Evaluation of Retention Mechanisms of Polar Compounds on Polar Stationary Phases Based on Type C Silica
Abstract
1. Introduction
2. Methodology
3. Materials and Methods
4. Results
4.1. Adsorbed Water Layer
4.2. Retention Mechanisms of Non-Ionized Compounds
4.3. Retention Mechanisms of Ionized Compounds
4.4. Selectivity Evaluation
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANP | Aqueous normal phase |
| HILIC | Hydrophilic interaction chromatography |
References
- Vinjamuri, B.P.; Pan, J.; Peng, P. A review on commercial oligonucleotide drug products. J. Pharm. Sci. 2024, 113, 1749–1768. [Google Scholar] [CrossRef]
- Mohammed, A.A.; AlShaer, D.; Al Musaimi, O. Oligonucleotides: Evolution and innovation. Med. Chem. Res. 2024, 33, 2204–2220. [Google Scholar] [CrossRef]
- Fornstedt, T.; Enmark, M. Separation of therapeutic oligonucleotides using ion-pairing reversed-phase chromatography based on fundamental separation science. J. Chromatogr. Open 2023, 3, 100079. [Google Scholar] [CrossRef]
- Guo, Y. Separation of nucleobases, nucleosides, nucleotides and oligonucleotides by hydrophilic interaction liquid chromatography (HILIC): A state-of-the-art review. J. Chromatogr. A 2024, 1738, 465467. [Google Scholar] [CrossRef]
- Guaducci, M.A.; Fochetti, A.; Ciogli, A.; Mazzoccanti, G. A compendium of the principal stationary phases used in hydrophilic interaction chromatography: Where have we arrived? Separations 2023, 10, 22. [Google Scholar]
- Guo, Y. A survey of polar stationary phases for hydrophilic interaction chromatography and recent progress in understanding retention and selectivity. Biomed. Chromatogr. 2022, 36, e5332. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.H.; Jonsson, E.; Auvinen, M.; Pesek, J.J.; Sandoval, J.E. A new approach for the preparation of a hydride-modified substrate used as an intermediate in the synthesis of surface-bonded materials. Anal. Chem. 1993, 65, 808–816. [Google Scholar] [CrossRef]
- Pesek, J.J.; Matyska, M.T. Silica hydride: A separation material every analyst should know about. Molecules 2021, 26, 7505. [Google Scholar] [CrossRef]
- Pesek, J.J.; Matyska, M.T.; Hearn, M.T.W.; Boysen, R.I. Aqueous normal-phase retention of nucleotides on silica hydride columns. J. Chromatogr. A 2009, 1216, 1140–1146. [Google Scholar] [CrossRef]
- Appulage, D.K.; Schug, K.A. Silica hydride-based phases for small molecule separations using automated liquid chromatography-mass spectrometry method development. J. Chromatogr. A 2017, 1507, 115–123. [Google Scholar] [CrossRef]
- Pesek, J.J.; Matyska, M.T.; Tardiff, E.; Hiltz, T. Chromatographic characterization of a silica hydride-based amide stationary phase. J. Sep. Sci. 2021, 44, 2728–2734. [Google Scholar] [CrossRef]
- Soukup, J.; Jandera, P. Hydrosilated silica-based columns: The effects of mobile phase and temperature on dual hydrophilic-reversed-phase separation mechanism of phenolic acids. J. Chromatogr. A 2012, 1228, 125–134. [Google Scholar] [CrossRef]
- Pesek, J.J.; Matyska, M.T. A comparison of two separation modes: HILIC and aqueous normal phase chromatography. LCGC N. Am. 2007, 25, 1–6. [Google Scholar]
