Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,564)

Search Parameters:
Keywords = reaction intermediates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4751 KiB  
Article
Electrocatalytic Oxidation for Efficient Toluene Removal with a Catalytic Cu-MnOx/GF Electrode in a Solid-State Electrocatalytic Device
by Haozhen Liu, Mingxin Liu, Xiqiang Zhao, Ping Zhou, Zhanlong Song, Wenlong Wang, Jing Sun and Yanpeng Mao
Catalysts 2025, 15(8), 749; https://doi.org/10.3390/catal15080749 (registering DOI) - 5 Aug 2025
Abstract
A series of Cu-MnOx/GF catalytic electrodes, with graphite felt (GF) pretreated via microwave modification as the catalyst carrier, were prepared under various hydrothermal conditions and characterized using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, [...] Read more.
A series of Cu-MnOx/GF catalytic electrodes, with graphite felt (GF) pretreated via microwave modification as the catalyst carrier, were prepared under various hydrothermal conditions and characterized using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, and Raman spectroscopy. The catalytic oxidation activity of catalytic Cu-MnOx/GF electrodes toward toluene was evaluated in an all-solid-state electrocatalytic device under mild operating conditions. The evaluation results demonstrated that the microwave-modified catalytic electrode exhibited high electrocatalytic activity toward toluene oxidation, with Cu-MnOx/700W-GF exhibiting significantly higher catalytic activity, indicating that an increase in catalyst loading capacity can promote the removal of toluene. Only CO2 and CO were detected, with no other intermediates observed in the reaction process. Moreover, the catalytic effect was significantly affected by the relative humidity. The catalytic oxidation of toluene can be fully realized under a certain humidity, indicating that the conversion of H2O to strongly oxidizing ·OH on the catalytic electrode is a key step in this reaction. Full article
(This article belongs to the Special Issue Catalytic Removal of Volatile Organic Compounds (VOCs))
Show Figures

Figure 1

17 pages, 2337 KiB  
Article
Oxygen Reduction by Amide-Ligated Cobalt Complexes: Effect of Hydrogen Bond Acceptor
by Zahra Aghaei, Adedamola A. Opalade, Victor W. Day and Timothy A. Jackson
Molecules 2025, 30(15), 3274; https://doi.org/10.3390/molecules30153274 - 5 Aug 2025
Abstract
The ability of earth-abundant metals to serve as catalysts for the oxygen reduction reaction is of increasing importance given the prominence of this reaction in several emerging technologies. It is now recognized that both the primary and secondary coordination environments of these catalysts [...] Read more.
The ability of earth-abundant metals to serve as catalysts for the oxygen reduction reaction is of increasing importance given the prominence of this reaction in several emerging technologies. It is now recognized that both the primary and secondary coordination environments of these catalysts can be modulated to optimize their performance. In this present work, we describe two CoII complexes [CoII(PaPy2Q)](OTf) (1) and [CoII(PaPy2N)](OTf) (2) that catalyze chemical and electrochemical dioxygen reduction. Both 1 and 2 contain CoII centers in a N5 coordination environment, but 2 has a naphthyridine group that places a nitrogen atom in the secondary coordination sphere. Solid-state X-ray crystallography and solution-state spectroscopic measurements reveal that, apart from this second-sphere nitrogen in 2, complexes 1 and 2 have essentially identical properties. Despite these similarities, 2 performs the chemical reduction of dioxygen ~10-fold more rapidly than 1. In addition, 2 has an enhanced performance in the electrochemical reduction of dioxygen compared to 1. Both complexes yield a significant amount of H2O2 in the chemical reduction of dioxygen (>25%). The enhanced catalytic performance of 2 is attributed to the presence of the second-sphere nitrogen atom, which might enable the efficient protonation of cobalt–oxygen intermediates formed during turnover. Full article
(This article belongs to the Special Issue Metal Complexes: Synthesis, Characterization and Applications)
Show Figures

