A First Process-Oriented Characterization of Eriolobus trilobatus (Labill. ex Poiret) Bark from Turkey: Chemical, Morphological and Energy Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SEM-EDS Analysis
2.3. Wet Chemical and Phenolic Analyses
2.4. FT-IR Analysis
2.5. Thermogravimetric Analysis
2.6. XRF Analysis
2.7. XRD Analysis
2.8. BET Analysis
2.9. Solid Fuel Properties
2.10. Ash Fusion Temperature
3. Results and Discussion
3.1. Bark Morphology
3.2. Chemical Composition and Extractive Properties
3.3. Functional Group Characterization
3.4. Combustion and Pyrolysis Behaviors
3.5. Fuel Characterization
3.6. Composition, Porosity, and Fusion Temperature of Inorganic Fraction
3.7. Environmental Implications of Bark Processing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akman, Y. Contribution a Iètude de Flore Des Montagnes de IÀmanus. I–III. Commun. Fac. Sci. Univ. Ank. Ser. C Biol. 1973, 17, 43–70. [Google Scholar] [CrossRef]
- Browicz, K. Distribution of Woody Rosaceae in W. Asia III; Polska Akademia Nauk Arboretum Kornickie: Kórnik, Poland, 1969; Volume XIV. [Google Scholar]
- Boratyński, A.; Browicz, K.; Zieliński, J. Contribution to the Woody Flora of Greece. Arbor. Kórnickie 1983, 28, 7–68. [Google Scholar]
- Tashev, A.; Petkova, K. Fruit and Seed Morphological Peculiarities of the Critically Threatened Eriolobus trilobatus (Rosaceae). In Plant, Fungal and Habitat Diversity Investigation and Conservation, Proceedings of the IV Balkan Botanical Congress, Sofia, Bulgaria, 20–26 June 2006; Institute of Botany, Bulgarian Academy of Sciences: Sofia, Bulgaria; p. 55.
- Davis, P.H. Flora of Turkey and the East Aegean Islands; Edinburg University Press: Edinburgh, Scotland, 1972; Volume 4. [Google Scholar]
- Korakis, G.; Poirazidis, K.; Papamattheakis, N.; Papageorgiou, A. New Localities of the Vulnerable Species Eriolobus trilobatus (Rosaceae) in Northeastern Greece. In Plant, Fungal and Habitat Diversity Investigation and Conservation, Proceedings of the IV Balkan Botanical Congress, Sofia, Bulgaria, 20–26 June 2006; Institute of Botany, Bulgarian Academy of Sciences: Sofia, Bulgaria; p. 422.
- Yılmaz, H.; Tuttu, G. Flora of Çamucu Forest Enterprice Area (Balya, Balıkesir/Turkey). Biol. Divers. Conserv. 2016, 9, 10–24. [Google Scholar]
- Demircan, H.; Sarioğlu, K.; Sağdiç, O.; Özkan, K.; Kayacan, S.; Us, A.A.; Oral, R.A. Deer Apple (Malus trilobata) Fruit Grown in the Mediterranean Region: Identification of Some Components and Pomological Features. Food Sci. Technol. 2022, 42, e116421. [Google Scholar] [CrossRef]
- Roemer, M.J. Familiarum Naturalium Regni Vegetabilis Synopses Monographicae: Seu, Enumeratio Omium Plantarum Hucusque Detectarum Secundum Ordines Naturales, Genera et Species Digestarum, Additis Diagnosibus, Synonymis; Landes-industrie-comptoir: Weimar, Germany, 1847; Volume 3. [Google Scholar]
- Chevalier, A. Réflexions Sur l’avenir de La Culture Des Arbres Fruitiers Du Groupe Des Pomacées et Sur Les Possibilités de Leur Amélioration. J. D’agriculture Tradit. Bot. Appliquée 1952, 32, 533–547. [Google Scholar] [CrossRef]
- Peev, D.; Vladimirov, V.; Petrova, A.; Anchev, M.; Temnickova, D.; Denchev, C.; Ganeva, A.; Gussev, C.H. Red Data Book of the Republic of Bulgaria, Volume 1, Plants and Fungi. Available online: http://e-ecodb.bas.bg/rdb/en/vol1/ (accessed on 1 September 2025).