- Pesek, J.J.; Matyska, M.T.; Boysen, R.I.; Yang, Y.; Hearn, M.T.W. Aqueous normal-phase chromatography using silica-hydride-based stationary phases. Trends Anal. Chem. 2013, 42, 64–73. [Google Scholar] [CrossRef]
- Bawazeer, S.; Sutcliffe, O.B.; Euerby, M.R.; Bawazeer, S.; Watson, D.G. A comparison of the chromatographic properties of silica gel and silicon hydride modified silica gels. J. Chromatogr. A 2012, 1263, 61–67. [Google Scholar] [CrossRef]
- Kulsing, C.; Yang, Y.; Munera, C.; Tse, C.; Matyska, M.T.; Pesek, J.J.; Boysen, R.I.; Hearn, M.T.W. Correlation between the zeta potentials of silica hydride-based stationary phases, analyte retention behavior and their ionic interaction descriptors. Anal. Chim. Acta 2014, 817, 48–60. [Google Scholar] [CrossRef]
- Kulsing, C.; Nolvachai, Y.; Marriot, P.J.; Boysen, R.I.; Matyska, M.T.; Pesek, J.J.; Hearn, M.T.W. Insights into the origin of the separation selectivity with silica hydride adsorbents. J. Phys. Chem. B 2015, 119, 3063–3069. [Google Scholar] [CrossRef] [PubMed]
- Kulsing, C.; Yang, Y.; Boysen, R.I.; Matyska, M.T.; Pesek, J.J.; Hearn, M.T.W. Role of electrostatic contributions in the separation of peptides with silica hydride stationary phases. Anal. Methods 2015, 7, 1578–1585. [Google Scholar] [CrossRef]
- Soukup, J.; Janas, P.; Jandera, P. Gradient elution in aqueous normal-phase liquid chromatography on hydrosilated silica-based stationary phases. J. Chromatogr. A 2013, 1286, 111–118. [Google Scholar] [CrossRef]
- Barto, E.; Felinger, A.; Jandera, P. Investigation of the temperature dependence of water adsorption on silica-based stationary phases in hydrophilic interaction liquid chromatography. J. Chromatogr. A 2017, 1489, 143–148. [Google Scholar] [CrossRef]
- Soukup, J.; Jandera, P. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography. J. Chromatogr. A 2014, 1374, 102–111. [Google Scholar] [CrossRef]
- Melnikov, S.M.; Holtzel, A.; Seidel-Morgenstern, A.; Tallarek, U. A molecular dynamics view on hydrophilic interaction chromatography with polar-based phases: Properties of the water-rich layer at a silica surface modified with diol-functionalized alkyl chains. J. Phys. Chem. C 2016, 120, 13126–13138. [Google Scholar] [CrossRef]
- Henstrom, P.; Irgum, K. Hydrophilic interaction chromatography. J. Sep. Sci. 2006, 29, 1784–1821. [Google Scholar] [CrossRef]
- Guo, Y.; Muscatiello, D. An update on the progress in fundamental understanding of hydrophilic interaction liquid chromatography. J. Chromatogr. A 2026, 1765, 466520. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Guo, Z.; Zhang, F.; Xue, X.; Jin, Y.; Liang, X. Study on the retention equation in hydrophilic interaction liquid chromatography. Talanta 2008, 76, 522–527. [Google Scholar] [CrossRef]
- Jandera, P.; Hajek, T. A new definition of the stationary phase volume in mixed-mode chromatographic columns in hydrophilic liquid chromatography. Molecules 2021, 26, 4819. [Google Scholar] [CrossRef]
- Guo, Y.; Bhalodia, N.; Fattal, B.; Serris, I. Evaluating the adsorbed water layer on the polar stationary phases in hydrophilic interaction chromatography. Separations 2019, 6, 19. [Google Scholar] [CrossRef]