Figure 1

28 pages, 1287 KiB  
Article
Ferrocene-Catalyzed Aromatization and Competitive Oxidative Ring Transformations of 1,2-Dihydro-1-Arylpyridazino[4,5-d]Pyridazines
by Dániel Hutai, Tibor Zs. Nagy, Veronika Emődi and Antal Csámpai
Catalysts 2025, 15(8), 742; https://doi.org/10.3390/catal15080742 (registering DOI) - 4 Aug 2025
Abstract
This paper presents the expected and unexpected, but typically substituent-dependent, ferrocene-catalyzed DDQ-mediated oxidative transformations of a series of 5,8-bis(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines and 8-(3,5-dimethyl-1H-pyrazol-1-yl)-5-(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines. Under noncatalytic conditions the reactions were sluggish, mainly producing a substantial amount of undefined [...] Read more.
This paper presents the expected and unexpected, but typically substituent-dependent, ferrocene-catalyzed DDQ-mediated oxidative transformations of a series of 5,8-bis(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines and 8-(3,5-dimethyl-1H-pyrazol-1-yl)-5-(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines. Under noncatalytic conditions the reactions were sluggish, mainly producing a substantial amount of undefined tarry materials; nevertheless, the ferrocene-catalyzed reactions of the 5,8-bis(methylthio)-substituted precursors gave the aromatic products the expected aromatic products in low yields. Their formation was accompanied by ring transformations proceeding via aryne-generating fragmentation/Diels–Alder (DA)/N2-releasing retro Diels–Alder (rDA) sequence to construct arene-fused phthalazines. On the other hand, neither the noncatalytic nor the catalytic reactions of the 8-pyrazolyl-5-methylthio-substituted dihydroaromatics yielded the expected aromatic products. Instead, depending on their substitution pattern, the catalytic reactions of these pyrazolyl-substituted precursors also led to the formation of dearylated arene-fused phthalazines competing with an unprecedented multistep fragmentation sequence terminated by the hydrolysis of cationic intermediates to give 4-(methylthio)pyridazino[4,5-d]pyridazin-1(2H)-one and the corresponding 3,5-dimethyl-1-aryl-1H-pyrazole. When 0.6 equivalents of DDQ were applied in freshly absolutized THF, a representative pyrazolyl-substituted model underwent an oxidative coupling to give a dimer formed by the interaction of the cationic intermediate, and a part of the N-nucleophilic precursor remained intact. A systematic computational study was conducted on these intriguing reactions to support their complex mechanisms proposed on the basis of the structures of the isolated products. Full article
(This article belongs to the Special Issue Catalysis in Heterocyclic and Organometallic Synthesis, 3rd Edition)
Show Figures

Graphical abstract

13 pages, 1424 KiB  
Article
Synthesis and Trapping of the Elusive Ortho-Iminoquinone Methide Derived from α-Tocopheramine and Comparison to the Case of α-Tocopherol
by Anjan Patel and Thomas Rosenau
Molecules 2025, 30(15), 3257; https://doi.org/10.3390/molecules30153257 - 4 Aug 2025
Abstract
Tocopheramines are a class of antioxidants which are distinguished from tocopherols (vitamin E) by the presence of an amino group instead of the phenolic hydroxyl group. α-Tocopheramine is intensively studied for biomedical applications but also as a stabilizer for synthetic and natural polymers, [...] Read more.
Tocopheramines are a class of antioxidants which are distinguished from tocopherols (vitamin E) by the presence of an amino group instead of the phenolic hydroxyl group. α-Tocopheramine is intensively studied for biomedical applications but also as a stabilizer for synthetic and natural polymers, in particular for cellulose solutions and spinning dopes for cellulosic fibers. This study addresses a fundamental difference in the oxidation chemistry of α-tocopheramine and its tocopherol counterpart: while the formation of the ortho-quinone methide (o-QM) involving C-5a is one of the most fundamental reactions of α-tocopherol, the corresponding ortho-iminoquinone methide (o-IQM) derived from α-tocopheramine has been elusive so far. Synthesis of the transient intermediate succeeded initially via 5a-hydroxy-α-tocopheramine, and its occurrence was confirmed by dimerization to the corresponding spiro-dimer and by trapping with ethyl vinyl ether. Eventually, suitable oxidation conditions were found which allowed for the generation of the o-IQM directly from α-tocopheramine. The underlying oxidation chemistry of α-tocopherol and α-tocopheramine is concisely discussed. Full article
(This article belongs to the Special Issue 10th Anniversary of Green Chemistry Section)
Show Figures

