Optimized Production and Bioactivities of Protein Hydrolysates from Atlantic Salmon Processing Discards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Analysis
2.3. Enzymatic Hydrolysis of Salmon Heads and Frames
2.4. Degree of Hydrolysis (DH)
2.5. Amino Acid Analysis
2.6. Bioactive Properties of Protein Hydrolysates
2.6.1. DPPH Radical Scavenging Activity
2.6.2. ABTS Radical Scavenging Activity
2.6.3. Hydroxyl Radical Scavenging Activity
3. Results and Discussion
3.1. Proximate Composition of Atlantic Salmon Processing Discards
3.2. Effect of Operational Parameters on Degree of Hydrolysis
3.2.1. Effect of Parts on Degree of Hydrolysis
3.2.2. Effect of Enzymes on Degree of Hydrolysis
3.2.3. Effect of Enzyme Concentration (EC) on the Degree of Hydrolysis
3.2.4. Summary of DH vs. Enzyme vs. Enzyme Concentration vs. Parts
3.3. Proximate and Amino Acid Composition of Salmon Protein Hydrolysate
3.4. Effect of Operational Parameters on the Bioactive Properties
3.4.1. DPPH Radical Scavenging Activity
3.4.2. ABTS Radical Scavenging Activity
3.4.3. Hydroxyl Radical Scavenging Activity
3.5. Correlation of Degree of Hydrolysis on Bioactivities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vijaykrishnaraj, M.; Prabhasankar, P. Marine Protein Hydrolysates: Their Present and Future Perspectives in Food Chemistry—A Review. RSC Adv. 2015, 5, 34864–34877. [Google Scholar] [CrossRef]
- Shahidi, F.; Varatharajan, V.; Peng, H.; Senadheera, R. Utilization of Marine By-Products for the Recovery of Value-Added Products. J. Food Bioact. 2019, 6, 10–61. [Google Scholar] [CrossRef]
- Ramakrishnan, V.V.; Hossain, A.; Dave, D.; Shahidi, F. Salmon Processing Discards: A Potential Source of Bioactive Peptides—A Review. Food Prod. Process. Nutr. 2024, 6, 22. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Ramakrishnan, V.V.; Brooks, M.S.; Budge, S.M.; Dave, D. Fish Processing Wastes as a Potential Source of Proteins, Amino Acids and Oils: A Critical Review. J. Microb. Biochem. Technol. 2013, 5, 107–129. [Google Scholar] [CrossRef]
- Vieira, S.; Franco, A.R.; Fernandes, E.M.; Amorim, S.; Ferreira, H.; Pires, R.A.; Reis, R.L.; Martins, A.; Neves, N.M. Fish Sarcoplasmic Proteins as a High Value Marine Material for Wound Dressing Applications. Colloids Surf. B Biointerfaces 2018, 167, 310–317. [Google Scholar] [CrossRef]
- Ochiai, Y.; Ozawa, H. Biochemical and Physicochemical Characteristics of the Major Muscle Proteins from Fish and Shellfish. Fish. Sci. 2020, 86, 729–740. [Google Scholar] [CrossRef]
- Lefevre, F.; Fauconneau, B.; Thompson, J.W.; Gill, T.A. Thermal Denaturation and Aggregation Properties of Atlantic Salmon Myofibrils and Myosin from White and Red Muscles. J. Agric. Food Chem. 2007, 55, 4761–4770. [Google Scholar] [CrossRef]
- Idowu, A.T.; Benjakul, S.; Sinthusamran, S.; Sookchoo, P.; Kishimura, H. Protein Hydrolysate from Salmon Frames: Production, Characteristics and Antioxidative Activity. J. Food Biochem. 2019, 43, e12734. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Rasco, B.A. Biochemical and Functional Properties of Atlantic Salmon (Salmo Salar) Muscle Proteins Hydrolyzed with Various Alkaline Proteases. J. Agric. Food Chem. 2000, 48, 657–666. [Google Scholar] [CrossRef]
