Cold Storage and Temperature Management of Olive Fruit: The Impact on Fruit Physiology and Olive Oil Quality—A Review
Abstract
:1. Introduction
2. Cold Storage: An Historical Overview
3. Explanatory Variables
3.1. Storage Temperature
3.2. Storage Time
3.3. Use of Controlled Atmosphere
3.4. Cultivar
3.5. Loading Unit
3.6. Harvesting System
4. Effects on Fruit Physiology and Quality
4.1. Skin Color and Maturity Index
4.2. Firmness
4.3. Humidity
4.4. Weight Loss
4.5. Oil Content and Oil Yield
4.6. Incidence of Decay
4.7. Microbiological Profile
4.8. Respiration Rate
4.9. Ethylene Production
5. Physico-Chemical Analysis of the Extracted Oil
5.1. Level of Free Acidity
5.2. Peroxides
5.3. K270 and K232
5.4. Oxidative Stability
5.5. Chlorophyll and Carotenoid Pigment Profile
5.6. Bitterness Index (BI)
5.7. Phenolic Content
5.8. Volatile Compounds
5.9. Tocopherols
5.10. Alkylic Esters
6. Fruit Temperature Management
6.1. Rationale for Controlling Postharvest Olive Fruit Temperature
6.2. Biothermal Characteristics
6.3. Removing Field Heat
6.4. Adjusting to Desired Preprocessing Temperature
6.5. Developing Innovating Plants
7. Conclusions and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- IOC [International Olive Council]. Trade Standard Applying to Olive Oils and Olive Pomace Oil; COI/T.15/NC No 3/Rev. 16; IOC: Madrid, Spain, 2021; Available online: https://www.internationaloliveoil.org/wp-content/uploads/2021/07/COI-T15-NC3-REV-16-2021-_ENG.pdf (accessed on 28 June 2021).
- Maxie, E.C. Storing olives under controlled temperature and atmospheres. Calif. Olive Assoc. Annu. Tech. Rep. 1993, 42, 34–40. [Google Scholar]
- Maxie, E.C. Experiments on cold storage and controlled atmospheres. Calif. Olive Assoc. Annu. Tech. Rep. 1964, 43, 12–15. [Google Scholar]
- Woskow, M.; Maxie, E.C. Cold storage studies with olives. Calif. Olive Assoc. Annu. Tech. Rep. 1965, 44, 6–11. [Google Scholar]
- Cantarelli, C. Nuove soluzioni al problema della conservazione delle olive: Contributi sperimentali. Riv. Ital. Sostanze Grasse 1965, 17, 475–480. [Google Scholar]
- Petruccioli, G.; Montedoro, G.; Cantarelli, C. Nuove prospettive nella tecnología della conservazione delle olive destinate all’estrazione. Riv. Ital. Sostanze Grasse 1970, 47, 475–480. [Google Scholar]
- Montedoro, G.; Garofolo, L. Caratteristiche qualitative degli oli vergini di oliva. Influenza di alcune variabili: Varietà, ambiente, conservazione, estrazione, condizionamento del prodotto finito. Riv. Ital. Sostanze Grasse 1984, 61, 157–168. [Google Scholar]
- Petruccioli, G.; Parlati, M.V. Studies on olives storage before oil extraction. III Effect of Storage conditions of olives on the chemical and organoleptic characteristics of oils. In Third Subproject: Conservation and Processing of Foods—A Research Project (1982–1986); Abstract 20; National Council of Italy: Milan, Italy, 1987; pp. 83–84. [Google Scholar]
- Kader, A.A.; Nanos, G.D.; Kerbel, E.L. Responses of ‘Manzanillo’ olives to controlled atmospheres storage. In Proceedings of the Fifth International Controlled Atmosphere Research Conference, Wenatchee, WA, USA, 14–16 June 1989; Volume 2, pp. 119–125. [Google Scholar]
- García, J.M.; Streif, J. The effect of controlled atmosphere storage on fruit and oil quality of ‘Gordal’ olives. Gartenbauwissenschaft 1991, 56, 233–238. [Google Scholar]
- Gutiérrez, F.; Perdiguero, S.; García, J.M.; Castellano, J.M. Quality of oils from olives stored under controlled atmosphere. J. Am. Oil Chem. Soc. 1992, 69, 1215–1218. [Google Scholar] [CrossRef]
- García, J.M. Efecto del CO2 en la atmósfera de almacenamiento sobre la fisiología de la aceituna de molino. Grasas Aceites 1993, 44, 81–84. [Google Scholar] [CrossRef] [Green Version]
- García, J.M. Efecto del CO2 en la atmósfera de almacenamiento sobre la calidad del aceite de oliva. Grasas Aceites 1993, 44, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Castellano, J.M.; García, J.M.; Morilla, A.; Perdiguero, S.; Gutierrez, F. Quality of Picual olive fruit stored under controlled atmospheres. J. Agric. Food Chem. 1993, 41, 537–539. [Google Scholar] [CrossRef]