- Yılmaz, M.; Parlak, S.; Kalkan, M. Güney Marmara ve Ege Bölgesindeki Geyik Elması (Malus trilobata CK Schneid.) Gen Kaynakları. Artvin Çoruh Univ. J. For. Fac. 2019, 20, 150–155. [Google Scholar]
- Yılmaz, M. Optimum Germination Temperature, Dormancy, and Viability of Stored, Non-Dormant Seeds of Malus trilobata (Poir.) CK Schneid. Seed Sci. Technol. 2008, 36, 747–756. [Google Scholar] [CrossRef]
- Türkmen, N.; Kirici, S.; Özgüven, M.; Inan, M.; Kaya, D.A. An Investigation of Dye Plants and Their Colourant Substances in the Eastern Mediterranean Region of Turkey. Bot. J. Linn. Soc. 2004, 146, 71–77. [Google Scholar] [CrossRef]
- Aladı, H.İ.; Satil, F.; Selvi, S. Wild Fruits Sold in the Public Bazaars of Edremit Gulf (Balıkesir) and Their Medicinal Uses. Biyolojik Çeşitlilik Koruma 2019, 12, 89–99. [Google Scholar] [CrossRef]
- Güleç, M.; Erarslan, Z.B.; Kültür, Ş. The Medicinal Plants Traditionally Used Against Cardiovascular Diseases in Türkiye. Int. J. Tradit. Complement. Med. Res. 2023, 4, 81–96. [Google Scholar] [CrossRef]
- Sargin, S.A. Plants Used against Obesity in Turkish Folk Medicine: A Review. J. Ethnopharmacol. 2021, 270, 113841. [Google Scholar] [CrossRef] [PubMed]
- Çınar, N.; Göktürk, R.S.; Öten, M. Some Medicinal Properties of Crab Apple (Eriolobus trilobatus) Genotypes in Antalya Province. Res. J. Biol. Sci. 2020, 13, 23–32. [Google Scholar]
- Baas, P.; Werker, E.; Fahn, A. Some Ecological Trends in Vessel Characters. IAWA J. 1983, 4, 141–159. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure Reactions; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 1984. [Google Scholar]
- Kaijaluoto, S.; Sorsamäki, L.; Aaltonen, O.; Nakari-Setälä, T. Bark-Based Biorefinery—From Pilot Experiments to Process Model. In Proceedings of the AIChE 2010 Annual Meeting, Salt Lake City, UT, USA, 7–12 November 2010. [Google Scholar]
- TAPPI T204 om-88; Solvent Extractives ofWood and Pulp. TAPPI Press: Atlanta, GA, USA, 1988.
- TAPPI T207 om-93; Water Solubility ofWood and Pulp. TAPPI Press: Atlanta, GA, USA, 1993.
- Şen, A.; Miranda, I.; Esteves, B.; Pereira, H. Chemical Characterization, Bioactive and Fuel Properties of Waste Cork and Phloem Fractions from Quercus cerris L. Bark. Ind. Crops Prod. 2020, 157, 112909. [Google Scholar] [CrossRef]
- TAPPI T222 om-88; Acid Insoluble Lignin in Wood and Pulp. TAPPI Press: Atlanta, GA, USA, 1988.
- TAPPI UM 250; Acid-Soluble Lignin in Wood and Pulp. TAPPI Press: Atlanta, GA, USA, 1991.
- Broadhurst, R.B.; Jones, W.T. Analysis of Condensed Tannins Using Acidified Vanillin. J. Sci. Food Agric. 1978, 29, 788–794. [Google Scholar] [CrossRef]
- Barros, L.; Carvalho, A.M.; Morais, J.S.; Ferreira, I.C.F.R. Strawberry-Tree, Blackthorn and Rose Fruits: Detailed Characterisation in Nutrients and Phytochemicals with Antioxidant Properties. Food Chem. 2010, 120, 247–254. [Google Scholar] [CrossRef]
- Correia, R.; Duarte, M.P.; Maurício, E.M.; Brinco, J.; Quintela, J.C.; da Silva, M.G.; Gonçalves, M. Chemical and Functional Characterization of Extracts from Leaves and Twigs of Acacia Dealbata. Processes 2022, 10, 2429. [Google Scholar] [CrossRef]
- Şen, U.; Viegas, C.; Duarte, M.P.; Maurício, E.M.; Nobre, C.; Correia, R.; Pereira, H.; Gonçalves, M. Maceration of Waste Cork in Binary Hydrophilic Solvents for the Production of Functional Extracts. Environments 2023, 10, 142. [Google Scholar] [CrossRef]
- ASTM D5865-13; Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2013.
- Demirbaş, A. Calculation of Higher Heating Values of Biomass Fuels. Fuel 1997, 76, 431–434. [Google Scholar] [CrossRef]
- ASTM E871-82; Standard Test Method for Moisture Analysis of Particulate Wood Fuels. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM E872-82; Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D1102-84; Test Method for Ash in Wood. ASTM International: West Conshohocken, PA, USA, 2008.