- Gbogouri, G.A.; Linder, M.; Fanni, J.; Parmentier, M. Influence of Hydrolysis Degree on the Functional Properties of Salmon Byproducts Hydrolysates. J. Food Sci. 2004, 69, C615–C622. [Google Scholar] [CrossRef]
- See, S.F.; Hoo, L.L.; Babji, A.S. Optimization of Enzymatic Hydrolysis of Salmon (Salmo Salar) Skin by Alcalase. Int. Food Res. J. 2011, 18, 1359–1365. [Google Scholar]
- Zhang, X.; Dai, Z.; Zhang, Y.; Dong, Y.; Hu, X. Structural Characteristics and Stability of Salmon Skin Protein Hydrolysates Obtained with Different Proteases. LWT-Food Sci. Technol. 2022, 153, 112460. [Google Scholar] [CrossRef]
- Opheim, M.; Šližyte, R.; Sterten, H.; Provan, F.; Larssen, E.; Kjos, N.P. Hydrolysis of Atlantic Salmon (Salmo Salar) Rest Raw Materials-Effect of Raw Material and Processing on Composition, Nutritional Value, and Potential Bioactive Peptides in the Hydrolysates. Process Biochem. 2015, 50, 1247–1257. [Google Scholar] [CrossRef]
- Slizyte, R.; Rommi, K.; Mozuraityte, R.; Eck, P.; Five, K.; Rustad, T. Bioactivities of Fish Protein Hydrolysates from Defatted Salmon Backbones. Biotechnol. Rep. 2016, 11, 99–109. [Google Scholar] [CrossRef]
- Liaset, B.; Julshamn, K.; Espe, M. Chemical Composition and Theoretical Nutritional Evaluation of the Produced Fractions from Enzymic Hydrolysis of Salmon Frames with ProtamexTM. Process Biochem. 2003, 38, 1747–1759. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Sotelo, C.G.; Sanz, N.; Pérez-Martín, R.I.; Rodríguez-Amado, I.; Valcarcel, J. Valorization of Aquaculture By-Products of Salmonids to Produce Enzymatic Hydrolysates: Process Optimization, Chemical Characterization and Evaluation of Bioactives. Mar. Drugs 2019, 17, 676. [Google Scholar] [CrossRef]
- Aspevik, T.; Egede-Nissen, H.; Oterhals, Å. A Systematic Approach to the Comparison of Cost Efficiency of Endopeptidases for the Hydrolysis of Atlantic Salmon (Salmo Salar) by-Products. Food Technol. Biotechnol. 2016, 54, 421–431. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Al-Khalifa, A.S.; Shahidi, F. Antioxidant and Angiotensin I Converting Enzyme (ACE) Inhibitory Activities of Date Seed Protein Hydrolysates Prepared Using Alcalase, Flavourzyme and Thermolysin. J. Funct. Foods 2015, 18, 1125–1137. [Google Scholar] [CrossRef]
- Hunsakul, K.; Laokuldilok, T.; Sakdatorn, V.; Klangpetch, W.; Brennan, C.S.; Utama-ang, N. Optimization of Enzymatic Hydrolysis by Alcalase and Flavourzyme to Enhance the Antioxidant Properties of Jasmine Rice Bran Protein Hydrolysate. Sci. Rep. 2022, 12, 12582. [Google Scholar] [CrossRef]
- Liu, Y.; Ramakrishnan, V.V.; Dave, D. Enzymatic Hydrolysis of Farmed Atlantic Salmon By-Products: Investigation of Operational Parameters on Extracted Oil Yield and Quality. Process Biochem. 2021, 100, 10–19. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC INTERNATIONAL, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2023. [Google Scholar]