- Pérez-Camino, M.C.; García, J.M.; Castellano, J.M. Polar compound concentrations in virgin olive oils from stored cultivar Picual olive fruits. J. Agric. Food Chem. 1992, 40, 2260–2262. [Google Scholar] [CrossRef]
- Maestro, R.; García, J.M.; Castellano, J.M. Changes in Polyphenol Content of olives stored in modified atmosoheres. HortScience 1993, 28, 749. [Google Scholar] [CrossRef]
- García, J.M.; Castellano, J.M.; Gutiérrez, F.; Castellano, J.M.; Perdiguero, S.; Morilla, A.; Albi, M.A. Cold storage of mill olives. In Contribution du Froid à la Preservation de la Qualité des Fruits, Legumes et Produits Halieutiques: Actes du Sumposium; Bennani, A.L., Messaho, D., Eds.; Actes Éditions Rabat: Rabat, Maroc, 1994; pp. 77–86. [Google Scholar]
- García, J.M.; Gutiérrez, F.; Castellano, J.M.; Perdiguero, S.; Morilla, A.; Albi, M.A. Storage of olives destined for oil extraction. Acta Hortic. 1994, 368, 673–681. [Google Scholar] [CrossRef]
- García, J.M.; Gutiérrez, F.; Barrera, M.J.; Albi, M.A. Storage of Mill Olives on an Industrial Scale. J. Agric. Food Chem. 1996, 44, 590–593. [Google Scholar] [CrossRef]
- García, J.M.; Gutiérrez, F.; Castellano, J.M.; Perdiguero, S.; Morilla, A.; Albi, M.A. Influence of storage temperature on fruit ripening and olive oil quality. J. Agric. Food Chem. 1996, 44, 264–267. [Google Scholar] [CrossRef]
- Canet, M.; García, J.M. Repercusión de la frigoconservación de la aceituna de molino en el proceso de producción de aceite de oliva virgen. Grasas Aceites 1999, 50, 181–184. [Google Scholar] [CrossRef] [Green Version]
- García, J.M.; Yousfi, K. The postharvest of mill olives. Grasas Aceites 2006, 57, 16–24. [Google Scholar] [CrossRef]
- Monteleone, E.; Caporale, G.; Lencioni, L.; Favati, F.; Bertuccioli, M. Optimizing of virgin olive oil quality in relation to fruit ripening and storage. In Food Flavors: Generation, Analysis and Process Influence; Charalambous, G., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; pp. 397–418. [Google Scholar]
- Gardiman, M.; Tonutti, P.; Pizzale, L.; Conte, L.; Carazzolo, A. The effect of hypoxic and CO2-enriched atmospheres on olive ripening and oil quality. Acta Hortic. 1997, 474, 525–530. [Google Scholar] [CrossRef]
- Koprivnjak, O.; Procida, G.; Benčić, D.; Zelinotti, T. Effect of olive fruit storage in sea water on oil quality. Food Technol. Biotechnol. 1999, 37, 209–214. [Google Scholar]
- Agar, I.T.; Hess-Pierce, B.; Sourour, M.M.; Kader, A.A. Quality of fruit and oil of black-ripe olives is influenced by cultivar and storage period. J. Agric. Food Chem. 1998, 46, 3415–3421. [Google Scholar] [CrossRef]
- Kiritsakis, A.; Nanos, G.D.; Polymenopoulos, Z.; Thomai, T.; Sfakiotakis, E.M. Effect of fruit storage conditions on olive oil quality. J. Am. Oil Chem. Soc. 1998, 79, 721–724. [Google Scholar] [CrossRef]
- Agar, I.T.; Hess-Pierce, B.; Sourour, M.M.; Kader, A.A. Identification of optimum preprocessing storage conditions to maintain quality of black ripe ‘Manzanillo’ olives. Postharvest Biol. Technol. 1999, 15, 53–64. [Google Scholar] [CrossRef]
- Kalua, C.M.; Bedgood, D.R., Jr.; Bishop, A.G.; Prenzler, P.D. Changes in Virgin Olive Oil Quality during Low-Temperature Fruit Storage. J. Agric. Food Chem. 2008, 56, 2415–2422. [Google Scholar] [CrossRef] [PubMed]
- Dag, A.; Boim, S.; Sobetin, Y.; Zipori, I. Effect of mechanically harvested olive storage temperature and duration on oil quality. Horttechnology 2012, 22, 528–533. [Google Scholar] [CrossRef] [Green Version]
- Clodoveo, M.L.; Delcuratolo, D.; Gomes, T.; Colelli, G. Effect of different temperatures and storage atmospheres on Coratina olive oil quality. Food Chem. 2007, 102, 571–576. [Google Scholar] [CrossRef]
- Rinaldi, R.; Amodio, M.L.; Colelli, G.; Clodoveo, M.L. Controlled atmosphere storage of 3 Italian cultivars of olives for oil production. Acta Hort. 2010, 857, 97–105. [Google Scholar] [CrossRef]
- Zullo, B.A.; Di Stefano, M.G.; Cioccia, G.; Ciafardini, G. Evaluation of polyphenols decay in the oily fraction of olive fruit during storage using a mild sample handling method. Eur. J. Lipid Sci. Technol. 2014, 116, 160–168. [Google Scholar] [CrossRef]
- Piscopo, A.; De Bruno, A.; Zappia, A.; Gioffrè, G.; Grillone, N.; Mafrica, R.; Poiana, M. Effect of olive storage temperature on the quality of Carolea and Ottobratica oils. Emir. J. Food Agric. 2018, 30, 563–572. [Google Scholar] [CrossRef]