Scheme 1

43 pages, 7013 KiB  
Review
Fused-Linked and Spiro-Linked N-Containing Heterocycles
by Mikhail Yu. Moskalik and Bagrat A. Shainyan
Int. J. Mol. Sci. 2025, 26(15), 7435; https://doi.org/10.3390/ijms26157435 (registering DOI) - 1 Aug 2025
Viewed by 105
Abstract
Fused and spiro nitrogen-containing heterocycles play an important role as structural motifs in numerous biologically active natural products and pharmaceuticals. The review summarizes various approaches to the synthesis of three-, four-, five-, and six-membered fused and spiro heterocycles with one or two nitrogen [...] Read more.
Fused and spiro nitrogen-containing heterocycles play an important role as structural motifs in numerous biologically active natural products and pharmaceuticals. The review summarizes various approaches to the synthesis of three-, four-, five-, and six-membered fused and spiro heterocycles with one or two nitrogen atoms. The assembling of the titled compounds via cycloaddition, oxidative cyclization, intramolecular ring closure, and insertion of sextet intermediates—carbenes and nitrenes—is examined on a vast number of examples. Many of the reactions proceed with high regio-, stereo-, or diastereoselectivity and in excellent, up to quantitative, yield, which is of principal importance for the synthesis of chiral drug-like compounds. For most unusual and hardly predictable transformations, the mechanisms are given or referred to. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Graphical abstract

14 pages, 2022 KiB  
Article
Photo-Biocatalytic One-Pot Cascade Reaction for the Asymmetric Synthesis of Hydroxysulfone Compounds
by Xuebin Qiao, Qianqian Pei, Yihang Dai, Lei Wang and Zhi Wang
Catalysts 2025, 15(8), 733; https://doi.org/10.3390/catal15080733 (registering DOI) - 1 Aug 2025
Viewed by 227
Abstract
Asymmetric synthesis of chiral hydroxysulfones, key pharmaceutical intermediates, is challenging. We report an efficient synthesis from readily available materials via a one-pot photo-biocatalytic cascade reaction in aqueous conditions, utilizing visible light as an energy source. This sustainable process achieves up to 84% yields [...] Read more.
Asymmetric synthesis of chiral hydroxysulfones, key pharmaceutical intermediates, is challenging. We report an efficient synthesis from readily available materials via a one-pot photo-biocatalytic cascade reaction in aqueous conditions, utilizing visible light as an energy source. This sustainable process achieves up to 84% yields and 99% ee. Engineered ketoreductase produces R-configured products with high conversion and enantioselectivity across diverse substrates. Molecular dynamics (MD) simulations explored enzyme–substrate interactions and their influence on reaction activity and stereoselectivity. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