- Adler-Nissen, J. Methods in Food Protein Hydrolysis. In Enzymic Hydrolysis of Food Protein; Elsevier Applied Science Publishers: Barking, UK, 1986; pp. 110–130. [Google Scholar]
- Steinhardt, J.; Beychok, S. Interaction of Proteins with Hydrogen Ions and Other Small Ions and Molecules. In The Proteins Composition, Structure, and Function; Academic Press: Cambridge, MA, USA, 1964; pp. 139–304. [Google Scholar]
- Poongothai, S.; Ilavarasan, R.; Karrunakaran, C.M. Simultaneous and Accurate Determination of Vitamins B1, B6, B12 and Alpha-Lipoic Acid in Multivitamin Capsule by Reverse-Phase High Performance Liquid Chromatographic Method. Int. J. Pharm. Pharm. Sci. 2010, 2, 133–139. [Google Scholar]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical Evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu Assays to Assess the Antioxidant Capacity of Lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef] [PubMed]
- Hayta, M.; Benli, B.; İşçimen, E.M.; Kaya, A. Optimization of Antihypertensive and Antioxidant Hydrolysate Extraction from Rice Bran Proteins Using Ultrasound Assisted Enzymatic Hydrolysis. J. Food Meas. Charact. 2020, 14, 2578–2589. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, B.; Zhang, T.; Mu, W.; Liu, J. Antioxidant and Free Radical-Scavenging Activities of Chickpea Protein Hydrolysate (CPH). Food Chem. 2008, 106, 444–450. [Google Scholar] [CrossRef]
- Dave, D.; Ramakrishnan, V.V.; Trenholm, S.; Manuel, H.; Pohling, J.; Murphy, W. Marine Oils as Potential Feedstock for Biodiesel Production: Physicochemical Characterization. J. Bioprocess. Biotech. 2014, 4, 10001678. [Google Scholar] [CrossRef]
- Głowacz-Różyńska, A.; Tynek, M.; Malinowska-Pańczyk, E.; Martysiak-Żurowska, D.; Pawłowicz, R.; Kołodziejska, I. Comparison of Oil Yield and Quality Obtained by Different Extraction Procedures from Salmon (Salmo Salar) Processing Byproducts. Eur. J. Lipid Sci. Technol. 2016, 118, 1759–1767. [Google Scholar] [CrossRef]
- Šližyte, R.; Daukšas, E.; Falch, E.; Storrø, I.; Rustad, T. Characteristics of Protein Fractions Generated from Hydrolysed Cod (Gadus Morhua) by-Products. Process Biochem. 2005, 40, 2021–2033. [Google Scholar] [CrossRef]
- Gbogouri, G.A.; Linder, M.; Fanni, J.; Parmentier, M. Analysis of Lipids Extracted from Salmon (Salmo Salar) Heads by Commercial Proteolytic Enzymes. Eur. J. Lipid Sci. Technol. 2006, 108, 766–775. [Google Scholar] [CrossRef]
- Guerard, F.; Guimas, L.; Binet, A. Production of Tuna Waste Hydrolysates by a Commercial Neutral Protease Preparation. J. Mol. Catal. B Enzym. 2002, 19, 489–498. [Google Scholar] [CrossRef]
- Shahidi, F.; Han, X.Q.; Synowiecki, J. Production and Characteristics of Protein Hydrolysates from Capelin (Mallotus Villosus). Food Chem. 1995, 53, 285–293. [Google Scholar] [CrossRef]
- Guérard, F.; Dufossé, L.; De La Broise, D.; Binet, A. Enzymatic Hydrolysis of Proteins from Yellowfin Tuna (Thunnus Albacares) Wastes Using Alcalase. J. Mol. Catal.-B Enzym. 2001, 11, 1051–1059. [Google Scholar] [CrossRef]