- Famiani, F.; Farinelli, D.; Urbani, S.; Al Hariri, R.; Paoletti, A.; Rosati, A.; Esposto, S.; Selvaggini, R.; Taticchi, A.; Servili, M. Harvesting system and fruit storage affect basic quality parameters and phenolic and volatile compounds of oils from intensive and super-intensive olive orchards. Sci. Hortic. 2020, 263, 109045. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Varona, I.; Albi, M.A. Relation of acidity and sensory quality with sterol content of olive oil from stored fruit. J. Agric. Food Chem. 2000, 48, 1106–1110. [Google Scholar] [CrossRef] [PubMed]
- Luaces, P.; Pérez, A.G.; Sanz, C. Effect of cold storage of olive fruits on the lipoxygenase pathway and volatile composition of virgin olive oil. Acta Hort. 2005, 682, 993–998. [Google Scholar] [CrossRef]
- Yousfi, K.; Cayuela, J.A.; García, J.M. Reduction of virgen olive oil bitterness by fruit cold storage. J. Agric. Food Chem. 2008, 56, 10085–10091. [Google Scholar] [CrossRef] [PubMed]
- Yousfi, K.; Weiland, C.M.; García, J.M. Effect of harvesting system and fruit cold storage on virgin olive oil chemical composition and quality of superintensive cultivated ‘Arbequina’ olives. J. Agric. Food Chem. 2012, 60, 4743–4750. [Google Scholar] [CrossRef] [PubMed]
- Inarejos-García, A.M.; Gómez-Rico, A.; Salvador, M.D.; Fregapane, G. Effect of Preprocessing olive storage conditions on virgin olive oil quality and composition. J. Agric. Food Chem. 2010, 58, 4858–4865. [Google Scholar] [CrossRef] [PubMed]
- Vichi, S.; Romero, A.; Gallardo-Chacón, J.; Tous, J.; López-Tamames, E.; Buxaderas, S. Influence of olives’ storage conditions on the formation of volatile phenols and their role in off-odor formation in the oil. J. Agric. Food Chem. 2009, 57, 1449–1455. [Google Scholar] [CrossRef]
- Vichi, S.; Romero, A.; Gallardo-Chacón, J.; Tous, J.; López-Tamames, E.; Buxaderas, S. Volatile phenols in virgin olive oil: Influence of olive variety on their formation during fruit storage. Food Chem. 2009, 116, 651–656. [Google Scholar] [CrossRef]
- Morales-Sillero, A.; Pérez, A.G.; Casanova, L.; García, J.M. Cold storage of ‘Manzanilla de Sevilla’ and ‘Manzanilla Cacereña’ mil olives from super-high density orchards. Food Chem. 2017, 237, 1216–1225. [Google Scholar] [CrossRef] [Green Version]
- Petrón, M.J.; Timón, M.L.; Carrapiso, A.I.; Andrés, A.I. Effect of ripening and olive cold storage on oil yield and some olive oil characteristics. Riv. Ital. Sostanze Grasse 2018, 95, 255–259. [Google Scholar]
- Plasquy, E.; Blanco-Roldán, G.; Florido, M.C.; García, J.M. Effects of an integrated harvest system for small producers on the quality of the recollected olive fruit. Grasas Aceites 2021, 72, e436. [Google Scholar] [CrossRef]
- Plasquy, E.; Florido, M.C.; Sola-Guirado, R.R.; García, J.M. Effect of a harvesting and conservation method for small producers on the quality of the produced olive oil. Agriculture 2021, 11, 417. [Google Scholar] [CrossRef]
- Pereira, J.A.; Casal, S.; Bento, A.; Oliveira, M.B.P.P. Influence of olive storage period on oil quality of three Portuguese cultivars of Olea Europea, Cobrançosa, Madural and Verdial Transmontana. J. Agric. Food Chem. 2002, 50, 6335–6340. [Google Scholar] [CrossRef]
- El-Nagaar, N.I.; El-Saedy, R.M. Storage temperature and storage duration affect fruit and oil quality of Coratina, Manzanillo and Picual olives. Alex. Sci. Exch. J. 2010, 31, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Ouni, Y.; Nabil, B.Y.; Zarrouk, M.; Flamini, G. Influence of olive storage period on volatile compounds and oil quality of two Tunisian cultivars of Olea europea, Chemlali and Chetoui. Int. J. Food Sci. Technol. 2011, 46, 1245–1252. [Google Scholar] [CrossRef]
- Nabil, Y.; Ouni, Y.; Dabbech, N.; Baccouri, B.; Abdelly, C.; Zarrouk, M. Effect of olive storage period at two different temperatures on oil quality of two Tunisian cultivars of Olea europea, Chemlali and Chétoui. Afr. J. Biotechnol. 2012, 11, 888–895. [Google Scholar] [CrossRef]
- Jabeur, H.; Zribi, A.; Abdelhedi, R.; Bouaziz, M. Effect of olive storage conditions on Chemlali olive oil and the effective role of fatty acids alkyl esters in checking olive oil authenticity. Food Chem. 2015, 169, 289–296. [Google Scholar] [CrossRef]
- Hbaieb, R.H.; Kotti, F.; Gargouri, M.; Msallem, M.; Vichi, S. Ripening and storage conditions of Chétoui and Arbequina olives: Part I. Effect on olive oils volatiles profile. Food Chem. 2016, 203, 548–558. [Google Scholar] [CrossRef]
- Hbaieb, R.H.; Kotti, F.; Cortes-Francisco, N.; Caixach, J.; Gargouri, M.; Msallem, M.; Vichi, S. Ripening and storage conditions of Chétoui and Arbequina olives: Part II. Effect on olive endogenous enzymes and virgin olive oil secoiridoid profile determined by high resolution mass spectrometry. Food Chem. 2016, 210, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, I.; Zarrouk, M.; Flamini, G. Storage of olives (olea europaea): Effect on the quality parameters and the radical scavenging activity of the total fraction, lipidic and methanolic fractions of the VOO. Acta Hort. 2013, 997, 129–136. [Google Scholar] [CrossRef]
- Bozdogan, A.; Eker, T.; Konuskan, D.; Oz, A.T.; Kafkas, E. Effects of the storage of Turkish Gemlik olives under CO2 and N2 on the phenolic compounds and fatty acid compositions of olive oils. J. Food Meas. Charact. 2019, 13, 187–195. [Google Scholar] [CrossRef]
- Vali, R.; Ghorbani, S.; Hajnajari, H. Effect of temperature and storage period on olive (Olea europaea cv. Zard) fruit in olive oil quality. J. Food Agric. Environ. 2011, 9, 74–77. [Google Scholar]
- Taluri, S.S.; Jafari, S.M.; Bahrami, A. Evaluation of changes in the quality of extracted oil from olive fruits stored under different tempertures and time intervals. Sci. Rep. 2019, 9, 19688. [Google Scholar] [CrossRef]
- Bubola, K.B.; Lucić, M.; Novoselić, A.; Krapac, M.; Lukić, I. Olive fruit refrigeration during prolonged storage preserves the quality of virgin olive oil extracted therefrom. Foods 2020, 9, 1445. [Google Scholar] [CrossRef] [PubMed]
- García, J.M.; Yousfi, K.; Mateos, R.; Olmo, M.; Cert, A. Reduction of oil bitterness by heating of olive (Olea europaea) fruits. J. Agric. Food Chem. 2001, 49, 4231–4235. [Google Scholar] [CrossRef]
- García, J.M.; Yousfi, K.; Oliva, J.; García-Diaz, M.T.; Pérez-Camino, M.C. Hot Water Dipping of Olives (Olea europaea) for Virgen Oil Debittering. J. Agric. Food Chem. 2005, 53, 8248–8252. [Google Scholar] [CrossRef] [PubMed]
- García, J.M.; Plasquy, E.; Jiménez-Romero, A.R. Efecto de los tratamientos postcosecha en el contenido fenólico del aceite de olive virgen. Actas Hortic. 2019, 84, 26–30. [Google Scholar]
- Yousfi, K.; Cayuela, J.A.; García, J.M. Effect of temperature, modified atmosphere and Ethylene during olive storage on quality and bitterness level of the oil. J. Am. Oil Chem. Soc. 2009, 86, 291–296. [Google Scholar] [CrossRef]
- Yousfi, K.; Moyano, M.J.; Martinez, F.; Cayuela, J.A.; García, J.M. Postharvest Heat Treatment for Olive Oil Debittering at the Industrial Scale. J. Am. Oil Soc. 2010, 87, 1053–1061. [Google Scholar] [CrossRef]
- Asheri, M.; Sharifani, M.M.; Kiani, G. An examination into the effects of frozen storage of olive fruit on extracted olive oils. Adv. Hort. Sci. 2017, 31, 191–198. [Google Scholar] [CrossRef]
- Poerio, A.; Bendini, A.; Cerretani, L.; Bonoli-Carbognin, M.; Lercker, G. Effect of olive fruit freezing on oxidative stability of virgin olive oil. Eur. J. Lipid Sci. Technol. 2008, 110, 368–372. [Google Scholar] [CrossRef]
- García-Vico, L.; García-Rodriguez, R.; Sanz, C.; Pérez, A.G. Biochemical aspects of olive freezing-damage: Impact on the phenolic and volatile profiles of virgin olive oil. Food Sci. Technol. 2017, 86, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Masella, P.; Guerrini, L.; Angeloni, G.; Spadi, A.; Baldi, F.; Parenti, A. Freezing/storing olives, consequences for extra virgin olive oil quality. Int. J. Refrig. 2019, 106, 24–32. [Google Scholar] [CrossRef]
- Nanos, G.D.; Agtsidou, E.; Sfakiotakis, E.M. Temperature and propylene effects on ripening of green and black ‘Conservolea’ olives. HortScience 2002, 37, 1079–1081. [Google Scholar] [CrossRef] [Green Version]
