Quantifying the Molecular Structural Effects on the Reaction Kinetics and Equilibrium Between Organic Amines and CO2: Insights from Theoretical Calculations
Abstract
1. Introduction
2. Methods
2.1. Construction of Three Organic Amine Molecules
2.2. Calculation of Thermodynamic Energy
2.3. Search for Transition State
2.4. Calculation of Reaction Rate Constant
2.5. Definition of Quantitative Descriptors
3. Results and Discussion
3.1. Effect of Functional Groups on the CO2–Amine Reaction
3.1.1. Linear Aliphatic Amines
3.1.2. Cyclic Aliphatic Amines
3.1.3. Aromatic Amines
3.2. Quantitative Molecular Descriptors Governing the Reactivity of Organic Amines with CO2
3.2.1. Linear Aliphatic Amines
3.2.2. Cyclic Aliphatic Amines and Aromatic Amines
3.3. The Correlation Between Reaction Rate and Equilibrium Constant
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| k | Chemical reaction rate constant |
| K | Chemical reaction equilibrium constants |
| G | Gibbs free energy |
| H | Hnthalpy |
| U | Internal energy |
References
- Güneş, H.; Simba, H.; Karadağ, H.; Şit, M. Global Energy Transformation and the Impacts of Systematic Energy Change Policy on Climate Change Mitigation. Sustainability 2023, 15, 14298. [Google Scholar] [CrossRef]
- Nong, D.; Verikios, G.; Whitten, S.; Brinsmead, T.S.; Mason-D’Croz, D.; Rodriguez, S. Early transition to near-zero emissions electricity and carbon dioxide removal is essential to achieve net-zero emissions at a low cost in Australia. Commun. Earth Environ. 2025, 6, 653. [Google Scholar] [CrossRef]
- Hou, M.Z.; Luo, J.; Huang, L.; Beck, H.-P.; Mehmood, F.; Wang, Q.; Wu, X.; Wu, L.; Yue, Y.; Fang, Y.; et al. Strategies toward carbon neutrality: Comparative analysis of China, USA, and Germany. Carbon Neutral Syst. 2025, 1, 3. [Google Scholar] [CrossRef]
- Zhang, S.; Cai, W.; Zheng, X.; Lv, X.; An, K.; Cao, Y.; Cheng, H.S.; Dai, J.; Dong, X.; Fan, S.; et al. Global readiness for carbon neutrality: From targets to action. Environ. Sci. Ecotechnol. 2025, 25, 100546. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, P.; Yu, H.; Ma, Q.; Xu, B.; Zhao, D. Carbon Capture, Utilization and Storage: Technology, Application, and Policy. Processes 2025, 13, 3414. [Google Scholar] [CrossRef]
- Hanson, E.; Nwakile, C.; Hammed, V.O. Carbon capture, utilization, and storage (CCUS) technologies: Evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions. Results Surf. Interfaces 2025, 18, 100381. [Google Scholar] [CrossRef]
- Soo, X.Y.D.; Lee, J.J.C.; Wu, W.-Y.; Tao, L.; Wang, C.; Zhu, Q.; Bu, J. Advancements in CO2 capture by absorption and adsorption: A comprehensive review. J. CO2 Util. 2024, 81, 102727. [Google Scholar] [CrossRef]
- Raganati, F.; Miccio, F.; Ammendola, P. Adsorption of Carbon Dioxide for Post-combustion Capture: A Review. Energy Fuels 2021, 35, 12845–12868. [Google Scholar] [CrossRef]
- Fan, Y.; Yu, W.; Wu, A.; Shu, W.; Zhang, Y. Recent progress on CO2 separation membranes. RSC Adv. 2024, 14, 20714–20734. [Google Scholar] [CrossRef]
- Khan, U.; Ogbaga, C.C.; Abiodun, O.-A.O.; Adeleke, A.A.; Ikubanni, P.P.; Okoye, P.U.; Okolie, J.A. Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview. Carbon Capture Sci. Technol. 2023, 8, 100125. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Vaz, S.; Rodrigues de Souza, A.P.; Lobo Baeta, B.E. Technologies for carbon dioxide capture: A review applied to energy sectors. Clean. Eng. Technol. 2022, 8, 100456. [Google Scholar] [CrossRef]