- Balti, R.; Bougatef, A.; Ali, N.E.H.; Zekri, D.; Barkia, A.; Nasri, M. Influence of Degree of Hydrolysis on Functional Properties and Angiotensin I-Converting Enzyme-Inhibitory Activity of Protein Hydrolysates from Cuttlefish (Sepia Officinalis) by-Products. J. Sci. Food Agric. 2010, 90, 2006–2014. [Google Scholar] [CrossRef] [PubMed]
- Binsi, P.K.; Viji, P.; Panda, S.K.; Mathew, S.; Zynudheen, A.A.; Ravishankar, C.N. Characterisation of Hydrolysates Prepared from Engraved Catfish (Nemapteryx Caelata) Roe by Serial Hydrolysis. J. Food Sci. Technol. 2016, 53, 158–170. [Google Scholar] [CrossRef]
- Idowu, A.T.; Benjakul, S. Bitterness of Fish Protein Hydrolysate and Its Debittering Prospects. J. Food Biochem. 2019, 43, e12978. [Google Scholar] [CrossRef]
- Rios-Morales, S.N.; Brito-De La Fuente, E.; Torrestiana-Sánchez, B. Kinetics of Egg-Yolk Protein Hydrolysis and Properties of Hydrolysates. ACS Omega 2023, 8, 17758–17767. [Google Scholar] [CrossRef]
- Liaset, B.; Lied, E.; Espe, M. Enzymatic Hydrolysis of By-Products from the Fish-Filleting Industry; Chemical Characterisation and Nutritional Evaluation. J. Sci. Food Agric. 2000, 80, 581–589. [Google Scholar] [CrossRef]
- Pires, C.; Leitão, M.; Sapatinha, M.; Gonçalves, A.; Oliveira, H.; Nunes, M.L.; Teixeira, B.; Mendes, R.; Camacho, C.; Machado, M.; et al. Protein Hydrolysates from Salmon Heads and Cape Hake By-Products: Comparing Enzymatic Method with Subcritical Water Extraction on Bioactivity Properties. Foods 2024, 13, 2418. [Google Scholar] [CrossRef]
- Akimova, D.; Kakimov, A.; Suychinov, A.; Urazbayev, Z.; Zharykbasov, Y.; Ibragimo, N.; Bauyrzhanova, A.; Utegenova, A. Enzymatic Hydrolysis in Food Processing: Biotechnological Advancements, Applications, and Future Perspectives. Potravin. Slovak J. Food Sci. 2024, 18, 347–365. [Google Scholar] [CrossRef]
- Cui, Q.; Sun, Y.; Zhou, Z.; Cheng, J.; Guo, M. Effects of Enzymatic Hydrolysis on Physicochemical Properties and Solubility and Bitterness of Milk Protein Hydrolysates. Foods 2021, 10, 2462. [Google Scholar] [CrossRef]
- Xu, Y.; Galanopoulos, M.; Sismour, E.; Ren, S.; Mersha, Z.; Lynch, P.; Almutaimi, A. Effect of Enzymatic Hydrolysis Using Endo- and Exo-Proteases on Secondary Structure, Functional, and Antioxidant Properties of Chickpea Protein Hydrolysates. J. Food Meas. Charact. 2020, 14, 343–352. [Google Scholar] [CrossRef]
- Alahmad, K.; Noman, A.; Xia, W.; Jiang, Q.; Xu, Y. Influence of the Enzymatic Hydrolysis Using Flavourzyme Enzyme on Functional, Secondary Structure, and Antioxidant Characteristics of Protein Hydrolysates Produced from Bighead Carp (Hypophthalmichthys Nobilis). Molecules 2023, 28, 519. [Google Scholar] [CrossRef] [PubMed]
- Noman, A.; Xu, Y.; AL-Bukhaiti, W.Q.; Abed, S.M.; Ali, A.H.; Ramadhan, A.H.; Xia, W. Influence of Enzymatic Hydrolysis Conditions on the Degree of Hydrolysis and Functional Properties of Protein Hydrolysate Obtained from Chinese Sturgeon (Acipenser Sinensis) by Using Papain Enzyme. Process Biochem. 2018, 67, 19–28. [Google Scholar] [CrossRef]