- ASTM D1857; Standard Test Method for Fusibility of Coal and Coke Ash. ASTM International: West Conshohocken, PA, USA, 2019.
- Trockenbrodt, M. Calcium Oxalate Crystals in the Bark of Quercus robur, Ulmus glabra, Populus tremula and Betula pendula. Ann. Bot. 1995, 75, 281–284. [Google Scholar] [CrossRef]
- He, H.; Li, D.; Li, X.; Fu, L. Research Progress on the Formation, Function, and Impact of Calcium Oxalate Crystals in Plants. Crystallogr. Rev. 2024, 30, 31–60. [Google Scholar] [CrossRef]
- Franceschi, V.R.; Nakata, P.A. Calcium Oxalate in Plants: Formation and Function. Annu. Rev. Plant Biol. 2005, 56, 41–71. [Google Scholar] [CrossRef] [PubMed]
- Baptista, I.; Miranda, I.; Quilhó, T.; Gominho, J.; Pereira, H. Characterisation and Fractioning of Tectona Grandis Bark in View of Its Valorisation as a Biorefinery Raw-Material. Ind. Crops Prod. 2013, 50, 166–175. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhou, N.; Dai, L.; Deng, W.; Liu, C.; Cheng, Y.; Liu, Y.; Cobb, K.; Chen, P. Applications of Calcium Oxide-Based Catalysts in Biomass Pyrolysis/Gasification—A Review. J. Clean. Prod. 2021, 291, 125826. [Google Scholar] [CrossRef]
- García, X.A.; Alarcón, N.A.; Gordon, A.L. Steam Gasification of Tars Using a CaO Catalyst. Fuel Process. Technol. 1999, 58, 83–102. [Google Scholar] [CrossRef]
- Colombo, K.; Ender, L.; Barros, A.A.C. The Study of Biodiesel Production Using CaO as a Heterogeneous Catalytic Reaction. Egypt. J. Pet. 2017, 26, 341–349. [Google Scholar] [CrossRef]
- Şen, A.U.; Pereira, H. State-of-the-Art Char Production with a Focus on Bark Feedstocks: Processes, Design, and Applications. Processes 2021, 9, 87. [Google Scholar] [CrossRef]
- Sousa, V.; Ferreira, J.P.A.; Miranda, I.; Quilhó, T.; Pereira, H. Quercus Rotundifolia Bark as a Source of Polar Extracts: Structural and Chemical Characterization. Forests 2021, 12, 1160. [Google Scholar] [CrossRef]
- Touati, R.; Santos, S.A.O.; Rocha, S.M.; Belhamel, K.; Silvestre, A.J.D. The Potential of Cork from Quercus suber L. Grown in Algeria as a Source of Bioactive Lipophilic and Phenolic Compounds. Ind. Crops Prod. 2015, 76, 936–945. [Google Scholar] [CrossRef]
- Şen, A.; Marques, A.V.; Gominho, J.; Pereira, H. Study of Thermochemical Treatments of Cork in the 150–400 °C Range Using Colour Analysis and FTIR Spectroscopy. Ind. Crops Prod. 2012, 38, 132–138. [Google Scholar] [CrossRef]
- Şen, U.; Pereira, H. Pyrolysis Behavior of Alternative Cork Species. J. Therm. Anal. Calorim. 2022, 147, 4017–4025. [Google Scholar] [CrossRef]
- Li, B.; Mbeugang, C.F.M.; Huang, Y.; Liu, D.; Wang, Q.; Zhang, S. A Review of CaO Based Catalysts for Tar Removal during Biomass Gasification. Energy 2022, 244, 123172. [Google Scholar] [CrossRef]
- Thakkar, M.; Makwana, J.P.; Mohanty, P.; Shah, M.; Singh, V. In Bed Catalytic Tar Reduction in the Autothermal Fluidized Bed Gasification of Rice Husk: Extraction of Silica, Energy and Cost Analysis. Ind. Crops Prod. 2016, 87, 324–332. [Google Scholar] [CrossRef]
- Corona-Ruiz, S.L.; Díaz-Jiménez, L.; Carlos-Hernandez, S. Catalytic Gasification as a Management Strategy for Wastes from Pecan Harvest. Ind. Crops Prod. 2024, 222, 119563. [Google Scholar] [CrossRef]