12 pages, 3668 KiB  
Article
The Study on the Electrochemical Efficiency of Yttrium-Doped High-Entropy Perovskite Cathodes for Proton-Conducting Fuel Cells
by Bingxue Hou, Xintao Wang, Rui Tang, Wenqiang Zhong, Meiyu Zhu, Zanxiong Tan and Chengcheng Wang
Materials 2025, 18(15), 3569; https://doi.org/10.3390/ma18153569 - 30 Jul 2025
Viewed by 235
Abstract
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) [...] Read more.
The commercialization of proton-conducting fuel cells (PCFCs) is hindered by the limited electroactivity and durability of cathodes at intermediate temperatures ranging from 400 to 700 °C, a challenge exacerbated by an insufficient understanding of high-entropy perovskite (HEP) materials for oxygen reduction reaction (ORR) optimization. This study introduces an yttrium-doped HEP to address these limitations. A comparative analysis of Ce0.2−xYxBa0.2Sr0.2La0.2Ca0.2CoO3−δ (x = 0, 0.2; designated as CBSLCC and YBSLCC) revealed that yttrium doping enhanced the ORR activity, reduced the thermal expansion coefficient (19.9 × 10−6 K−1, 30–900 °C), and improved the thermomechanical compatibility with the BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolytes. Electrochemical testing demonstrated a peak power density equal to 586 mW cm−2 at 700 °C, with a polarization resistance equaling 0.3 Ω cm2. Yttrium-induced lattice distortion promotes proton adsorption while suppressing detrimental Co spin-state transitions. These findings advance the development of durable, high-efficiency PCFC cathodes, offering immediate applications in clean energy systems, particularly for distributed power generation. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

13 pages, 1111 KiB  
Communication
Renewable Solvents for Diels–Alder/Cheletropic Reaction Sequences: Preparation of Pentaphenylbenzene and 1,2,4-Triphenyltriphenylene
by Sara Ahmed, Harry Burrows, Brian A. Chalmers, David B. Cordes, Ruairidh Macleod Davidson, Lauren Emmens, Theodore V. Fulton, Daniel Kleinjan, Iain L. J. Patterson and Iain A. Smellie
Reactions 2025, 6(3), 41; https://doi.org/10.3390/reactions6030041 - 30 Jul 2025
Viewed by 227
Abstract
Polycyclic aromatic compounds can often be made by a sequence featuring an initial Diels–Alder [4 + 2] cycloaddition reaction, followed by cheletropic extrusion of carbon monoxide. These reactions normally require heating the diene and dieneophile in petrochemical-derived aromatic hydrocarbon solvents, such as xylenes [...] Read more.
Polycyclic aromatic compounds can often be made by a sequence featuring an initial Diels–Alder [4 + 2] cycloaddition reaction, followed by cheletropic extrusion of carbon monoxide. These reactions normally require heating the diene and dieneophile in petrochemical-derived aromatic hydrocarbon solvents, such as xylenes or diphenyl ether. This article summarizes the results of attempts to use renewable solvents in place of those currently in use to prepare pentaphenylbenzene and 1,2,4-triphenyltriphenylene. Dihydrolevoglucosenone, p-cymene, ethyl lactate, diethyl carbonate, and cyclopentyl methyl ether have all been successfully evaluated as renewable solvent alternatives in Diels–Alder/cheletropic reaction sequences. An analysis of the products from the reactions investigated did not show evidence of oxidative degradation of the diene reactants. Furthermore, norbornadien-7-one intermediates were not isolated from any of the reactions tested. Full article
Show Figures

Graphical abstract

23 pages, 1249 KiB  
Review
Guiding Microbial Crossroads: Syngas-Driven Valorisation of Anaerobic-Digestion Intermediates into Bio-Hydrogen and Volatile Fatty Acids
by Alvaro dos Santos Neto and Mohammad J. Taherzadeh
Bioengineering 2025, 12(8), 816; https://doi.org/10.3390/bioengineering12080816 - 29 Jul 2025
Viewed by 322
Abstract
Anaerobic digestion (AD) has long been valued for producing a biogas–digestate pair, yet its profitability is tightening. Next-generation AD biorefineries now position syngas both as a supplementary feedstock and as a springboard to capture high-value intermediates, hydrogen (H2) and volatile fatty [...] Read more.
Anaerobic digestion (AD) has long been valued for producing a biogas–digestate pair, yet its profitability is tightening. Next-generation AD biorefineries now position syngas both as a supplementary feedstock and as a springboard to capture high-value intermediates, hydrogen (H2) and volatile fatty acids (VFA). This review dissects how complex natural consortia “decide” between hydrogenogenesis and acetogenesis when CO, H2, and CO2 co-exist in the feedstocks, bridging molecular mechanisms with process-scale levers. The map of the bioenergetic contest between the biological water–gas shift reaction and Wood–Ljungdahl pathways is discussed, revealing how electron flow, thermodynamic thresholds, and enzyme inhibition dictate microbial “decision”. Kinetic evidence from pure and mixed cultures is integrated with practical operating factors (gas composition and pressure, pH–temperature spectrum, culture media composition, hydraulic retention time, and cell density), which can bias consortia toward the desired product. Full article
(This article belongs to the Special Issue Anaerobic Digestion Advances in Biomass and Waste Treatment)
Show Figures