- Meng, F.; Meng, Y.; Ju, T.; Han, S.; Lin, L.; Jiang, J. Research progress of aqueous amine solution for CO2 capture: A review. Renew. Sustain. Energy Rev. 2022, 168, 112902. [Google Scholar] [CrossRef]
- Loachamin, D.; Casierra, J.; Calva, V.; Palma-Cando, A.; Ávila, E.E.; Ricaurte, M. Amine-Based Solvents and Additives to Improve the CO2 Capture Processes: A Review. ChemEngineering 2024, 8, 129. [Google Scholar] [CrossRef]
- Duy Ho, Q.; Rauls, E. Computational Study of the Adsorption of Small Gas Molecules on Pillar[5]arenes. ChemistrySelect 2023, 8, e202204215. [Google Scholar] [CrossRef]
- Duy Ho, Q.; Rauls, E. Investigations of Functional Groups Effect on CO2 Adsorption on Pillar[5]arenes Using Density Functional Theory Calculations. ChemistrySelect 2024, 9, e202401490. [Google Scholar] [CrossRef]
- Orlov, A.A.; Valtz, A.; Coquelet, C.; Rozanska, X.; Wimmer, E.; Marcou, G.; Horvath, D.; Poulain, B.; Varnek, A.; de Meyer, F. Computational screening methodology identifies effective solvents for CO2 capture. Commun. Chem. 2022, 5, 37. [Google Scholar] [CrossRef]
- Uma Maheswari, A.; Palanivelu, K. Carbon Dioxide Capture and Utilization by Alkanolamines in Deep Eutectic Solvent Medium. Ind. Eng. Chem. Res. 2015, 54, 11383–11392. [Google Scholar] [CrossRef]
- Hairul, N.A.H.; Rajiman, V.; Mohd Shariff, D. A Review on CO2 Absorption using Chemical Solvents at Low and High CO2 Partial Pressure Conditions in a Packed Column. Open Chem. Eng. J. 2022, 16. [Google Scholar] [CrossRef]
- Gouedard, C.; Picq, D.; Launay, F.; Carrette, P.L. Amine degradation in CO2 capture. I. A review. Int. J. Greenh. Gas Control 2012, 10, 244–270. [Google Scholar] [CrossRef]
- Calva, V.; Játiva, N.; Ricaurte, M. CO2 Capture Using Amine-Based Solvents: Identification of Additives to Improve the Kinetics and Thermodynamics of CO2 Sorption at High-Pressure Conditions. Gases 2025, 5, 4. [Google Scholar] [CrossRef]
- Goto, K.; Yamada, H.; Higashii, T. A Simple Method of Evaluating Alkanolamine Absorbents for Post-Combustion CO2 Capture. J. Chem. Eng. Jpn. 2014, 47, 463–470. [Google Scholar] [CrossRef]
- Gao, G.; Jiang, W.; Li, X.; Zhao, Z.; Jiang, C.; Luo, C.; Wu, F.; Zhang, L. Novel assessment of highly efficient polyamines for post-combustion CO2 capture: Absorption heat, reaction rate, CO2 cyclic capacity, and phase change behavior. Sep. Purif. Technol. 2023, 306, 122615. [Google Scholar] [CrossRef]
- Wei, D.; Luo, Q.; Ouyang, T.; Liu, Q.; Huang, Y.; Jin, B.; Gao, H.; Luo, X.; Liang, Z. An experimental and theoretical study on the effects of amine chain length on CO2 absorption performance. AIChE J. 2023, 69, e17960. [Google Scholar] [CrossRef]
- Esaki, T.; Sugai, Y.; Machida, H. Characteristics of CO2 Capture using Biphasic Absorbent by AMP/DEGDEE/H2OAMP/DEGDEE/H2O. J. MMIJ 2024, 140, 127–133. [Google Scholar] [CrossRef]