- Islam, M.S.; Hongxin, W.; Admassu, H.; Noman, A.; Ma, C.; An Wei, F. Degree of Hydrolysis, Functional and Antioxidant Properties of Protein Hydrolysates from Grass Turtle (Chinemys Reevesii) as Influenced by Enzymatic Hydrolysis Conditions. Food Sci. Nutr. 2021, 9, 4031–4047. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Huang, Y.; Islam, S.; Fan, B.; Tong, L.; Wang, F. Influence of the Degree of Hydrolysis on Functional Properties and Antioxidant Activity of Enzymatic Soybean Protein Hydrolysates. Molecules 2022, 27, 6110. [Google Scholar] [CrossRef]
- Nilsang, S.; Lertsiri, S.; Suphantharika, M.; Assavanig, A. Optimization of Enzymatic Hydrolysis of Fish Soluble Concentrate by Commercial Proteases. J. Food Eng. 2005, 70, 571–578. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Rasco, B.A. Hydrolysis of Salmon Muscle Proteins by an Enzyme Mixture Extracted from Atlantic Salmon (Salmo Salar) Pyloric Caeca. J. Food Biochem. 2000, 24, 177–187. [Google Scholar] [CrossRef]
- Steinsholm, S.; Oterhals, Å.; Thoresen, L.; Underhaug, J.; Kousoulaki, K.; Aspevik, T. Reduction in Flavor-Intense Components in Fish Protein Hydrolysates by Membrane Filtration. J. Food Sci. 2021, 86, 3855–3867. [Google Scholar] [CrossRef]
- Beaulieu, L.; Thibodeau, J.; Bryl, P.; Carbonneau, M.É. Proteolytic Processing of Atlantic Mackerel (Scomber Scombrus) and Biochemical Characterisation of Hydrolysates. Int. J. Food Sci. Technol. 2009, 44, 1609–1618. [Google Scholar] [CrossRef]
- Harnedy, P.A.; Parthsarathy, V.; McLaughlin, C.M.; O’Keeffe, M.B.; Allsopp, P.J.; McSorley, E.M.; O’Harte, F.P.M.; FitzGerald, R.J. Atlantic Salmon (Salmo Salar) Co-Product-Derived Protein Hydrolysates: A Source of Antidiabetic Peptides. Food Res. Int. 2018, 106, 598–606. [Google Scholar] [CrossRef]
- Aspevik, T.; Steinsholm, S.; Vang, B.; Carlehög, M.; Arnesen, J.A.; Kousoulaki, K. Nutritional and Sensory Properties of Protein Hydrolysates Based on Salmon (Salmo Salar), Mackerel (Scomber Scombrus), and Herring (Clupea Harengus) Heads and Backbones. Front. Nutr. 2021, 8, 695151. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Dinesh Kumar, B.; Hemalatha, R.; Jyothirmayi, T. Fish Protein Hydrolysates: Proximate Composition, Amino Acid Composition, Antioxidant Activities and Applications: A Review. Food Chem. 2012, 135, 3020–3038. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Zhong, Y. Measurement of Antioxidant Activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Xu, B.; Dong, Q.; Yu, C.; Chen, H.; Zhao, Y.; Zhang, B.; Yu, P.; Chen, M. Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants 2024, 13, 479. [Google Scholar] [CrossRef]
- Esfandi, R.; Walters, M.E.; Tsopmo, A. Antioxidant Properties and Potential Mechanisms of Hydrolyzed Proteins and Peptides from Cereals. Heliyon 2019, 5, e01538. [Google Scholar] [CrossRef]
