Quantification, Prevalence, and Pretreatment Methods of Mycotoxins in Groundnuts and Tree Nuts: An Update
Abstract
:1. Introduction
2. Classification and Toxicity of Major Mycotoxins in Nuts
Mycotoxins | Genus | Major Effects | References |
---|---|---|---|
TA | Alternaria | High acute toxicity, precancerous changes in the mucosa of mice esophagus | [16] |
OTA | Aspergillus, Penicillium | Nephrotoxic, carcinogenic, teratogenic, neurotoxic, embryotoxic, inhibition of DNA and RNA synthesis | [1,2,7] |
DON | Fusarium | Human gastrointestinal illness, autoimmune disease, stimulates inflammation, inhibition of translation and protein synthesis, nausea, vomiting, diarrhea | [6,7] |
FBs | Fusarium | Carcinogenic, hepatotoxic, nephrotoxic, liver cancer | [1,7,17] |
Aflatoxins | Aspergillus flavus Aspergillus parasiticus | Immunosuppression, reduction of children growth, reduction of reproductivity, acute hepatitis, carcinogenic, hepatotoxic, mutagenic, teratogenic | [1,7,8,17] |
T-2 toxin | Fusarium | Inhibition of protein synthesis and mitochondrial function, cytotoxic | [2,9,18] |
ZEA | Fusarium | Estrogenic effects (fertility problems, breast augmentation) | [1,7,17] |
3. Contamination of Nuts
4. Sampling of Nuts
5. Sample Pretreatment Methods
5.1. Liquid–Liquid Extraction (LLE)-Based Methods
5.1.1. Liquid–Liquid Extraction (LLE)
5.1.2. Dispersive Liquid–Liquid Microextraction (DLLME)
5.2. Solid-Phase Extraction (SPE)-Based Methods
5.2.1. Solid-Phase Extraction (SPE)
5.2.2. Magnetic Solid-Phase Extraction (MSPE)
5.2.3. Solid-Phase Microextraction (SPME)
5.2.4. Dispersive Micro-Solid-Phase Extraction (D-μ-SPE)
5.2.5. Nanoparticles-Based SPE
5.3. Matrix Solid-Phase Dispersion (MSPD)
5.4. QuEChERS
5.5. Green Solvents Extraction
5.5.1. Deep Eutectic Solvent (DES)
5.5.2. Ionic Liquids (ILs)
5.6. Combination of Different Pretreatment Methods
6. Analytical Quantification of Mycotoxins in Nuts
6.1. Indirect Techniques
6.1.1. High-Performance Liquid Chromatography (HPLC)
6.1.2. LC-MS
6.1.3. LC Techniques–QqQ-MS/MS
6.2. Direct Techniques
6.2.1. Thin-Layer Chromatography (TLC)
6.2.2. Enzyme-Linked Immunosorbent Assay ELISA
6.2.3. Lateral Flow Device (LFD)
6.3. Combination of Direct and Indirect Techniques
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AC-B | Activated carbon–boron |
AFs | Aflatoxins |
AFB1 | Aflatoxin B1 |
AFB2 | Aflatoxin B2 |
AFG1 | Aflatoxin G1 |
AFG2 | Aflatoxin G2 |
AFM1 | Aflatoxin M1 |
AFM2 | Aflatoxin M2 |
AFPA | Aspergillus flavus and parasiticus agar |
AME | Alternariol monomethyl ether |
AOH | Alternariol |
APCI | Atmospheric pressure chemical ionization |
AuNPs | Gold nanoparticles |
BEAU | Beauvericin |
BSA | Bovine serum albumin |
CIT | Citrinin |
CPA | Cyclopiazonic acid |
CTN | Chlorothalonil |
DAS | Diacetoxyscirpenol |
DESs | Deep eutectic solvents |
DES-MSPD | Deep eutectic solvent–MSPD |
D-μ-SPE | Dispersive micro-solid-phase extraction |
DLLME | Dispersive liquid–liquid microextraction |
DMRM | Dynamic MRM |
DON | Deoxynivalenol |
DSPE | Dispersive solid-phase extraction |
ELISA | Enzyme-linked immunosorbent assay |
EMR-lipid | Enhanced matrix removal-lipid |
ENNs | Enniatins |
ENA | Enniatin A |
ENA1 | Enniatin A1 |
ENB | Enniatin B |
ENB1 | Enniatin B1 |
ESI | Electrospray ionization |
FBs | Fumonisins B |
FB1 | Fumonisin-B1 |
FB2 | Fumonisin-B2 |
FE-SEM | Field emission scanning electron microscope |
FT-IR | Fourier transform infrared |
FUS-X | Fusarenon-X |
GC | Gas chromatography |
HBA | Hydrogen bond acceptor |
HBD | Hydrogen bond donor |
(HMIM)(PF6) | 1-hexAyl-3-methylimidazolium hexafluorophosphate |
HPLC | High-performance liquid chromatography |
HPLC-FLD | High-performance liquid chromatography with fluorescence detection |
HPTLC | High-performance thin-layer chromatography |
HT-2 | HT-2 toxin |
IACs | Immunoaffinity columns |
ICA | Immunochromatographic assay |
ICS | Immunochromatographic strip |
ILs | Ionic liquids |
LC | Liquid chromatography |
LC-MS | Liquid chromatography–mass spectrometry |
LC-MS/MS | Liquid chromatography–tandem mass spectrometry |
LFA | Lateral flow immunoassay |
LFD | Lateral flow device |
LFTs | Lateral flow tests |
LLE | Liquid–liquid extraction |
LOD | Limit of detection |
LOQ | Limit of quantification |
Mab | Monoclonal antibody |
MOFs | Metal–organic frameworks |
MON | Moniliformin |
MRM | Multiple reaction monitoring |
MSPE | Magnetic solid-phase extraction |
MSPD | Matrix solid-phase dispersion |
NEO | Neosolaniol |
NIV | Nivalenol |
NMs | Nanoparticles materials |
OTA | Ochratoxin A |
OTB | Ochratoxin B |
OVA | Ovalbumin |
PAT | Patulin |
PDMS | Polydimethylsiloxane |
PRS | Propyl sulfonic acid |
PSA | Primary secondary amine |
QqQ | Triple quadrupole mass spectrometer |
QuEChERS | Quick, easy, cheap, effective, rugged, and safe |
RPLC | Reversed-phase LC |
RSD | Relative standard deviation |
SIDA | Stable isotope dilution assay |
SPE | Solid-phase extraction |
SPME | Solid-phase microextraction |
SPSs | Switchable polarity solvents |
STE | Sterigmatocystin |
T-2 | T-2 toxin |
TA | Tenuazonic acid |
TCT | Trichothecenes |
TLC | Thin-layer chromatography |
UHPLC | Ultra-high-performance liquid chromatography |
UHPLC-MS/MS | Ultra-high-performance liquid chromatography–tandem mass spectrometry |
VDLs | Visual detection limits |
XRD | X-Ray diffraction |
ZEA | Zearalenone |
ZnO-NRs | Zinc oxide nanorods |
α-ZOL | α-Zearalenol |
3-AcDON | 3-acetyldeoxynivalenol |
15-AcDON | 15-acetyldeoxynivalenol |
References
- Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical methods for determination of mycotoxins: A review. Anal. Chim. Acta 2009, 632, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, G.; Wu, D.; Liu, J.; Li, X.; Luo, P.; Hu, N.; Wang, H.; Wu, Y. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends Food Sci. Technol. 2020, 96, 233–252. [Google Scholar] [CrossRef]
- Ismaiel, A.A.; Papenbrock, J. Mycotoxins: Producing Fungi and Mechanisms of Phytotoxicity. Agriculture 2015, 5, 492–537. [Google Scholar] [CrossRef]
- Iqbal, S.Z. Mycotoxins in food, recent development in food analysis and future challenges; a review. Curr. Opin. Food Sci. 2021, 42, 237–247. [Google Scholar] [CrossRef]
- Nazhand, A.; Durazzo, A.; Lucarini, M.; Souto, E.B.; Santini, A. Characteristics, Occurrence, Detection and Detoxification of Aflatoxins in Foods and Feeds. Foods 2020, 9, 644. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J. 2010, 3, 323–347. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef]
- McMillan, A.; Renaud, J.B.; Burgess, K.M.; Orimadegun, A.E.; Akinyinka, O.O.; Allen, S.J.; Miller, J.D.; Reid, G.; Sumarah, M.W. Aflatoxin exposure in Nigerian children with severe acute malnutrition. Food Chem. Toxicol. 2018, 111, 356–362. [Google Scholar] [CrossRef]
- Sudakin, D.L. Trichothecenes in the environment: Relevance to human health. Toxicol. Lett. 2003, 143, 97–107. [Google Scholar] [CrossRef]
- De Souza, R.G.M.; Schincaglia, R.M.; Pimentel, G.D.; Mota, J.F. Nuts and Human Health Outcomes: A Systematic Review. Nutrients 2017, 9, 1311. [Google Scholar] [CrossRef]
- Dreher, M.L.; Maher, C.V.; Kearney, P. The Traditional and Emerging Role of Nuts in Healthful Diets. Nutr. Rev. 2009, 54, 241–245. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, R.; Mesas, A.E.; Garrido-Miguel, M.; Martínez-Ortega, I.A.; Jiménez-López, E.; Martínez-Vizcaíno, V. The Relationship of Tree Nuts and Peanuts with Adiposity Parameters: A Systematic Review and Network Meta-Analysis. Nutrients 2021, 13, 2251. [Google Scholar] [CrossRef] [PubMed]
- Zaied, C.; Abid, S.; Bouaziz, C.; Chouchane, S.; Jomaa, M.; Bacha, H. Ochratoxin A levels in spices and dried nuts consumed in Tunisia. Food Addit. Contam. Part B 2010, 3, 52–57. [Google Scholar] [CrossRef]
- Schincaglia, A.; Aspromonte, J.; Franchina, F.A.; Chenet, T.; Pasti, L.; Cavazzini, A.; Purcaro, G.; Beccaria, M. Current Developments of Analytical Methodologies for Aflatoxins’ Determination in Food during the Last Decade (2013–2022), with a Particular Focus on Nuts and Nut Products. Foods 2023, 12, 527. [Google Scholar] [CrossRef] [PubMed]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Yekeler, H.; Bitmiş, K.; Ozçelik, N.; Doymaz, M.Z.; Çalta, M. Analysis of Toxic Effects of Alternaria Toxins on Esophagus of Mice by Light and Electron Microscopy. Toxicol. Pathol. 2001, 29, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Amar, R.; Amina, M.; Salim, M.; Florence, M.; Nasserdine, S. Investigations on aflatoxigenic fungi and aflatoxins contamination in some nuts sampled in Algeria. Afr. J. Microbiol. Res. 2013, 7, 4974–4980. [Google Scholar] [CrossRef]
- Vidal, A.; Mengelers, M.; Yang, S.; De Saeger, S.; De Boevre, M. Mycotoxin Biomarkers of Exposure: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1127–1155. [Google Scholar] [CrossRef] [PubMed]
- Alshannaq, A.; Yu, J.-H. Analysis of E.U. Rapid Alert System (RASFF) Notifications for Aflatoxins in Exported U.S. Food and Feed Products for 2010–2019. Toxins 2021, 13, 90. [Google Scholar] [CrossRef]
- Owolabi, I.O.; Karoonuthaisiri, N.; