The Study on Extraction Process and Analysis of Components in Essential Oils of Black Pepper (Piper nigrum L.) Seeds Harvested in Gia Lai Province, Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Essential Oil
2.3. Optimizing the Extraction of Essential Oils by Hydrodistillation
2.4. Determination of Constituents of the Essential Oil by GC-MS
3. Results and Discussion
3.1. The Influence of Material Size on the Yield Essential Oil
3.2. The Influence of the Preservation Method on the Yield of Essential Oil
3.3. The Influence of the Concentration of Sodium Chloride Solution on the Yield of Essential Oil
3.4. The Influence of the Concentration of Soak Time on the Yield of Essential Oil
3.5. The Effect of the Material-to-Water Ratio on the Essential Oil Yield
3.6. The Influence of Temperature and Time Extraction on the Yield of Essential Oil
3.7. Optimization of the Experimental Conditions Using Response Surface Methodology (RSM)
3.8. The Result of GC-MS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Anna-Maria, K. Potential of essential oils for poultry and pigs. Anim. Nutr. 2018, 4, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Suzan, A.K.; Selva, R. Recent progress in photochemical reaction on main components of some essential oils. J. Saudi Chem. Soc. 2018, 22, 855–875. [Google Scholar]
- Hien, T.T.; Hao, H.H.N.; Chinh, N.D.; Nguyen, T.Q.; Tan, H.N.; Nhan, L.T.H.; Hai, D.N.; Tran, L.D.; Sy, T.D.; Trinh, D.N. Microwave-Assisted Extraction: Application to the Optimization of Essential Oil Extraction from Vietnamese Basil (Ocimum Basilicum) Using Response Surface Methodology. Processes 2018, 6, 206. [Google Scholar] [CrossRef]
- Nicholas, S.; Graham, J. A Contemporary Introduction to Essential Oils: Chemistry, Bioactivity and Prospects for Australian Agriculture. Agriculture 2015, 5, 48–102. [Google Scholar] [Green Version]
- Timothy, L.C.; Graham, L.J.; Nicholas, J.S. Volatiles from the Rare Australian Desert Plant Prostanthera centralis B.J.Conn (Lamiaceae): Chemical Composition and Antimicrobial Activity. Agriculture 2014, 4, 308–316. [Google Scholar]
- Juliany, R.C.; Philip, G.C.; Corliss, A.O.; Steven, C.R. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar]
- Tien, T.K.D.; Francis, H.M.; Sylvain, A.; Xavier, F. Authenticity of essential oils. TrAC Trends Anal. Chem. 2015, 66, 146–157. [Google Scholar]
- Luz María, C.I. Native Mexican aromatic flora and essential oils: Current research status, gaps in knowledge and agro-industrial potential. Ind. Crop. Prod. 2018, 111, 807–822. [Google Scholar]
- Fan, Z.; Reuben, M.; Guantian, L. Physicochemical properties of black pepper (Piper nigrum) starch. Carbohydr. Polym. 2018, 181, 986–993. [Google Scholar]
- Fan, Z.; Reuben, M.; Guantian, L. Structure of black pepper (Piper nigrum) starch. Food Hydrocoll. 2017, 71, 102–107. [Google Scholar]
- Bhupendra, M.G.; Goswami, T.K. Modeling of granular heat transfer in cryogenic grinding system: Black pepper seeds. Chem. Eng. Res. Des. 2019, 141, 302–316. [Google Scholar]
- Swathy, J.S.; Prabhakar, M.; John, T.; Amitava, M.; Natarajan, C. Antimicrobial potency of high-energy emulsified black pepper oil nanoemulsion against aquaculture pathogen. Aquaculture 2018, 491, 210–220. [Google Scholar]