- Laca, A.; Laca, A.; Díaz, M. Eggshell Waste as Catalyst: A Review. J. Environ. Manag. 2017, 197, 351–359. [Google Scholar] [CrossRef]
- Basumatary, S.F.; Brahma, S.; Hoque, M.; Das, B.K.; Selvaraj, M.; Brahma, S.; Basumatary, S. Advances in CaO-Based Catalysts for Sustainable Biodiesel Synthesis. Green Energy Resour. 2023, 1, 100032. [Google Scholar] [CrossRef]
- Khan, M.R.; Singh, H.N. Clean Biodiesel Production Approach Using Waste Swan Eggshell Derived Heterogeneous Catalyst: An Optimization Study Employing Box-Behnken-Response Surface Methodology. Ind. Crops Prod. 2024, 220, 119181. [Google Scholar] [CrossRef]
- Proença, B.S.G.; Fioroto, P.O.; Heck, S.C.; Duarte, V.A.; Cardozo Filho, L.; Feihrmann, A.C.; Beneti, S.C. Obtention of Methyl Esters from Macauba Oil Using Egg Shell Catalyst. Chem. Eng. Res. Des. 2021, 169, 288–296. [Google Scholar] [CrossRef]
- Señorans, S.; Rangel-Rangel, E.; Maya, E.M.; Díaz, L. Hypercrosslinked Porous Polymer as Catalyst for Efficient Biodiesel Production. React. Funct. Polym. 2024, 202, 105964. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Yang, J.; Chen, M.; Wang, J. Upgrading of Bio-Oil via Microwave-Assisted Pyrolysis of Corncob over CaO and HZSM-5 Mixed Catalysts to Promote the Formation of Aromatic Hydrocarbons. Bioresources 2019, 14, 9719–9728. [Google Scholar] [CrossRef]
- Lachman, J.; Baláš, M.; Lisý, M.; Lisá, H.; Milčák, P.; Elbl, P. An Overview of Slagging and Fouling Indicators and Their Applicability to Biomass Fuels. Fuel Process. Technol. 2021, 217, 106804. [Google Scholar] [CrossRef]
- Li, Q.H.; Zhang, Y.G.; Meng, A.H.; Li, L.; Li, G.X. Study on Ash Fusion Temperature Using Original and Simulated Biomass Ashes. Fuel Process. Technol. 2013, 107, 107–112. [Google Scholar] [CrossRef]
- Fang, X.; Jia, L. Experimental Study on Ash Fusion Characteristics of Biomass. Bioresour. Technol. 2012, 104, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Wang, G.; Ning, X.; Zhang, J.; Li, Y.; Jiang, C. Effect of CaO Mineral Change on Coal Ash Melting Characteristics. J. Energy Inst. 2020, 93, 642–648. [Google Scholar] [CrossRef]
- Bgasheva, T.; Falyakhov, T.; Petukhov, S.; Sheindlin, M.; Vasin, A.; Vervikishko, P. Laser-pulse Melting of Calcium Oxide and Some Peculiarities of Its High-temperature Behavior. J. Am. Ceram. Soc. 2021, 104, 3461–3477. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: An Introduction. In Biochar for Environmental Management; Routledge: London, UK, 2015; pp. 33–46. [Google Scholar]
- Major, J.; Steiner, C.; Downie, A.; Lehmann, J. Biochar Effects on Nutrient Leaching. In Biochar for Environmental Management; Routledge: London, UK, 2012; pp. 303–320. [Google Scholar]
- Saarela, I. Wood, Bark, Peat and Coal Ashes as Liming Agents and Sources of Calcium, Magnesium, Potassium and Phosphorus. Ann. Agric. Fenn. 1991, 30, 375–388. [Google Scholar]
- Lee, J.; Kwon, E.E. Biochar in Green Roofs. J. Build. Eng. 2024, 89, 109272. [Google Scholar] [CrossRef]






| Component | % Dry Bark | % Ash-Free Bark |
|---|---|---|
| Inorganics | 13.32 ± 0.43 | - |
| CH2Cl2 ext | 2.45 ± 0.12 | 2.83 ± 0.14 |
| C2H5OH ext | 5.19 ± 0.95 | 5.99 ± 1.10 |
| H2O ext | 7.32 ± 1.03 | 8.44 ± 1.19 |
| Total extractives | 14.96 ± 2.10 | 17.26 ± 2.42 |