- Nanos, G.D.; Kiritsakis, A.K.; Sfakiotakis, E.M. Preprocessing storage conditions for green ‘Conservolea’ and ‘Chondrolia’ table olives. Postharvest Biol. Technol. 2002, 25, 109–115. [Google Scholar] [CrossRef]
- Yousfi, K.; Weiland, C.M.; García, J.M. Responses of fruit physiology and virgin oil quality to cold storage of mechanically harvested ‘Arbequina’ olives cultivated in hedgerow. Grasas Aceites 2013, 64, 572–582. [Google Scholar] [CrossRef] [Green Version]
- Guerrini, L.; Corti, F.; Cecchi, L.; Mulinacci, N.; Calamai, L.; Masella, P.; Angeloni, G.; Spadi, A.; Parenti, A. Use of refrigerated cells for olive cooling and short-term storage: Qualitative effects on extra virgin olive oil. Int. J. Refrig. 2021, 127, 59–68. [Google Scholar] [CrossRef]
- Ramaswamy, H.S. Post-Harvest Technologies of Fruit & Vegetables; DEStech Publilcations: Lancaster, PA, USA, 2015; ISBN 978-1-932078-27-5. [Google Scholar]
- Becker, B.R.; Misra, A.; Fricke, B.A. Bulk refrigeration of fruits and vegetables. Part 1: Theoretical considerations of heat and mass transfer. HVACR Res. 1996, 2, 122–134. [Google Scholar] [CrossRef]
- Brosnan, T.; Sun, D.W. Precooling techniques and applications for horticultural products. A review. Int. J. Refrig. 2001, 24, 154–170. [Google Scholar] [CrossRef]
- Redding, G.P.; Yang, A.; Shim, Y.M.; Olatunji, J.; East, A. A review of the use and design of produce simulators for horticultural forced-air cooling studies. J. Food Eng. 2016, 190, 80–93. [Google Scholar] [CrossRef]
- Mercier, S.; Villeneuve, S.; Mondor, M.; Uysal, I. Time-Temperature Management Along the Food Cold Chain: A review of Recent Developments. Compr. Rev. Food Sci. Food Saf. 2017, 16, 647–667. [Google Scholar] [CrossRef]
- Plasquy, E.; Florido, M.C.; Sola-Guirado, R.B.; García-Martos, J.M. Precooling and cold storage of olives (cv Picual) in containers with a capacity of 400 kg. Grasas Aceites 2022, 73, e467. [Google Scholar] [CrossRef]
- Plasquy, E.; Sola-Guirado, R.R.; Florido, M.C.; García, J.M.; Blanco Roldán, G. Evaluation of a manual olive fruit harvester for small producers. Res. Agric. Eng. 2019, 65, 105–111. [Google Scholar] [CrossRef]
- Uceda, M.; Frías, L. Épocas de recolección. Evolución del contenido graso del fruto y de la composición y calidad del aceite. In Proceedings of II Seminario Oleícola; IOOC, Ed.; International: Córdoba, Spain, 1975. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- García, P.; Brenes, M.; Romero, C.; Garrido, A. Respiration and psysicochemical changes in harvested olive fruits. J. Hortic. Sci. 1995, 70, 925–933. [Google Scholar] [CrossRef]
- Gutiérrez Rosales, F.; Perdiguero, S.; Gutiérrez, R.; Olias, J.M. Evaluation of the bitter taste in virgin olive oil. J. Am. Oil Chem. Soc. 1992, 69, 394–395. [Google Scholar] [CrossRef]
- Koprivnjak, O.; Brkić Bubola, K.; Kosić, U. Sodium chloride compared to talc as processing aid has similar impact on volatile compounds but more favorable on ortho-diphenols in virgin olive oil. Eur. J. Lipid Sci. Technol. 2016, 118, 318–324. [Google Scholar] [CrossRef]
- Segovia-Bravo, K.; García-García, P.; Lopéz-Lopéz, A.; Garrido-Fernández, A. Effect of bruising on respiration, superficial colour and phenolic changes in fresh Manzanilla olives (Olea europea pomiformis): Development of treatments to mitigate browning. J. Agric. Food Chem. 2011, 59, 5456–5465. [Google Scholar] [CrossRef] [PubMed]
- Maxie, E.C.; Catlin, P.B.; Hartman, H.T. Respiration and ripening of olive fruits. Proc. Am. Soc. Hort. Sci. 1960, 75, 275–291. [Google Scholar]
- Fernández-Bolaños, J.; Heredia, A.; Vioque, B.; Castellano, J.M.; Guillén, R. Changes in cell-wall-degrading enzyme activities in stored olives in relation to respiration and ethylene production. Z. Lebensm. Unters. Forsch. A 1997, 204, 293–299. [Google Scholar] [CrossRef]
- EC 2568/91. Characteristics of olive and olive pomance oils and their analytical methods. Off. J. 1991, L248, 1–82. [Google Scholar]
- USDA [United States Dept of Agriculture]. United States Standards for Grades of Olive Oil and Olive-Pomace Oil; United States Department of Agriculture: Washington, DC, USA, 2010. Available online: https://www.ams.usda.gov/sites/default/files/media/Olive_Oil_and_Olive-Pomace_Oil_Standard%5B1%5D.pdf (accessed on 25 June 2021).