- Perumal, M.; Jayaraman, D.; Balraj, A. Experimental studies on CO2 absorption and solvent recovery in aqueous blends of monoethanolamine and tetrabutylammonium hydroxide. Chemosphere 2021, 276, 130159. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, Y.; Jiang, H.; Wu, K.; Peng, Q.; Chen, Y.; Fang, D.; Shen, B.; Wu, D.; Sun, H. Revealing the Structure–Interaction–Dissolubility Relationships through Computational Investigation Coupled with Solubility Measurement: Toward Solvent Design for Organosulfide Capture. Ind. Eng. Chem. Res. 2022, 61, 7183–7192. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; Guo, G.; Zhao, Q.; Jiang, H.; Wang, H.; Gao, W.; Yang, F.; Shen, B.-X.; Sun, H. Unveiling the Quantitative Relationships between Electron Distribution and Steric Hindrance of Organic Amines and Their Reaction Rates with Carbonyl Sulfur: A Theoretical Calculation Investigation. J. Phys. Chem. A 2023, 128, 152–162. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Guo, G.; Zhao, Q.; Jiang, H.; Wu, Q.; Fang, D.; Gao, W.; Chen, Y.; Peng, Q.; et al. Physical–chemical coupling machine learning approach to exploring reactive solvents for absorption capture of carbonyl sulfide. Chem. Eng. Sci. 2023, 280, 118984. [Google Scholar] [CrossRef]
- Zhao, Q.; Cui, Y.; Liu, C.; Wen, H.; Chen, Y.; Li, P.; Zhou, Y.; Wang, Y.; Jiang, H.; Wu, Q.; et al. Machine learning model based on parallel reaction mechanisms for predicting CO2 capacity of amine solvents. Chem. Eng. Sci. 2026, 320, 122407. [Google Scholar] [CrossRef]
- Merchant, A.; Batzner, S.; Schoenholz, S.S.; Aykol, M.; Cheon, G.; Cubuk, E.D. Scaling deep learning for materials discovery. Nature 2023, 624, 80–85. [Google Scholar] [CrossRef]
- Orhan, I.B.; Zhao, Y.; Babarao, R.; Thornton, A.W.; Le, T.C. Machine Learning Descriptors for CO2 Capture Materials. Molecules 2025, 30, 650. [Google Scholar] [CrossRef]
- Li, Q.; Fu, N.; Omee, S.S.; Hu, J. MD-HIT: Machine learning for material property prediction with dataset redundancy control. npj Comput. Mater. 2024, 10, 245. [Google Scholar] [CrossRef]
- Tentscher, P.R.; Arey, J.S. Geometries and Vibrational Frequencies of Small Radicals: Performance of Coupled Cluster and More Approximate Methods. J. Chem. Theory Comput. 2012, 8, 2165–2179. [Google Scholar] [CrossRef] [PubMed]
- Kesharwani, M.; Brauer, B.; Martin, J. Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided? J. Phys. Chem. A 2014, 119, 1701–1714. [Google Scholar] [CrossRef]
- Alecu, I.M.; Zheng, J.; Zhao, Y.; Truhlar, D.G. Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries. J. Chem. Theory Comput. 2010, 6, 2872–2887. [Google Scholar] [CrossRef] [PubMed]
- Orestes, E.; Ronconi, C.; Carneiro, J. Insights into the interactions of CO2 with amines: A DFT benchmark study. Phys. Chem. Chem. Phys. PCCP 2014, 16, 17213–17219. [Google Scholar] [CrossRef] [PubMed]
- Başaran, K.; Topçubaşı, B.U.; Davran-Candan, T. Theoretical investigation of CO2 adsorption mechanism over amine-functionalized mesoporous silica. J. CO2 Util. 2021, 47, 101492. [Google Scholar] [CrossRef]
- Davran-Candan, T. DFT Modeling of CO2 Interaction with Various Aqueous Amine Structures. J. Phys. Chem. A 2014, 118, 4582–4590. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Guo, G.; Zhao, Y.; Qian, C.; Jiang, H.; Shen, B.; Wu, D.; Cao, F.; Sun, H. Machine-learning-guided reaction kinetics prediction towards solvent identification for chemical absorption of carbonyl sulfide. Chem. Eng. J. 2022, 444, 136662. [Google Scholar] [CrossRef]
- Wei, X.; Cui, L.; Xu, J.; Cen, L.; Ren, M.; Cao, F. Effective electrostatic potential surface and aromatic affinity as quantitative guide for deep extraction denitrification from aromatic-rich oils. Sep. Purif. Technol. 2024, 330, 125476. [Google Scholar] [CrossRef]