Graphical abstract

15 pages, 1767 KiB  
Article
Synthesis and Photophysics of 5-(1-Pyrenyl)-1,2-Azoles
by María-Camila Ríos, Alexander Ladino-Bejarano and Jaime Portilla
Chemistry 2025, 7(4), 120; https://doi.org/10.3390/chemistry7040120 - 27 Jul 2025
Viewed by 360
Abstract
Two pyrene derivatives, substituted at position 1 with isoxazole or NH-pyrazole, were synthesized in 85–87% yield starting from 1-acetylpyrene and via the cyclocondensation reaction of a β-enaminone intermediate with hydroxylamine or hydrazine. The photophysics of the two 5-(1-pyrenyl)-1,2-azoles were explored, revealing that [...] Read more.
Two pyrene derivatives, substituted at position 1 with isoxazole or NH-pyrazole, were synthesized in 85–87% yield starting from 1-acetylpyrene and via the cyclocondensation reaction of a β-enaminone intermediate with hydroxylamine or hydrazine. The photophysics of the two 5-(1-pyrenyl)-1,2-azoles were explored, revealing that only the isoxazole derivative exhibits good emission properties (ϕF ≥ 74%) but without solvatofluorochromism behavior. However, both probes exhibited noticeable photophysics in the aggregated state (in the presence of H2O and/or in the solid state) and through acid–base interactions (using TFA and TBACN), leveraging the basic and acidic character of the analyzed 1,2-azoles, which was also investigated by 1H NMR spectroscopy. Therefore, the selective incorporation of N-heteroaromatic units into the pyrene scaffold effectively modulates the photophysics and environmental sensitivity of the corresponding probes. Full article
(This article belongs to the Special Issue Modern Photochemistry and Molecular Photonics)
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
Synthesis and Properties of Bi1.8Mn0.5Ni0.5Ta2O9-Δ Pyrochlore
by Sergey V. Nekipelov, Olga V. Petrova, Alexandra V. Koroleva, Mariya G. Krzhizhanovskaya, Kristina N. Parshukova, Nikolay A. Sekushin, Boris A. Makeev and Nadezhda A. Zhuk
Chemistry 2025, 7(4), 119; https://doi.org/10.3390/chemistry7040119 - 25 Jul 2025
Viewed by 172
Abstract
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a [...] Read more.
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a porous microstructure formed by randomly oriented oblong grains. The average crystallite size determined by X-ray diffraction is 65 nm. The charge state of transition element cations in the pyrochlore was analyzed by soft X-ray spectroscopy using synchrotron radiation. For mixed pyrochlore, a characteristic shift of Bi4f and Ta4f and Ta5p spectra to the region of lower energies by 0.25 and 0.90 eV is observed compared to the binding energy in Bi2O3 and Ta2O5 oxides. XPS Mn2p spectrum of pyrochlore has an intermediate energy position compared to the binding energy in MnO and Mn2O3, which indicates a mixed charge state of manganese (II, III) cations. Judging by the nature of the Ni2p spectrum of the complex oxide, nickel ions are in the charge state of +(2+ζ). The relative permittivity of the sample in a wide temperature (up to 350 °C) and frequency range (25–106 Hz) does not depend on the frequency and exhibits a constant low value of 25. The minimum value of 4 × 10−3 dielectric loss tangent is exhibited by the sample at a frequency of 106 Hz. The activation energy of conductivity is 0.7 eV. The electrical behavior of the sample is modeled by an equivalent circuit containing a Warburg diffusion element. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

