
| 2,3,4,5,6-Pentabromotoluene | ![]() | 22.20 | 485 | 407 |
| PCB 114 | ![]() | 22.44 | 326 | 328 |
| PCB 146 | ![]() | 22.68 | 360 | 362 |
| PCB 153 | ![]() | 22.91 | 360 | 362 |
| PCB 105 | ![]() | 23.03 | 326 | 328 |
| PCB 138 | ![]() | 23.96 | 360 | 362 |
| PCB 126 | ![]() | 24.28 | 326 | 328 |
| PCB 187 | ![]() | 24.60 | 394 | 396 |
| PCB 183 | ![]() | 24.79 | 394 | 396 |
| PCB 128 | ![]() | 24.97 | 360 | 362 |
| PCB 167 | ![]() | 25.03 | 360 | 362 |
| Hexabromobenzene | ![]() | 25.56 | 552 | 232 |
| PCB 177 | ![]() | 25.65 | 394 | 396 |
| PCB 156 | ![]() | 25.85 | 360 | 362 |
| PCB 156-d3 | ![]() | 25.82 | 363 | 365 |
| PCB 157 | ![]() | 26.06 | 360 | 362 |
| Hexabromocyclododecane (α,β,γ) | ![]() | 26.17, 30.33, 35.25 | 319 | 79 |
| PCB 180 | ![]() | 26.47 | 394 | 396 |
| 2,2′,4,4′-Tetrabromo diphenyl ether | ![]() | 26.54 | 326 | 163 |
| PCB 169 | ![]() | 27.21 | 360 | 362 |
| PCB 170 | ![]() | 27.52 | 394 | 396 |
| PCB 189 | ![]() | 28.53 | 394 | 396 |
| Pentabromobenzylacrylate | ![]() | 29.10 | 477 | 55 |
| 2,2-Bis(4-allyloxy-3,5-dibromophenyl)propane | ![]() | 30.13 | 451 | 453 |
| 2-ethylhexyl-2,3,4,5-tetrabromobenzoate-d17 | ![]() | 30.52 | 439 | 129 |
| 2-ethylhexyl-2,3,4,5-tetrabromobenzoate | ![]() | 30.72 | 421 | 70 |
| 1,2-bis(2,4,6-tribromophenoxy) ethane-d4 | ![]() | 38.39 | 361 | 363 |
| 1,2-bis(2,4,6-tribromophenoxy) ethane | ![]() | 38.45 | 357 | 359 |
| Bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate | ![]() | 39.82 | 112 | 70 |
| Variable | Lower Level (−1) | Higher Level (1) | |
|---|---|---|---|
| First oven ramp rate (°C/min) | X1 | 10 | 20 |
| First oven temperature (°C) | X2 | 170 | 190 |
| First temperature holding time (min) | X3 | 1 | 3 |
| Second oven ramp rate (°C/min) | X4 | 4 | 6 |
| Final temperature (°C) | X5 | 280 | 310 |
| Final temperature holding time (min) | X6 | 4 | 6 |
| Pulse pressure (Psi) | X7 | 10 | 30 |
| Time of pulse pressure (min) | X8 | 1 | 1.25 |
| Purge flow to split vent (mL/min) | X9 | 40 | 55 |
| Purge time (min) | X10 | 1 | 1.5 |
| Variable | Lower Level (−1) | Central Level (0) | Higher Level (+1) | |
|---|---|---|---|---|
| First oven temperature (°C) | X2 | 145 | 165 | 180 |
| First temperature holding time (min) | X3 | 3 | 5 | 8 |
| Second oven ramp rate (°C/min) | X4 | 4 | 5 | 6 |
| Pulse pressure (Psi) | X7 | 50 | 60 | 70 |
| Time of pulse pressure (min) | X8 | 0.3 | 0.9 | 1.5 |
| Variable | Lower Level (−1) | Central Level (0) | Higher Level (+1) | |
|---|---|---|---|---|
| Hexane volume (mL) | X1 | 2 | 3 | |
| EtAC volume (mL) | X2 | 1.5 | 1.75 | 2 |
| DCM for SPE elution (%) | X3 | 0 | 15 | 50 |
| Variable | Value | |
|---|---|---|
| First oven ramp rate (°C/min) | X1 | 15 |
| First oven temperature (°C) | X2 | 180 |
| First temperature holding time (min) | X3 | 5 |
| Second oven ramp rate (°C/min) | X4 | 5 |
| Final temperature (°C) | X5 | 310 |
| Final temperature holding time (min) | X6 | 6 |
| Pulse pressure (Psi) | X7 | 50 |
| Time of pulse pressure (min) | X8 | 1 |
| Purge flow to split vent (mL/min) | X9 | 55 |
| Purge time (min) | X10 | 1.5 |
| Pollutants | Recovery (%) | |
|---|---|---|
| Low spike | High spike | |
| PCB | 60–110% | 65–99% |
| Legacy-BFR | 101–105% | 100–102% |
| NBFR | 50–104% | 55–102% |
| Pollutants | Matrix Effect (%) | |
|---|---|---|
| Low spike | High spike | |
| PCB | −18–6 | −15–5 |
| Legacy-BFR | −20–11 | −19–13 |
| NBR | −16–15 | −15–14 |
| Compound | Concentration (ng/kg) ± Standard Deviation | Reference Concentration in NIST SRM 1957 (ng/kg) |
|---|---|---|
| PCB-118 | 11.8 ± 2.6 | 18.9 ± 1.2 |
| PCB-138 | 39.0 ± 2.0 | 36.9 ± 9.0 |
| PCB-153 | 50.0 ± 5.1 | 58.2 ± 0.9 |
| PCB-170 | 19.4 ± 2.2 | 16.2 ± 2.0 |
| PCB-180 | 47.8 ± 5.1 | 54.5 ± 0.5 |
| PCB-187 | 20.8 ± 2.6 | 15.5 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Comito, R.; Kassouf, N.; Zappi, A.; Interino, N.; Porru, E.; Fiori, J.; Melucci, D.; Violante, F.S. A Comprehensive GC-MS Approach for Monitoring Legacy and Emerging Halogenated Contaminants in Human Biomonitoring. Separations 2026, 13, 36. https://doi.org/10.3390/separations13010036
Comito R, Kassouf N, Zappi A, Interino N, Porru E, Fiori J, Melucci D, Violante FS. A Comprehensive GC-MS Approach for Monitoring Legacy and Emerging Halogenated Contaminants in Human Biomonitoring. Separations. 2026; 13(1):36. https://doi.org/10.3390/separations13010036
Chicago/Turabian StyleComito, Rossana, Nicholas Kassouf, Alessandro Zappi, Nicolò Interino, Emanuele Porru, Jessica Fiori, Dora Melucci, and Francesco Saverio Violante. 2026. "A Comprehensive GC-MS Approach for Monitoring Legacy and Emerging Halogenated Contaminants in Human Biomonitoring" Separations 13, no. 1: 36. https://doi.org/10.3390/separations13010036
APA StyleComito, R., Kassouf, N., Zappi, A., Interino, N., Porru, E., Fiori, J., Melucci, D., & Violante, F. S. (2026). A Comprehensive GC-MS Approach for Monitoring Legacy and Emerging Halogenated Contaminants in Human Biomonitoring. Separations, 13(1), 36. https://doi.org/10.3390/separations13010036



















