- Ijarotimi, O.S.; Malomo, S.A.; Alashi, A.M.; Nwachukwu, I.D.; Fagbemi, T.N.; Osundahunsi, O.F.; Aluko, R.E. Antioxidant and Antihypertensive Activities of Wonderful Cola (Buchholzia Coriacea) Seed Protein and Enzymatic Protein Hydrolysates. J. Food Bioact. 2018, 3, 133–143. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, F.; Han, F.; Wang, H. Purification and Characterization of Antioxidative Peptides from Salmon Protamine Hydrolysate. J. Food Biochem. 2008, 32, 654–671. [Google Scholar] [CrossRef]
- Girgih, A.T.; Udenigwe, C.C.; Hasan, F.M.; Gill, T.A.; Aluko, R.E. Antioxidant Properties of Salmon (Salmo Salar) Protein Hydrolysate and Peptide Fractions Isolated by Reverse-Phase HPLC. Food Res. Int. 2013, 52, 315–322. [Google Scholar] [CrossRef]
- Hanachi, A.; Bianchi, A.; Kahn, C.J.F.; Velot, E.; Arab-Tehrany, E.; Cakir-Kiefer, C.; Linder, M. Encapsulation of Salmon Peptides in Marine Liposomes: Physico-Chemical Properties, Antiradical Activities and Biocompatibility Assays. Mar. Drugs 2022, 20, 249. [Google Scholar] [CrossRef]
- Yang, X.R.; Qiu, Y.T.; Zhao, Y.Q.; Chi, C.F.; Wang, B. Purification and Characterization of Antioxidant Peptides Derived from Protein Hydrolysate of the Marine Bivalve Mollusk Tergillarca Granosa. Mar. Drugs 2019, 17, 251. [Google Scholar] [CrossRef]
- Wu, R.B.; Wu, C.L.; Liu, D.; Yang, X.H.; Huang, J.F.; Zhang, J.; Liao, B.; He, H.L. Antioxidant and Anti-Freezing Peptides from Salmon Collagen Hydrolysate Prepared by Bacterial Extracellular Protease. Food Chem. 2018, 248, 346–352. [Google Scholar] [CrossRef]
- Siddeeg, A.; AlKehayez, N.M.; Abu-Hiamed, H.A.; Al-Sanea, E.A.; AL-Farga, A.M. Mode of Action and Determination of Antioxidant Activity in the Dietary Sources: An Overview. Saudi J. Biol. Sci. 2021, 28, 1633–1644. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, B.; Pallarés, N.; Berrada, H.; Barba, F.J. Salmon (Salmo Salar) Side Streams as a Bioresource to Obtain Potential Antioxidant Peptides after Applying Pressurized Liquid Extraction (Ple). Mar. Drugs 2021, 19, 323. [Google Scholar] [CrossRef] [PubMed]
- Pires, C.; Clemente, T.; Batista, I. Functional and Antioxidative Properties of Protein Hydrolysates from Cape Hake By-Products Prepared by Three Different Methodologies. J. Sci. Food Agric. 2013, 93, 771–780. [Google Scholar] [CrossRef]
- Walger, E.; Marlin, N.; Mortha, G.; Molton, F.; Duboc, C. Hydroxyl Radical Generation by the H2O2/CuII/Phenanthroline System under Both Neutral and Alkaline Conditions: An EPR/Spin-Trapping Investigation. Appl. Sci. 2021, 11, 687. [Google Scholar] [CrossRef]
- Zou, T.-B.; He, T.-P.; Li, H.-B.; Tang, H.-W.; Xia, E.-Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Sarmadi, B.H.; Ismail, A. Antioxidative Peptides from Food Proteins: A Review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef]
- Phadke, G.G.; Rathod, N.B.; Ozogul, F.; Elavarasan, K.; Karthikeyan, M.; Shin, K.H.; Kim, S.K. Exploiting of Secondary Raw Materials from Fish Processing Industry as a Source of Bioactive Peptide-Rich Protein Hydrolysates. Mar. Drugs 2021, 19, 480. [Google Scholar] [CrossRef]
- Klompong, V.; Benjakul, S.; Kantachote, D.; Shahidi, F. Antioxidative Activity and Functional Properties of Protein Hydrolysate of Yellow Stripe Trevally (Selaroides Leptolepis) as Influenced by the Degree of Hydrolysis and Enzyme Type. Food Chem. 2007, 102, 1317–1327. [Google Scholar] [CrossRef]
- Hamzeh, A.; Rezaei, M.; Khodabandeh, S.; Motamedzadegan, A.; Noruzinia, M. Antiproliferative and Antioxidative Activities of Cuttlefish (Sepia Pharaonis) Protein Hydrolysates as Affected by Degree of Hydrolysis. J. Food Meas. Charact. 2018, 12, 721–727. [Google Scholar] [CrossRef]
- Intarasirisawat, R.; Benjakul, S.; Visessanguan, W.; Wu, J. Antioxidative and Functional Properties of Protein Hydrolysate from Defatted Skipjack (Katsuwonous Pelamis) Roe. Food Chem. 2012, 135, 3039–3048. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Zhao, M.; Cui, C.; Zhao, H.; Yang, B. Effect of Degree of Hydrolysis on the Antioxidant Activity of Loach (Misgurnus Anguillicaudatus) Protein Hydrolysates. Innov. Food Sci. Emerg. Technol. 2009, 10, 235–240. [Google Scholar] [CrossRef]
Composition (%) | Head | Frame |
---|---|---|
Moisture | 57.3 ± 1.2 | 58.1 ± 0.2 |
Ash | 4.33 ± 0.1 | 3.31 ± 0.1 |
Lipid | 22.24 ± 0.15 | 20.95 ± 0.2 |
Protein | 15.8 ± 1.1 | 17.1 ± 0.53 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 17 | 293.250 | 17.2500 | 688.09 | 0.000 |
Linear | 5 | 273.684 | 54.7369 | 2183.41 | 0.000 |
Parts | 1 | 26.027 | 26.0270 | 1038.20 | 0.000 |
EC | 2 | 63.067 | 31.5337 | 1257.86 | 0.000 |
Enzymes | 2 | 184.590 | 92.2949 | 3681.57 | 0.000 |
2-Way Interactions | 8 | 17.427 | 2.1784 | 86.90 | 0.000 |
PartsxEC | 2 | 1.908 | 0.9539 | 38.05 | 0.000 |
PartsxEnzymes | 2 | 1.807 | 0.9034 | 36.04 | 0.000 |
ECxEnzymes | 4 | 13.713 | 3.4282 | 136.75 | 0.000 |
3-Way Interactions | 4 | 2.139 | 0.5347 | 21.33 | 0.000 |
PartsxECxEnzymes | 4 | 2.139 | 0.5347 | 21.33 | 0.000 |
Error | 18 | 0.451 | 0.0251 | ||
Total | 35 | 293.702 |
Factors | Levels | N | Mean |
---|---|---|---|
Parts | Frame | 18 | 10.32 A |
Head | 18 | 8.62 B | |
Enzymes | Alcalase | 12 | 11.90 A |
Alcalase + Flavourzyme | 12 | 10.06 B | |
Flavourzyme | 12 | 6.45 C | |
Enzyme Concentration (%) | 1.0 | 12 | 10.47 A |
2.0 | 12 | 10.33 A | |
0.5 | 12 | 7.60 B |
Composition (%) | Head | Frame |
---|---|---|
Moisture | 7.24 | 8.64 |
Ash | 8.99 | 7.69 |
Lipid | 0.22 | 0.89 |
Protein | 76.7 | 72.1 |
Salt | 4.53 | 5.50 |
Amino Acid | Type | HA-2% | HF-2% | HAF-1% | Head | FA-2% | FF-2% | FAF-1% | Frame | Frame vs. Head |
---|---|---|---|---|---|---|---|---|---|---|
g/100 g | (%) | |||||||||
Asparagine/Aspartic Acid (Asx) | NE | 5.145 | 5.384 | 5.215 | 5.248 | 4.618 | 6.557 | 5.893 | 5.689 | 8.08% |
Glutamine/Glutamic Acid (Glx) | NE | 7.497 | 8.070 | 7.567 | 7.711 | 8.123 | 9.509 | 8.464 | 8.699 | 12.03% |
Serine (Ser) | NE | 2.670 | 2.780 | 2.690 | 2.713 | 1.973 | 2.869 | 2.627 | 2.490 | −8.58% |
Glycine (Gly) | NE | 6.536 | 7.053 | 6.589 | 6.726 | 5.033 | 5.480 | 4.928 | 5.147 | −26.60% |
Histidine (His) | E | 1.658 | 1.697 | 1.706 | 1.687 | 1.458 | 2.103 | 1.916 | 1.826 | 7.90% |