16 pages, 4134 KiB  
Article
Effect of Oxygen-Containing Functional Groups on the Performance of Palladium/Carbon Catalysts for Electrocatalytic Oxidation of Methanol
by Hanqiao Xu, Hongwei Li, Xin An, Weiping Li, Rong Liu, Xinhong Zhao and Guixian Li
Catalysts 2025, 15(8), 704; https://doi.org/10.3390/catal15080704 - 24 Jul 2025
Viewed by 316
Abstract
The methanol oxidation reaction (MOR) of direct methanol fuel cells (DMFCs) is limited by the slow kinetic process and high reaction energy barrier, significantly restricting the commercial application of DMFCs. Therefore, developing MOR catalysts with high activity and stability is very important. In [...] Read more.
The methanol oxidation reaction (MOR) of direct methanol fuel cells (DMFCs) is limited by the slow kinetic process and high reaction energy barrier, significantly restricting the commercial application of DMFCs. Therefore, developing MOR catalysts with high activity and stability is very important. In this paper, oxygen-functionalised activated carbon (FAC) with controllable oxygen-containing functional groups was prepared by adjusting the volume ratio of H2SO3/HNO3 mixed acid, and Pd/AC and Pd/FAC catalysts were synthesised via the hydrazine hydrate reduction method. A series of characterisation techniques and electrochemical performance tests were used to study the catalyst. The results showed that when V(H2SO3):V(HNO3) = 2:3, more defects were generated on the surface of the AC, and more oxygen-containing functional groups represented by C=O and C–OH were attached to the surface of the support, which increased the anchor sites of Pd and improved the dispersion of Pd nanoparticles (Pd NPs) on the support. At the same time, the mass–specific activity of Pd/FAC for MOR was 2320 mA·mgPd, which is 1.5 times that of Pd/AC, and the stability was also improved to a certain extent. In situ infrared spectroscopy further confirmed that oxygen functionalisation treatment promoted the formation and transformation of *COOH intermediates, accelerated the transformation of COL into COB, reduced the poisoning of COads species adsorbed to the catalyst, optimised the reaction path and improved the catalytic kinetic performance. Full article
Show Figures

Graphical abstract

16 pages, 1696 KiB  
Communication
Synthesis and Characterization of Amide-Based Cyclotriphosphazene Derivatives with Alkoxy Terminal Groups
by Khairunnisa Abdul Rahim and Zuhair Jamain
Molbank 2025, 2025(3), M2039; https://doi.org/10.3390/M2039 - 21 Jul 2025
Viewed by 230
Abstract
A series of new amide-based cyclotriphosphazene molecules consisting of different terminal groups (heptyl, decyl, and tetradecyl) at the periphery was successfully synthesized and characterized. The reaction began with the alkylation of methyl-4-hydroxybenzoate with 1-bromoheptane, 1-bromodecane, and 1-bromotetradecane, which was followed by reduction with [...] Read more.
A series of new amide-based cyclotriphosphazene molecules consisting of different terminal groups (heptyl, decyl, and tetradecyl) at the periphery was successfully synthesized and characterized. The reaction began with the alkylation of methyl-4-hydroxybenzoate with 1-bromoheptane, 1-bromodecane, and 1-bromotetradecane, which was followed by reduction with potassium hydroxide to form a series of benzoic acid intermediates (1a–c). These intermediates underwent a reaction with thionyl chloride, followed by a reaction with 4-nitroaniline and triethylamine, to form para-substituted amides (2a–c). Further reduction of intermediates 2a–c with sodium sulfide hydrate produced the anilines 3a–c. Another reaction of hexachlorocyclotriphosphazene (HCCP) with methyl-4-hydroxybenzoate yielded intermediate 4, which was then reduced with sodium hydroxide to form intermediate 5. Finally, chlorination of intermediate 5 with thionyl chloride, followed by a reaction with the aniline derivatives (3a–c), formed the hexasubstituted cyclotriphosphazene compounds 6a–c, with two amide linkages. The structures of these compounds were confirmed using Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and CHN elemental analysis. Full article
Show Figures