- Olusegun, A.O.; Nour, H.A.; Rosli, B.M.Y.; Oluwaseun, R.A.; Nassereldeen, A.K. Chemical fingerprinting of biologically active compounds and morphological transformation during microwave reflux extraction of black pepper. Chem. Data Collect. 2018, 17–18, 339–344. [Google Scholar]
- Anith, K.N.; Aswini, S.; Shilpa, V.; Radhakrishnan, N.V.; Deepa, S.N. Root colonization by the endophytic fungus Piriformospora indica improves growth, yield and piperine content in black pepper (Piper nigurm L.). Biocatal. Agric. Biotechnol. 2018, 14, 215–220. [Google Scholar] [CrossRef]
- Maliha, S.; Tanweer, K.; Junaid, A.K.; Bilal, A. Effect of aqueous extract of black pepper and ajwa seed on liver enzymes in alloxan-induced diabetic Wister albino rats. Saudi Pharm. J. 2017, 25, 449–452. [Google Scholar]
- Umadevi, P.; Anandaraj, M. Genotype specific host resistance for Phytophthora in black pepper (Piper nigrum L.). Physiol. Mol. Plant Pathol. 2017, 100, 237–241. [Google Scholar] [CrossRef]
- Mousumi, M.D.; Haridas, M.; Sabu, A. Biological control of black pepper and ginger pathogens, Fusarium oxysporum, Rhizoctonia solani and Phytophthora capsici, using Trichoderma spp. Biocatal. Agric. Biotechnol. 2019, 17, 177–183. [Google Scholar] [CrossRef]
- Christiane, P.O.A.; Dielly, C.F.L.; Rosivaldo, S.B. Influence of piperidine ring on stability and reactivity of piperine. Chem. Data Collect. 2018, 17–18, 138–142. [Google Scholar]
- Meghwal, M.; Goswami, T.K. Piper nigrum and Piperine: An Update. Phytother. Res. 2013, 27, 1121–1130. [Google Scholar] [CrossRef]
- Anette, T.; Carin, B.; Tina, W.; Stéphane, E.; Ankie, S.; Markus, F.; Paul, B. Black pepper constituent piperine: Genotoxicity studies in vitro and in vivo. Food Chem. Toxicol. 2014, 66, 350–357. [Google Scholar]
- Pawin, P.; Preedajit, W.; Saowanee, K.; Varanuj, C.; Chatchai, M. Inhibition of intestinal chloride secretion by piperine as a cellular basis for the anti-secretory effect of black peppers. Pharmacol. Res. 2015, 100, 271–280. [Google Scholar]
- Sayantani, D.; Paramita, B. Modeling of supercritical carbon dioxide extraction of piperine from Malabar black pepper. Mater. Today Proc. 2016, 3, 3238–3252. [Google Scholar]
- Hien, T.T.; Nhan, N.P.T.; Trinh, D.N.; Van Ho, T.T.H.; Giang, L.B. Optimizing the Pomelo Oils Extraction Process by Microwave-Assisted Hydro-Distillation Using Soft Computing Approaches. Solid State Phenom. 2018, 279, 217–221. [Google Scholar] [CrossRef]
- Bagheri, H.; Abdul Manap, M.Y.B.; Solati, Z. Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction and hydro-distillation. Talanta 2014, 121, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Sayantani, D.; Paramita, B. Nanoliposomal encapsulates of piperine-rich black pepper extract obtained by enzyme-assisted supercritical carbon dioxide extraction. J. Food Eng. 2017, 201, 49–56. [Google Scholar]
- Kátia, S.A.; Denis, P.; Sandra, R.S.F. Sustainable extraction and encapsulation of pink pepper oil. J. Food Eng. 2017, 204, 38–45. [Google Scholar]
- Moncef, C.; Leila, R.; Salem, H.; Giovanna, F. Chemical characteristics and compositions of red pepper seed oils extracted by different methods. Ind. Crop. Prod. 2019, 128, 363–370. [Google Scholar]
- Henry, Y.S.; Andrew, B.; Archana, G.; Charles, L.C.; Tess, A.; Augustine, E.O.; Valtcho, D.Z.; Vicki, S. Hydrodistillation time affects dill seed essential oil yield, composition, and bioactivity. Ind. Crop. Prod. 2015, 63, 190–196. [Google Scholar]
- Hao, C.; Hong, W.P.; Peng, H.W.; Xiu, D.Y.; Wan, C.Z.; Yao, D.; Hong, L.Z. Essential oils from Carex meyeriana Kunth: Optimization of hydrodistillation extraction by response surface methodology and evaluation of its antioxidant and antimicrobial activities. Ind. Crop. Prod. 2018, 124, 669–676. [Google Scholar]
- Sarah, R.; Samir, A.; Salah, H. Kinetic Study and Optimization of Extraction Process Conditions. Energy Procedia 2017, 139, 98–104. [Google Scholar]
- Henryk, H.J.; Anna, G. Analysis of black pepper volatiles by solid phase microextraction–gas chromatography: A comparison of terpenes profiles with hydrodistillation. J. Chromatogr. A 2015, 1418, 200–209. [Google Scholar]
- Perakis, C.; Louli, V.; Magoulas, K. Supercritical fluid extraction of black pepper oil. J. Food Eng. 2005, 71, 386–393. [Google Scholar] [CrossRef]
- Pino, J.; Rodriguez-Feo, G.; Borges, P.; Rosado, A. Chemical and sensory properties of black pepper oil (Piper nigrum L.). Mol. Nutr. Food Res. 1990, 34, 555–560. [Google Scholar] [CrossRef]
- Singh, G.; Marimuthu, P.; Catalan, C.; de Lampasona, M. Chemical, antioxidant and antifungal activities of volatile oil of black pepper and its acetone extract. J. Sci. Food Agric. 2004, 84, 1878–1884. [Google Scholar] [CrossRef]
- Rouatbi, M.; Duquenoy, A.; Giampaoli, P. Extraction of the essential oil of thyme and black pepper by superheated steam. J. Food Eng 2007, 78, 708–714. [Google Scholar] [CrossRef]
- Menon, A.N.; Padmakumari, K.P.; Jayalekshmy, A.J. Essential Oil Composition of Four Major Cultivars of Black Pepper (Piper nigrum L.). J. Essent. Oil Res. 2002, 14, 84–86. [Google Scholar] [CrossRef]
- Dotolo, V. Pesticides Containing D-Limonene. U.S. Patent No. 4,379,168, 14 March 1983. [Google Scholar]
- Gillij, Y.G.; Gleiser, R.M.; Zygadlo, J.A. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour. Technol. 2008, 99, 2507–2515. [Google Scholar] [CrossRef] [PubMed]
- Król, S.; Namieśnik, J.; Zabiegała, B. α-Pinene, 3-carene and d-limonene in indoor air of Polish apartments: The impact on air quality and human exposure. Sci. Total Environ. 2014, 468–469, 985–995. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Kainulainen, P.; Aflatuni, A. Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: With special reference to limonene and its suitability for control of insect pests. Agric. Food Sci. 2008, 10, 243–259. [Google Scholar] [CrossRef]
- Mercier, B.; Prost, J.; Prost, M. The essential oil of turpentine and its major volatile fraction (α- and β-pinenes): A review. Int. J. Occup. Med. Environ. Health 2009, 22, 331–342. [Google Scholar] [CrossRef]
- Rothenberg, G.; Yatziv, Y.; Sasson, Y. Comparative autoxidation of 3-Carene and α-Pinene: Factors governing regioselective hydrogen abstraction reactions. Tetrahedron 1998, 54, 593–598. [Google Scholar] [CrossRef]