Arginine (Arg) | NE | 4.083 | 4.235 | 4.111 | 4.143 | 2.809 | 4.521 | 4.137 | 3.822 | −8.05% |
Threonine (Thr) | E | 2.348 | 2.405 | 2.398 | 2.383 | 2.228 | 2.888 | 2.691 | 2.602 | 8.78% |
Alanine (Ala) | NE | 3.944 | 4.212 | 4.076 | 4.077 | 4.403 | 4.737 | 4.366 | 4.502 | 9.91% |
Proline (Pro) | NE | 3.767 | 4.120 | 3.871 | 3.919 | 3.161 | 3.439 | 3.138 | 3.246 | −18.78% |
Tyrosine (Tyr) | NE | 1.637 | 1.638 | 1.751 | 1.676 | 2.005 | 2.115 | 2.132 | 2.084 | 21.72% |
Valine (Val) | E | 2.460 | 2.621 | 2.724 | 2.601 | 3.054 | 3.279 | 3.260 | 3.197 | 20.56% |
Methionine (Met) | E | 1.653 | 1.719 | 1.709 | 1.693 | 1.954 | 1.851 | 1.927 | 1.911 | 12.06% |
Isoleucine (Ile) | E | 1.831 | 2.062 | 2.112 | 2.001 | 2.388 | 2.573 | 2.641 | 2.534 | 23.49% |
Leucine (Leu) | E | 3.010 | 3.216 | 3.264 | 3.163 | 3.898 | 3.802 | 3.944 | 3.881 | 20.38% |
Phenylalanine (Phe) | E | 1.808 | 2.065 | 1.845 | 1.906 | 2.260 | 1.990 | 2.209 | 2.153 | 12.18% |
Lysine (Lys) | E | 2.937 | 3.753 | 2.802 | 3.164 | 4.605 | 3.772 | 4.447 | 4.275 | 29.87% |
Total | 52.983 | 57.027 | 54.429 | 54.813 | 53.973 | 61.487 | 58.719 | 58.060 | 5.75% |
Factors | Levels | N | Mean |
---|---|---|---|
Parts | Head | 27 | 5.14 A |
Frame | 27 | 3.26 B | |
Enzymes | Alcalase | 18 | 4.96 A |
Flavourzyme | 18 | 3.84 B | |
Alcalase + Flavourzyme | 18 | 3.79 C | |
Enzyme Concentration (%) | 0.5 | 18 | 4.40 A |
1.0 | 18 | 4.34 B | |
2.0 | 18 | 3.85 C |
Factors | Levels | N | Mean |
---|---|---|---|
Parts | Frame | 27 | 12.92 A |
Head | 27 | 9.51 B | |
Enzymes | Alcalase + Flavourzyme | 18 | 13.22 A |
Alcalase | 18 | 11.57 B | |
Flavourzyme | 18 | 8.87 C | |
Enzyme Concentration (%) | 2.0 | 18 | 12.37 A |
1.0 | 18 | 10.76 B | |
0.5 | 18 | 10.53 C |
Factors | Levels | N | Mean |
---|---|---|---|
Parts | Frame | 27 | 111.18 A |
Head | 27 | 61.02 B | |
Enzymes | Alcalase | 18 | 103.14 A |
Flavourzyme | 18 | 82.84 B | |
Alcalase + Flavourzyme | 18 | 72.33 C | |
Enzyme Concentration (%) | 1.0 | 18 | 100.22 A |
0.5 | 18 | 92.41 B | |
2.0 | 18 | 65.68 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasudevan Ramakrishnan, V.; Goyali, J.; Dave, D.; Shahidi, F. Optimized Production and Bioactivities of Protein Hydrolysates from Atlantic Salmon Processing Discards. Processes 2025, 13, 1823. https://doi.org/10.3390/pr13061823
Vasudevan Ramakrishnan V, Goyali J, Dave D, Shahidi F. Optimized Production and Bioactivities of Protein Hydrolysates from Atlantic Salmon Processing Discards. Processes. 2025; 13(6):1823. https://doi.org/10.3390/pr13061823
Chicago/Turabian StyleVasudevan Ramakrishnan, Vegneshwaran, Juran Goyali, Deepika Dave, and Fereidoon Shahidi. 2025. "Optimized Production and Bioactivities of Protein Hydrolysates from Atlantic Salmon Processing Discards" Processes 13, no. 6: 1823. https://doi.org/10.3390/pr13061823
APA StyleVasudevan Ramakrishnan, V., Goyali, J., Dave, D., & Shahidi, F. (2025). Optimized Production and Bioactivities of Protein Hydrolysates from Atlantic Salmon Processing Discards. Processes, 13(6), 1823. https://doi.org/10.3390/pr13061823