- Guo, Y.; Fattal, B. Relative significance of hydrophilic partitioning and surface adsorption to the retention of polar compounds in hydrophilic interaction chromatography. Anal. Chimi. Acta 2021, 1184, 339025. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Baran, D.; Ryan, L. Quantitative assessment of retention mechanisms of ionized compounds in hydrophilic interaction chromatography. Anal. Chem. 2025, 97, 4057–4065. [Google Scholar] [CrossRef]
- Guo, Y.; Baran, D. Hydrophilic partitioning or surface adsorption? A quantitative assessment of retention mechanisms for hydrophilic interaction chromatography (HILIC). Molecules 2023, 28, 6459. [Google Scholar] [CrossRef]
- Klein, D.; Muscatiello, D.; Gutierrez, Z.; Asare, V.; Guo, Y. Quantitative assessment of retention mechanisms of nucleosides on a bare silica stationary phase in hydrophilic interaction liquid chromatography (HILIC). Analytica 2025, 6, 39. [Google Scholar] [CrossRef]
- Kawachi, Y.; Ikegami, T.; Takubo, H.; Ikegami, Y.; Miyamoto, M.; Tanaka, N. Chromatographic characterization of hydrophilic interaction liquid chromatography stationary phases: Hydrophilicity, charge effects, structural selectivity, and separation efficiency. J. Chromatogr. A 2011, 1218, 5903–5919. [Google Scholar] [CrossRef] [PubMed]





| Stationary Phase | Particle Size | Pore Size | Surface Area | Carbon Loading |
|---|---|---|---|---|
| Cogent Amide | 4 µm | 100 Å | 390 ± 30 m2/g | 3.0% |
| Cogent Diol | 4 µm | 100 Å | 390 ± 30 m2/g | 9.0% |
| XBridge Amide | 3.5 µm | 130 Å | 185 m2/g | 12% |
| Test Compounds | Cogent Diol | Cogent Amide | XBridge Amide | Mean ± SD 1 |
|---|---|---|---|---|
| Cytosine | 12.2 | 11.9 | 11.2 | 11.8 ± 0.51 |
| 2dU | 4.83 | 4.86 | 4.70 | 4.80 ± 0.09 |
| Uridine | 9.76 | 9.60 | 9.45 | 9.60 ± 0.16 |
| Adenosine | 6.64 | 6.52 | 6.53 | 6.56 ± 0.07 |
| Vidarabine | 8.70 | 8.52 | 8.38 | 8.53 ± 0.16 |
| 1-MX | 3.38 | 3.27 | 3.30 | 3.32 ± 0.06 |
| 3-MX | 3.47 | 3.41 | 3.42 | 3.43 ± 0.03 |
| 7-MX | 3.50 | 3.51 | 3.46 | 3.49 ± 0.03 |
| 1,3-DMX | 0.83 | 0.84 | 0.99 | 0.89 ± 0.09 |
| 1,7-DMX | 0.79 | 0.83 | 0.99 | 0.87 ± 0.11 |
| 3,7-DMX | 1.02 | 1.06 | 1.18 | 1.09 ± 0.08 |
| Test Compounds | Cogent Diol | Cogent Amide | XBridge Amide | |||
|---|---|---|---|---|---|---|
| kpar | kads | kpar | kads | kpar | kads | |
| Caffeine | -- | 0.34 | -- | 0.37 | 0.07 (23.8%) | 0.22 (76.9%) |
| Cytosine | 2.54 (80.3%) | 0.64 (20.1%) | 1.76 (70.5%) | 0.77 (30.9%) | 2.56 (85.1%) | 0.51 (17.0%) |
| 2-dU | 1.00 (84.8%) | 0.14 (11.5%) | 0.79 (77.1%) | 0.22 (21.6%) | 1.08 (76.0%) | 0.37 (25.8%) |
| Uridine | 2.01 (116.4) | −0.35 | 1.55 (107.9%) | −0.13 | 2.17 (89.5%) | 0.30 (12.7%) |
| Adenosine | 1.36 (66.8%) | 0.65 (31.9%) | 1.06 (64.5%) | 0.60 (36.3%) | 1.50 (67.0%) | 0.77 (34.6%) |
| Vidarabine | 1.78 (73.9%) | 0.59 (24.5%) | 1.39 (73.2%) | 0.53 (27.9%) | 1.92 (71.3%) | 0.82 (30.6%) |
| 1-MX | 0.69 (66.6%) | 0.30 (28.8%) | 0.53 (61.4%) | 0.32 (37.0%) | 0.68 (60.7%) | 0.38 (34.1%) |
| 3-MX | 0.71 (62.5%) | 0.35 (32.0%) | 0.56 (58.3%) | 0.38 (40.2%) | 0.73 (59.2%) | 0.54 (41.5%) |
| 7-MX | 0.71 (62.5%) | 0.40 (34.9%) | 0.57 (58.0%) | 0.41 (41.5%) | 0.78 (57.7%) | 0.59 (43.4%) |