- Ben-Yahia, L.; Baccouri, B.; Ouni, Y.; Hamdi, S. Quality, stability and radical scavenging activity of olive oils after Chétoui olives (Olea europaea L.) storage under modified atmospheres. Food Sci. Technol. Int. 2012, 18, 353–365. [Google Scholar] [CrossRef]
- Beltrán, G.; Aguilera, M.P.; Del Rio, C.; Sanchez, S.; Martínez, L. Influence of fruit ripening process on the natural antioxidant content of Hojiblanca virgin olive oils. Food Chem. 2005, 89, 207–215. [Google Scholar] [CrossRef]
- Oueslati, I.; Krichene, D.; Manaï, H.; Taamalli, W.; Zarrouk, M.; Flamini, G. Monitoring the volatile and hydrophilic bioactive compounds status of fresh and oxidized Chemlali virgin olive oils ovr olive storage times. Food Res. Int. 2018, 112, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Morales-Silero, A. Influencia de la recolección en la composición fenólica. Actas Hortic. 2019, 84, 22–25. [Google Scholar]
- Pérez, A.P.; Sanz, C. Composición fenólico del aceite de oliva: Compuestos y enzimas implicados. Actas Hortic. 2019, 84, 7–9. [Google Scholar]
- Tsimidou, M.Z. Analytical Methodologies: Phenolic compounds related to olive oil taste issues. In Handbook of Olive Oil, Analysis and Properties, 2nd ed.; Aparicio, R., Harwood, J., Eds.; Springer: New York, NY, USA, 2013; pp. 311–334. [Google Scholar]
- Hbaieb, R.H.; Kotti, F.; García-Rodriguez, R.; Gargouri, M.; Sanz, C.; Pérez, A.G. Monitoring endogenous enzymes during olive fruit ripening and storage: Correlation with virgin olive oil phenolic profiles. Food Chem. 2015, 174, 240–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrán, G.; Jiménez, A.; del Rio, C.; Sánchez, S.; Martínez, L.; Uceda, M.; Aguilera, M.P. Variability of vitamine E in virgin olive oil by agronomical and genetic factors. J. Food Compost. Anal. 2010, 23, 633–639. [Google Scholar] [CrossRef]
- Bendini, A.; Valli, E.; Cerretani, L.; Chiavaro, E.; Lercker, G. Study on the effects of heating of virgin olive oil blended with mildly deodorized olive oil: Focus on the hydrolytic and oxidative state. J. Agric. Food. Chem. 2009, 57, 10055–10062. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Coca, R.B.; Cruz-Hidalgo, R.; Fernades, G.D.; Pérez-Camino, M.C.; Moreda, W. Analysis of methanol and ethanol in virgin olive oil. MethodsX 2014, 1, 207–211. [Google Scholar] [CrossRef] [Green Version]
- García-Vico, L.; Belaj, A.; León, L.; de la Rosa, R.; Sanz, C.; Pérez, A.G. A survey of ethanol content in virgin olive oil. Food Control 2018, 91, 248–253. [Google Scholar] [CrossRef] [Green Version]
- EC 1348/2013. Regulation No 2568/91/EEC on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. 2013, L338, 31–67. [Google Scholar]
- Beltrán, G.; Sánchez, R.; Sánchez-Ortiz, A.; Aguilera, M.P.; Bejaoui, M.A.; Jiménez, A. How ‘ground-picked’ olive fruits affect virgin olive oil ethanol content, ethyl esters and quality. J. Sci. Food Agric. 2016, 96, 3801–3806. [Google Scholar] [CrossRef] [PubMed]
- Lorite, I.J.; Gabaldón-Leal, C.; Ruiz-Ramos, M.; Belaj, A.; de la Rosa, R.; León, L.; Santos, C. Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agric. Water Manag. 2018, 204, 247–261. [Google Scholar] [CrossRef]
- Benlloch-González, M.; Sánchez-Lucas, R.; Bejaoui, M.A.; Benlloch, M.; Fernández-Escobar, R. Global warming effects on yield and fruit maturation of olive trees growing under field conditions. Sci. Hortic. 2019, 249, 162–167. [Google Scholar] [CrossRef]
- Rallo, L.; Díez, C.M.; Morales-Silero, A.; Miho, H.; Priego-Capote, F.; Rallo, P. Quality of olives: A focus on agricultural preharvest factors. Sci. Hortic. 2018, 233, 491–509. [Google Scholar] [CrossRef]
- Rébufa, C.; Pinatel, C.; Artaud, J.; Girard, F. A comparative study of the main international extra virgin olive oil competitions: Their impact on producers and consumers. Trends Food Sci. Technol. 2021, 107, 445–454. [Google Scholar] [CrossRef]
- Di Serio, M.G.; Giansante, L.; Di Loreto, G.; Faberi, A.; Ricchetti, L.; Di Giacinto, L. Ethyl esters versus fermentative organoleptic defects in virgin olive oil. Food Chem. 2017, 219, 33–39. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación. Real decreto 41/2021. BOE 2021, 23, 7955–7977. [Google Scholar]
- Inarejos-García, A.M.; Gómez-Rico, A.; Salvador, M.D.; Fregapane, G. Influence of malaxation condition on virgin olive oil yield, overall quality and composition. Eur. Food Res. Technol. 2009, 228, 671–677. [Google Scholar] [CrossRef]