- Lu, J.; Paci, I.; Leitch, D.C. A broadly applicable quantitative relative reactivity model for nucleophilic aromatic substitution (SNAr) using simple descriptors. Chem. Sci. 2022, 13, 12681–12695. [Google Scholar] [CrossRef]
- Murray, J.; Politzer, P. The Electrostatic Potential as a Guide to Molecular Interactive Behavior. In Chemical Reactivity Theory: A Density Functional View; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Brinck, T.; Carlqvist, P.; Stenlid, J.H. Local Electron Attachment Energy and Its Use for Predicting Nucleophilic Reactions and Halogen Bonding. J. Phys. Chem. A 2016, 120, 10023–10032. [Google Scholar] [CrossRef]
- Cao, J.; Ren, Q.; Chen, F.; Lu, T. Comparative study on the methods for predicting the reactive site of nucleophilic reaction. Sci. China Chem. 2015, 58, 1845–1852. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, W.; Wang, C.; Xu, L.; Meng, Q.; Tong, B.; Zhao, Z. Computational study for the electrophilic reactivity prediction of crown ethers. J. Mol. Liq. 2021, 341, 117418. [Google Scholar] [CrossRef]






| Label | Functional Group | Molecular Formula |
|---|---|---|
| 1 | Methyl | CH3-R |
| 2 | Ethyl | C2H5-R |
| 3 | Propyl | C3H7-R |
| 4 | Double bond | RC=CR′ |
| 5 | Triple bond | RC≡CR′ |
| 6 | Fluorine | F-R |
| 7 | Chlorine | Cl-R |
| 8 | Bromine | Br-R |
| 9 | Acyl chloride | R-C(=O)Cl |
| 10 | Hydroxyl | R-OH |
| 11 | Carbonyl | R2-C=O |
| 12 | Aldehyde | R-CHO |
| 13 | Ester | R-C(=O)OR′ |
| 14 | Carboxyl | R-C(=O)OH |
| 15 | Ether | R-O-R′ |
| 16 | Peroxy | R-OO-R′ |
| 17 | Furanyl | R-C4H3O |
| 18 | Primary amine | R-NH2 |
| 19 | Secondary amine | R2-NH |
| 20 | Tertiary amine | R3-N |
| 21 | Amylenes | R-C(=NH)-R′ |
| 22 | Azo | R-N2-R′ |
| 23 | Cyanide | R-CN |
| 24 | Nitro | R-NO2 |
| 25 | Pyrrole | R-C4H4N |
| 26 | Pyridyl | R-C5H4N |
| 27 | Phosphino | R-PH2 |
| 28 | Sulfuric ether | R-S-R′ |
| 29 | Sulfonic acid | R-SO3H |
| 30 | Sulfinyl | R-SO-R′ |
| 31 | Mercaptan | R-SH |
| 32 | Disulfide | R-SS-R′ |
| 33 | Thiophenyl | R-C4H2S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cui, Y.; Zhao, Q.; Zhou, Y.; Liu, C.; Sun, H. Quantifying the Molecular Structural Effects on the Reaction Kinetics and Equilibrium Between Organic Amines and CO2: Insights from Theoretical Calculations. Separations 2026, 13, 16. https://doi.org/10.3390/separations13010016
Cui Y, Zhao Q, Zhou Y, Liu C, Sun H. Quantifying the Molecular Structural Effects on the Reaction Kinetics and Equilibrium Between Organic Amines and CO2: Insights from Theoretical Calculations. Separations. 2026; 13(1):16. https://doi.org/10.3390/separations13010016
Chicago/Turabian StyleCui, Yupeng, Qiyue Zhao, Yousheng Zhou, Chuanlei Liu, and Hui Sun. 2026. "Quantifying the Molecular Structural Effects on the Reaction Kinetics and Equilibrium Between Organic Amines and CO2: Insights from Theoretical Calculations" Separations 13, no. 1: 16. https://doi.org/10.3390/separations13010016
APA StyleCui, Y., Zhao, Q., Zhou, Y., Liu, C., & Sun, H. (2026). Quantifying the Molecular Structural Effects on the Reaction Kinetics and Equilibrium Between Organic Amines and CO2: Insights from Theoretical Calculations. Separations, 13(1), 16. https://doi.org/10.3390/separations13010016