| Suberin | 4.01 ± 0.24 | 4.63 ± 0.28 |
| Acid-insoluble lignin | 19.09 ± 1.36 | 22.02 ± 1.57 |
| Acid-soluble lignin | 2.89 ± 0.28 | 3.33 ± 0.32 |
| Total lignin | 21.98 ± 1.64 | 25.36 ± 1.90 |
| Total polysaccharides | 45.73 ± 4.41 | 52.76 ± 5.09 |
| Phenolic Composition | Extract-Based (mg GAE/EAE/g Extract) | Solvent-Based (mg GAE/EAE/L) | Bark-Based (mg/g Bark) | |
|---|---|---|---|---|
| 12.5% Extract yield | 8.0% Extract yield | |||
| Total phenolics | 208.5 ± 35.2 | 326.5 ± 55.1 | 782.9 ± 132.2 | 26.1 ± 4.4 |
| Flavonoids | 84.6 ± 42.3 | 132.3 ± 66.2 | 317.4 ± 158.9 | 10.6 ± 5.3 |
| Condensed tannins | 152.4 ± nd | 238.3 ± nd | 572 ± nd | 19.1 ± nd |
| Radical-scavenging potential | Extract-based (mg TE/g extract) | Solvent-based (mg TE/L) | Bark-based (mg TE/g bark) | |
| 12.51% Extract yield | 8% Extract yield | |||
| DPPH | 167.8 ± 33.5 | 251.7 ± 50.3 | 604.0 ± 120.6 | 20.1 ± 4.0 |
| AR | DB | DAF | |
|---|---|---|---|
| Moisture (%) | 7.3 ± 0.1 | - | - |
| Ash (%) | 13.3 ± 0.2 | 14.3 ± 0.2 | - |
| Volatile matter (%) | 68.1 ± 0.5 | 73.5 ± 0.5 | 85.7 ± 0.6 |
| Fixed carbon (%) | 11.3 ± 0.5 | 12.2 ± 0.5 | 14.3 ± 0.6 |
| Estimated calorific value [32] (MJ/kg) | 16.5 | ||
| Calculated calorific value (MJ/kg) | 14.9 |
| Element | Oxide | Element Mass (%) | Oxide Mass (%) |
|---|---|---|---|
| Na | Na2O | 0.0374 | 0.0504 |
| Mg | MgO | 1.4090 | 2.3354 |
| Al | Al2O3 | 0.1206 | 0.2280 |
| Si | SiO2 | 0.2395 | 0.5123 |
| P | P2O5 | 0.1770 | 0.4054 |
| S | SO3 | 0.5085 | 1.2695 |
| K | K2O | 1.1890 | 1.4324 |
| Ca | CaO | 66.8067 | 93.4750 |
| F | Fe2O3 | 0.1385 | 0.1980 |
| Sr | SrO | 0.0792 | 0.0936 |
| S-blend | S-blend | 0.2949 | 0.2949 |
| Stages | Preheat | Deformation | Softening | Hemisphere | Flow |
|---|---|---|---|---|---|
| Temperatures (°C) | 500 | 1310 | 1371 | 1416 | 1452 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Șen, U.; Yücedağ, C.; Balcı, B.; Arıcı, Ş.; Koçar, G.; Şat, B.; Viegas, C.; Gonçalves, M.; Miranda, I.; Pereira, H. A First Process-Oriented Characterization of Eriolobus trilobatus (Labill. ex Poiret) Bark from Turkey: Chemical, Morphological and Energy Properties. Processes 2025, 13, 3946. https://doi.org/10.3390/pr13123946
Șen U, Yücedağ C, Balcı B, Arıcı Ş, Koçar G, Şat B, Viegas C, Gonçalves M, Miranda I, Pereira H. A First Process-Oriented Characterization of Eriolobus trilobatus (Labill. ex Poiret) Bark from Turkey: Chemical, Morphological and Energy Properties. Processes. 2025; 13(12):3946. https://doi.org/10.3390/pr13123946
Chicago/Turabian StyleȘen, Umut, Cengiz Yücedağ, Büşra Balcı, Şefik Arıcı, Günnur Koçar, Beyza Şat, Catarina Viegas, Margarida Gonçalves, Isabel Miranda, and Helena Pereira. 2025. "A First Process-Oriented Characterization of Eriolobus trilobatus (Labill. ex Poiret) Bark from Turkey: Chemical, Morphological and Energy Properties" Processes 13, no. 12: 3946. https://doi.org/10.3390/pr13123946
APA StyleȘen, U., Yücedağ, C., Balcı, B., Arıcı, Ş., Koçar, G., Şat, B., Viegas, C., Gonçalves, M., Miranda, I., & Pereira, H. (2025). A First Process-Oriented Characterization of Eriolobus trilobatus (Labill. ex Poiret) Bark from Turkey: Chemical, Morphological and Energy Properties. Processes, 13(12), 3946. https://doi.org/10.3390/pr13123946