- Peri, C. Quality Excellence in Extra Virgin Olive Oils. In Olive Oil Sensory Science; Monteleone, E., Langstaff, S., Eds.; John Wiley: Chichester, UK, 2014; pp. 3–32. [Google Scholar]
- Caponio, F.; Gomes, T.; Summo, C.; Pasqualone, A. Influence of the type of olive-crusher used on the quality of extra virgin olive oils. Eur. J. Lipid Sci. Technol. 2003, 105, 201–206. [Google Scholar] [CrossRef]
- Al-Widyan, M.I.; Rababah, T.M.; Mayyas, A.; Al-Shbool, M.; Yang, W. Geometrical, thermal and mechanical properties of olive fruits. J. Food Process. Eng. 2010, 33, 257–271. [Google Scholar] [CrossRef]
- Cuesta, F.; Alvarez, M. Mathematical modeling for heat conduction in stone fruits. Int. J. Refrig. 2017, 80, 120–129. [Google Scholar] [CrossRef]
- Plasquy, E.; García, J.M.; Florido, M.C.; Sola-Guirado, R.R. Estimation of the cooling rate of six olive cultivars using thermal imaging. Agriculture 2021, 11, 164. [Google Scholar] [CrossRef]
- Çengel, Y.N.; Ghajar, A.J. Heat and Mass Transfer Fundamentals & Applications, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Wang, G.; Zhang, X. Evalutation and optimization of air-based pre-cooling for higher postharvest quality: Literature review and interdisciplinary perspective. Food Qual. Saf. 2020, 4, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Ben-Shalom, N.; Harel, E.; Mayer, A.M. Enzymatic browning in green olives and its prevention. J. Sci. Food Agric. 1978, 29, 398–402. [Google Scholar] [CrossRef]
- Rejano-Navarro, L.; Sánchez-Gomez, A.H.; Vega Macías, V. Nuevas tendencias en el tratamiento alcalino “cocido” de las aceitunas verdes aderezadas al estilo español o sevillano. Grasas Aceites 2008, 59, 197–204. [Google Scholar]
- Vichi, S.; Boynuegri, P.; Caixach, J.; Romero, A. Quality losses in virgin olive oil due to washing and short-term storage before olive milling. Eur. J. Lipid Sci. Technol. 2015, 177, 2015–2022. [Google Scholar] [CrossRef]
- Bower, J.H.; Jobling, J.J.; Patterson, B.D.; Ryan, D.J. A method for measuring the respiration rate and respiratory quotient of detached plant tissues. Postharvest Biol. Technol. 1998, 13, 263–270. [Google Scholar] [CrossRef]
- Fonseca, S.; Oliveira, F.; Brecht, J.K. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. J. Food Eng. 2002, 52, 99–119. [Google Scholar] [CrossRef]
- Caleb, O.J.; Mahajan, P.V.; Opara, U.L.; Witthuhn, C.R. Modelling the respiration rates of pomegranate fruit and arils. Postharvest Biol. Technol. 2012, 64, 49–54. [Google Scholar] [CrossRef]
- Iqbal, T.; Rodrigues, F.A.S.; Mahajan, P.V.; Kerry, J.P. Effect of time, temperature, and slicing on respiration rate of mushrooms. J. Food Sci. 2009, 74, 6. [Google Scholar] [CrossRef]
- Waghmare, R.B.; Mahajan, P.V.; Annapure, U.S. Modelling the effect of time and temperature on respiration rate of selected fresh-cut produce. Postharvest Biol. Technol. 2013, 80, 25–30. [Google Scholar] [CrossRef]
- Elansari, A.M. Design aspects in the precooling process of fresh produce. Fresh Prod. 2009, 3, 49–57. [Google Scholar]
- Elansari, A.M.; Fenton, D.L.; Callahan, C.W. Postharvest Technology of Perishable Horticultural Commodities; Yahia, E.M., Ed.; Woodhead Publishing: Duxford, UK, 2019; pp. 161–207. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, G.; Fawole, A.; Verboven, P.; Zhang, X.; Wu, D.; Opara, U.L.; Nicolaï, B.; Chen, K. Postharvest precooling of fruit and vegetables: A review. Trends Food Sci. Technol. 2020, 100, 278–291. [Google Scholar] [CrossRef]
- Wang, S.; Tang, J.; Cavalieri, R.P. Modeling fruit internal heating rates for hot air and hot water treatments. Postharvest Biol. Technol. 2001, 22, 257–270. [Google Scholar] [CrossRef]
- Kitinoja, L.; Thompson, J.F. Pre-cooling systems for small-scale producers. Stewart Postharvest Rev. 2010, 2, 2–14. [Google Scholar] [CrossRef]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Di Maio, I.; Sordini, B.; Servili, M. Cooling treatment of olive paste during the oil processing: Impact on the yield and extra virgin olive oil quality. Food Chem. 2017, 221, 107–113. [Google Scholar] [CrossRef]
- Mercacei. El lado oscuro: Tolvas y aceite de oliva virgen extra. Mercacei 2020. Available online: https://www.mercacei.com/imprimir-noticia.asp?noti=53283 (accessed on 25 June 2021).
- Olimerca. Túnel Criogénico Para Mejorar la Calidad del Aceite Virgen Extra. Olimerca, 03/11/2020. Available online: https://www.olimerca.com/noticiadet/tunel-criogenico-para-mejorar-la-calidad-del-aceite-virgen-extra/f75ce756489ab60d321ea7120bffa889 (accessed on 25 June 2021).