| 1,3-DMX | 0.17 (29.6%) | 0.38 (66.9%) | 0.14 (25.5%) | 0.40 (73.6%) | 0.23 (42.7%) | 0.31 (57.7%) |
| 1,7-DMX | 0.16 (27.0%) | 0.42 (71.5%) | 0.13 (24.0%) | 0.42 (75.6%) | 0.22 (39.9%) | 0.34 (60.7%) |
| 3,7-DMX | 0.21 (32.1%) | 0.44 (67.8%) | 0.17 (27.6%) | 0.46 (73.7%) | 0.27 (41.2%) | 0.39 (59.9%) |
| Salt Concentration | Cogent Amide | Xbridge Amide | ||||
|---|---|---|---|---|---|---|
| kpar | kads | kelec | kpar | kads | kelec | |
| 8 mM | 0.97 (16.9%) | 1.88 (32.7%) | 2.90 (50.4%) | 1.56 (42.8%) | 0.92 (25.3%) | 1.16 (31.9%) |
| 12 mM | 1.03 (20.2%) | 1.88 (36.8%) | 2.20 (43.0%) | 1.74 (52.1%) | 0.92 (27.7%) | 0.67 (20.2%) |
| 18 mM | 1.27 (31.4%) | 1.88 46.7%) | 0.88 (21.9%) | 1.99 (62.1%) | 0.92 (28.8%) | 0.29 (9.1%) |
| 24 mM | 1.57 (40.3%) | 1.88 (48.4%) | 0.44 (11.3%) | 2.42 (70.7%) | 0.92 (27.1%) | 0.08 (2.2%) |
| 30 mM | 2.30 (54.8%) | 1.88 (44.8%) | 0.02 | 2.94 (75.7%) | 0.92 (23.8%) | 0.02 |
| 34 mM | 3.48 (65.1%) | 1.88 (35.2%) | −0.02 | 4.00 (82.1%) | 0.92 (19.0%) | −0.05 |
| 36 mM | 6.35 (77.1%) | 1.88 (22.8%) | 0.01 | 4.73 (83.2%) | 0.92 (16.3%) | 0.03 |
| Salt Concentration | Cogent Amide | XBridge Amide | ||||
|---|---|---|---|---|---|---|
| kpar | kads | kelec | kpar | kads | kelec | |
| 8 mM | 0.93 | 0.34 | −0.48 | 1.42 | 0.61 | −0.31 |
| 12 mM | 1.02 | 0.34 | −0.30 | 1.57 | 0.61 | −0.12 |
| 18 mM | 1.27 | 0.34 | −0.16 | 1.82 | 0.61 | −0.03 |
| 24 mM | 1.56 (81.8%) | 0.34 (17.8%) | 0.01 | 2.21 (78.2%) | 0.61 (21.7%) | 0.01 |
| 30 mM | 2.27 (83.0%) | 0.34 (12.4%) | 0.13 | 2.66 (80.4%) | 0.61 (18.6%) | 0.02 |
| 34 mM | 3.77 (89.2%) | 0.34 (8.0%) | 0.12 | 3.35 (83.8%) | 0.61 (15.4%) | 0.03 |
| 36 mM | 5.92 (95.8%) | 0.34 (5.5%) | −0.08 | 4.52 (88.6%) | 0.61 (12.0%) | −0.03 |
| Salt Concentration | Cogent Amide | XBridge Amide | ||||
|---|---|---|---|---|---|---|
| kpar | kads | kelec | kpar | kads | kelec | |
| 8 mM | 0.71 | 0.90 | −0.48 | 1.12 | 0.78 | −0.26 |
| 12 mM | 0.78 | 0.90 | −0.27 | 1.23 | 0.78 | −0.12 |
| 18 mM | 0.97 | 0.90 | −0.14 | 1.43 | 0.78 | −0.03 |
| 24 mM | 1.19 (56.5%) | 0.90 (42.6%) | 0.02 | 1.74 (68.9%) | 0.78 (30.7%) | 0.01 |
| 30 mM | 1.73 (63.6%) | 0.90 (33.1%) | 0.09 | 2.09 (72.4%) | 0.78 (26.9%) | 0.02 |
| 34 mM | 2.88 74.5%) | 0.90 (23.3%) | 0.09 | 2.63 (76.6%) | 0.78 (22.6%) | 0.03 |
| 36 mM | 4.51 (84.4%) | 0.90 (16.8%) | −0.06 | 3.55 (82.5%) | 0.78 (18.0%) | −0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zou, M.; Guo, Y. Evaluation of Retention Mechanisms of Polar Compounds on Polar Stationary Phases Based on Type C Silica. Separations 2026, 13, 17. https://doi.org/10.3390/separations13010017
Zou M, Guo Y. Evaluation of Retention Mechanisms of Polar Compounds on Polar Stationary Phases Based on Type C Silica. Separations. 2026; 13(1):17. https://doi.org/10.3390/separations13010017
Chicago/Turabian StyleZou, Minzhu, and Yong Guo. 2026. "Evaluation of Retention Mechanisms of Polar Compounds on Polar Stationary Phases Based on Type C Silica" Separations 13, no. 1: 17. https://doi.org/10.3390/separations13010017
APA StyleZou, M., & Guo, Y. (2026). Evaluation of Retention Mechanisms of Polar Compounds on Polar Stationary Phases Based on Type C Silica. Separations, 13(1), 17. https://doi.org/10.3390/separations13010017