Figure 1

17 pages, 4184 KiB  
Review
Molecular Modification Strategies for Enhancing CO2 Electroreduction
by Yali Wang, Leibing Chen, Guoying Li, Jing Mei, Feng Zhang, Jiaxing Lu and Huan Wang
Molecules 2025, 30(14), 3038; https://doi.org/10.3390/molecules30143038 - 20 Jul 2025
Viewed by 361
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) is a crucial technology for achieving carbon cycling and renewable energy conversion, yet it faces challenges such as complex reaction pathways, competition for intermediate adsorption, and low product selectivity. In recent years, molecular modification has [...] Read more.
Electrocatalytic CO2 reduction reaction (CO2RR) is a crucial technology for achieving carbon cycling and renewable energy conversion, yet it faces challenges such as complex reaction pathways, competition for intermediate adsorption, and low product selectivity. In recent years, molecular modification has emerged as a promising strategy. By adjusting the surface properties of catalysts, molecular modification alters the electronic structure, steric hindrance, promotes the adsorption of reactants, stabilizes intermediates, modifies the hydrophilic–hydrophobic environment, and regulates pH, thereby significantly enhancing the conversion efficiency and selectivity of CO2RR. This paper systematically reviews the modification strategies and mechanisms of molecularly modified materials in CO2RR. By summarizing and analyzing the existing literature, this review provides new perspectives and insights for future research on molecularly modified materials in electrocatalytic CO2 reduction. Full article
(This article belongs to the Special Issue Functional Materials for Small Molecule Electrocatalysis)
Show Figures

Figure 1

16 pages, 4479 KiB  
Article
Photophysical Properties of 1,3-Diphenylisobenzofuran as a Sensitizer and Its Reaction with O2
by Ștefan Stan, João P. Prates Ramalho, Alexandru Holca and Vasile Chiș
Molecules 2025, 30(14), 3021; https://doi.org/10.3390/molecules30143021 - 18 Jul 2025
Viewed by 352
Abstract
1,3-Diphenylisobenzofuran (DPBF) is a widely used fluorescent probe for singlet oxygen (1O2) detection in photodynamic applications. In this work, we present an integrated experimental and computational analysis to describe its spectroscopic, photophysical, and reactive properties in ethanol, DMSO, and [...] Read more.
1,3-Diphenylisobenzofuran (DPBF) is a widely used fluorescent probe for singlet oxygen (1O2) detection in photodynamic applications. In this work, we present an integrated experimental and computational analysis to describe its spectroscopic, photophysical, and reactive properties in ethanol, DMSO, and DMF. UV-Vis and fluorescence measurements across a wide concentration range show well-resolved S0 → S1 electronic transition of a π → π* nature with small red shifts in polar aprotic solvents. Fluorescence lifetimes increase slightly with solvent polarity, showing stabilization of the excited state. The 2D PES and Boltzmann populations analysis indicate two co-existing conformers (Cs and C2), with Cs being slightly more stable at room temperature. TD-DFT calculations have been performed using several density functionals and the 6-311+G(2d,p) basis set to calculate absorption/emission wavelengths, oscillator strengths, transition dipole moments, and radiative lifetimes. Overall, cam-B3LYP and ωB97X-D provided the best agreement with experiments for the photophysical data across all solvents. The photophysical behavior of DPBF upon interaction with 1O2 can be explained by a small-barrier, two-step reaction pathway that goes through a zwitterionic intermediate, resulting in the formation of 2,5-endoperoxide. This work explains the photophysical properties and reactivity of DPBF, therefore providing a solid basis for future studies involving singlet oxygen. Full article
Show Figures

Figure 1

Back to TopTop