- Beltrán, G.; Hueso, A.; Bejaoui, M.A.; Gila, A.M.; Costales, R.; Sánchez-Ortiz, A.; Aguilera, M.P.; Jiménez, A. How olive washing and storage affect fruit ethanol and virgin olive oil ethanol, ethyl esters and composition. J. Sci. Food Agric. 2020. epub ahead of print online. [Google Scholar] [CrossRef]
- Dourou, A.M.; Brizzolara, S.; Famiani, F.; Tonutti, P. Effects of pre-processing low temperature conditioning of olives on volatile organic compounds (VOC) profiles of fruit paste and oil. Acta Hortic. 2019, 1256, 53–57. [Google Scholar] [CrossRef]
- Amirante, P.; Clodoveo, M.L.; Dugo, G.; Leone, A.; Tamborrino, A. Advance technology in vigin olive oil production from traditional and de-stoned pastes: Influence of the introduction of a heat exchanger on oil quality. Food Chem. 2006, 98, 797–805. [Google Scholar] [CrossRef]
- Clodoveo, M.L. Malaxation: Influence on virgin olive oil quality. Past, present and future. An overview. Trends Food Sci. Technol. 2012, 25, 13–23. [Google Scholar] [CrossRef]
- Esposto, S.; Veneziani, G.; Taticchi, A.; Selvaggini, R.; Urbani, S.; Di Maio, I.; Sordini, B.; Minnocci, A.; Sebastiani, L.; Servili, M. Flash Thermal Conditiong of Olive Pastes during the Olive Oil Mechanical Extraction Process: Impact on the Structural Modifications of Pastes and Oil Quality. J. Agric. Food Chem. 2013, 61, 4953–4960. [Google Scholar] [CrossRef] [Green Version]
- Fiori, F.; Di Lecce, G.; Boselli, E.; Pieralisi, G.; Frega, N.G. Effects of olive paste fast preheating on the quality of extra virgin olive oil during storage. LWT—Food Sci. Technol. 2014, 58, 511–518. [Google Scholar] [CrossRef]
- Leone, A.; Esposto, S.; Tamborrino, A.; Romaniello, R.; Taticchi, A.; Urbani, S.; Servilli, M. Using a tubular heat exchanger to improve the conditioning process of the olive paste: Evaluation of yield and olive oil quality. Eur. J. Lipid Technol. 2016, 118, 308–317. [Google Scholar] [CrossRef]
- Bejaoui, M.A.; Sánchez-Ortiz, A.; Sánchez, S.; Jiménez, A.; Beltrán, G. The high-power ultrasound frequency: Effect on the virgin olive oil yield and quality. J. Food Eng. 2017, 207, 10–17. [Google Scholar] [CrossRef]
- Cecchi, L.; Bellumori, M.; Corbo, F.; Milani, G.; Clodoveo, M.L.; Mulinacci, N. Implementation of the Sono-Heat-Exchanger in the Extra Virgen Olivo Oil Extraction Process: End-User validation and Analytical Evaluation. Molecules 2019, 24, 2379. [Google Scholar] [CrossRef] [Green Version]
- Tamborrino, A.; Romaniello, R.; Caponio, F.; Squeo, G.; Leone, A. Combined industrial olive oil extraction plant using ultrasounds, microwave, and heat exchange: Impact on olive oil quality and yield. J. Food Eng. 2019, 245, 124–130. [Google Scholar] [CrossRef]
- Clodoveo, M.L. Industrial Ultrasound Applications in the Extra-Virgin Olive Extraction Proces: History, Approaches, and Key Questions. Foods 2019, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Stillitano, T.; Falcone, G.; De Luca, A.I.; Piga, A.; Conte, P.; Strano, A.; Gulisano, G. A life cycle perspective to assess the environ-mental and economic impacts of innovative technologies in extra virgin olive oil extraction. Foods 2019, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Plasquy, E.; García, J.M.; Florido, M.C.; Sola-Guirado, R.R.; García-Martín, J.F. Adjustment of olive fruit temperature before grinding for olive oil extraction; Experimental study and pilot plant trials. Processes 2021, 9, 586. [Google Scholar] [CrossRef]
- Luaces, P.; Pérez, A.G.; Sanz, C. Effect of the blanching process and olive fruit temperature at milling on the biosynthesis of olive oil aroma. Eur. Food Res. Technol. 2006, 224, 11–17. [Google Scholar] [CrossRef]
- Cruz, S.; Yousfi, K.; Oliva, J.; García, J.M. Heat Treatment Improves Olive Oil Extraction. J. Am. Oil Soc. 2007, 84, 1063–1068. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plasquy, E.; García Martos, J.M.; Florido, M.C.; Sola-Guirado, R.R.; García Martín, J.F. Cold Storage and Temperature Management of Olive Fruit: The Impact on Fruit Physiology and Olive Oil Quality—A Review. Processes 2021, 9, 1543. https://doi.org/10.3390/pr9091543
Plasquy E, García Martos JM, Florido MC, Sola-Guirado RR, García Martín JF. Cold Storage and Temperature Management of Olive Fruit: The Impact on Fruit Physiology and Olive Oil Quality—A Review. Processes. 2021; 9(9):1543. https://doi.org/10.3390/pr9091543
Chicago/Turabian StylePlasquy, Eddy, José María García Martos, María C. Florido, Rafael Rubén Sola-Guirado, and Juan Francisco García Martín. 2021. "Cold Storage and Temperature Management of Olive Fruit: The Impact on Fruit Physiology and Olive Oil Quality—A Review" Processes 9, no. 9: 1543. https://doi.org/10.3390/pr9091543
APA StylePlasquy, E., García Martos, J. M., Florido, M. C., Sola-Guirado, R. R., & García Martín, J. F. (2021). Cold Storage and Temperature Management of Olive Fruit: The Impact on Fruit Physiology and Olive Oil Quality—A Review. Processes, 9(9), 1543. https://doi.org/10.3390/pr9091543