No. | Parameters | Yields | No. | Parameters | Yields | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ratio (A) | Time (B) | Temp. (°C) | Actual | Predicted | Ratio (A) | Time (B) | Temp. (°C) | Actual | Predicted | ||
1 | 15 | 4 | 140 | 2.10 | 2.13 | 11 | 20 | 3.32 | 150 | 2.15 | 2.14 |
2 | 25 | 4 | 140 | 2.20 | 2.19 | 12 | 20 | 6.68 | 150 | 2.25 | 2.25 |
3 | 15 | 6 | 140 | 2.15 | 2.14 | 13 | 20 | 5 | 135 | 2.15 | 2.14 |
4 | 25 | 6 | 140 | 2.15 | 2.17 | 14 | 20 | 5 | 167 | 2.20 | 2.20 |
5 | 15 | 4 | 160 | 2.10 | 2.08 | 15 | 20 | 5 | 150 | 2.40 | 2.42 |
6 | 25 | 4 | 160 | 2.15 | 2.17 | 16 | 20 | 5 | 150 | 2.40 | 2.42 |
7 | 15 | 6 | 160 | 2.20 | 2.22 | 17 | 20 | 5 | 150 | 2.45 | 2.42 |
8 | 25 | 6 | 160 | 2.30 | 2.28 | 18 | 20 | 5 | 150 | 2.45 | 2.42 |
9 | 11.6 | 5 | 150 | 2.15 | 2.14 | 19 | 20 | 5 | 150 | 2.40 | 2.42 |
10 | 28.41 | 5 | 150 | 2.25 | 2.25 | 20 | 20 | 5 | 150 | 2.40 | 2.42 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 0.2785 | 9 | 0.0309 | 47.72 | <0.0001 | significant |
Water-to-material Ratio (A) | 0.0128 | 1 | 0.0128 | 19.74 | 0.0012 | significant |
Extraction time (B) | 0.0128 | 1 | 0.0128 | 19.74 | 0.0012 | significant |
Microwave Power (C) | 0.0040 | 1 | 0.0040 | 6.19 | 0.0321 | not significant |
AB | 0.0003 | 1 | 0.0003 | 0.4818 | 0.5034 | not significant |
AC | 0.0003 | 1 | 0.0003 | 0.4818 | 0.5034 | not significant |
BC | 0.0078 | 1 | 0.0078 | 12.05 | 0.0060 | significant |
A² | 0.0889 | 1 | 0.0889 | 137.14 | <0.0001 | significant |
B² | 0.0889 | 1 | 0.0889 | 137.14 | <0.0001 | significant |
C² | 0.1101 | 1 | 0.1101 | 169.73 | <0.0001 | significant |
Residual | 0.0065 | 10 | 0.0006 | - | - | - |
Lack of Fit | 0.0032 | 5 | 0.0006 | 0.9456 | 0.5237 | not significant |
Pure Error | 0.0033 | 5 | 0.0007 | - | - | - |
Std. Dev. | 0.0255 | - | R² | 0.9772 | - | - |
Mean | 2.25 | - | Adjusted R² | 0.9568 | - | - |
C.V. % | 1.13 | - | Predicted R² | 0.8837 | - | - |
- | - | - | Adeq. Precision | 18.4570 | - | - |
Mesh Size | Preservation Method | NaCl Concentration (%) | Soak Time (h) | Ratio (g/mL) | Temperature Extraction (°C) | Time Extraction (h) | Yield (%) |
---|---|---|---|---|---|---|---|
160 | 10 °C, lidded | 2 | 3 | 1/21 | 151 | 5.2 | 2.42 (predicted) |
160 | 10 °C, lidded | 2 | 3 | 1/21 | 150 | 5.2 | 2.45 (actual) |
160 | 10 °C, lidded | 2 | 3 | 1/21 | 150 | 5.2 | 2.45 (actual) |
160 | 10 °C, lidded | 2 | 3 | 1/21 | 150 | 5.2 | 2.45 (actual) |
Current Study | [32] | [33] | [34] | [35] | |
---|---|---|---|---|---|
Extraction yield | 2.45% | 1.5% | 2.8% | 2.2% | 2.6% |
Extraction method | Hydro-distillation | Supercritical Fluid Extraction | Steam Distillation | Hydro-distillation | Superheated Steam |
Material | Vietnamese black pepper | Greek black pepper | Indian pepper | Indian pepper | French black pepper |
R.T. (min) | Compounds | This Study | Greek BP SF | Greek BP HD | France BP SH 175 °C | Pharmacopoeia | Indian BP HD | Indian BP SD | Indian BP NR |
---|---|---|---|---|---|---|---|---|---|
[32] | [32] | [35] | [35] | [34] | [33] | [36] | |||
5.19 | α-pinene | 4.69 | 0.43 | 2.15 | - | 2.48 | 4.75 | 8.2 | 2.0–14.6 |
6.71 | β-pinene | 9.77 | 3.47 | 4.21 | 8.32 | 8.23 | 6.71 | 12.0 | 4.8–23.9 |
7.13 | β-myrcene | 2.91 | - | - | - | - | 0.89 | 1.2 | 0–11.1 |
8.12 | 3-carene | 29.21 | 4.91 | 4.34 | 4.63 | 4.82 | 0.43 | 16.0 | 0–7.9 |
9.2 | o-cymene | 0.86 | - | - | 0.65 | 0.92 | - | 0.3 | 0.1–1.3 |
9.23 | D-limonene | 20.94 | 6.81 | 6.32 | 19.74 | 19.30 | 16.88 | 19.0 | 9.5–22.5 |
10.77 | α-phellandrene | 0.09 | - | - | - | - | 2.14 | 1.3 | 0.1–7.4 |
11.06 | δ-terpinene | 0.20 | - | - | - | - | 0.52 | 0.1 | 0.1–0.3 |
12.99 | terpinolene | 0.04 | - | - | - | - | 0.21 | 0.2 | 0–0.3 |
13.35 | α-terpinene | 1.10 | - | - | - | - | - | 0.1 | 0.1–0.3 |
14.86 | linalool | 0.42 | 1.28 | 0.59 | tr | 0.62 | 0.27 | 0.8 | 0.1–0.6 |
18.32 | α-phellandren-8-ol | 0.05 | - | - | - | - | - | - | |
19.42 | α-terpineol | 0.11 | - | - | tr | 0.08 | 0.19 | 0.8 | 0–0.3 |
22.64 | α-elemene | 3.49 | 0.23 | 0.3 | 3.95 | 3.91 | - | tr | - |
22.84 | α-cubebene | 0.19 | 0.52 | 0.38 | - | 0.09 | 0.26 | tr | 0.1–0.7 |
23.33 | copaene | 3.19 | 6.83 | 5.42 | 1.36 | 1.33 | 6.30 | 0.2 | 0.1–1.7 |
23.52 | aromadendrene | 1.09 | - | - | - | - | - | - | - |
24.08 | β-caryophyllene | 15.05 | 12.43 | 8.91 | 41.54 | 40.82 | 24.24 | 10.0 | 6.4–52.9 |
24.60 | humulene | 2.10 | 3.31 | 2.36 | 1.97 | 1.72 | 1.38 | 0.3 | 0–1.4 |
24.94 | germacrene-D | 0.15 | - | - | - | - | 0.40 | - | - |
25.08 | eudesma-4(14)-11-diene | 0.56 | - | - | - | - | - | - | - |
25.17 | α-selinene | 0.5 | 3.68 | 2.64 | tr | 1.25 | 0.46 | tr | 0–0.8 |
25.28 | β-bisabolene | 0.01 | - | - | - | - | 7.69 | 0.6 | - |
25.44 | β-cadinene | 1.24 | 3.73 | 2.14 | 0.09 | 0.17 | - | tr | - |
26.33 | caryophylene oxide | 0.89 | 7.94 | 12.48 | 0.58 | 0.69 | 0.47 | 0.7 | 0.5–4.5 |
26.85 | isopathuleol | 1.01 | - | - | - | - | - | - | - |
- | sabinene | - | 5.46 | 4.81 | 4.21 | 3.56 | 13.01 | 19.0 | 0–27.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.H.; Ke Ha, L.; Nguyen, D.C.; Dao, T.P.; Thi Hong Nhan, L.; Nguyen, D.H.; Nguyen, T.D.; N. Vo, D.-V.; Tran, Q.T.; Bach, L.G. The Study on Extraction Process and Analysis of Components in Essential Oils of Black Pepper (Piper nigrum L.) Seeds Harvested in Gia Lai Province, Vietnam. Processes 2019, 7, 56. https://doi.org/10.3390/pr7020056
Tran TH, Ke Ha L, Nguyen DC, Dao TP, Thi Hong Nhan L, Nguyen DH, Nguyen TD, N. Vo D-V, Tran QT, Bach LG. The Study on Extraction Process and Analysis of Components in Essential Oils of Black Pepper (Piper nigrum L.) Seeds Harvested in Gia Lai Province, Vietnam. Processes. 2019; 7(2):56. https://doi.org/10.3390/pr7020056
Chicago/Turabian StyleTran, Thien Hien, Le Ke Ha, Duy Chinh Nguyen, Tan Phat Dao, Le Thi Hong Nhan, Dai Hai Nguyen, Trinh Duy Nguyen, Dai-Viet N. Vo, Quoc Toan Tran, and Long Giang Bach. 2019. "The Study on Extraction Process and Analysis of Components in Essential Oils of Black Pepper (Piper nigrum L.) Seeds Harvested in Gia Lai Province, Vietnam" Processes 7, no. 2: 56. https://doi.org/10.3390/pr7020056
APA StyleTran, T. H., Ke Ha, L., Nguyen, D. C., Dao, T. P., Thi Hong Nhan, L., Nguyen, D. H., Nguyen, T. D., N. Vo, D.-V., Tran, Q. T., & Bach, L. G. (2019). The Study on Extraction Process and Analysis of Components in Essential Oils of Black Pepper (Piper nigrum L.) Seeds Harvested in Gia Lai Province, Vietnam. Processes, 7(2), 56. https://doi.org/10.3390/pr7020056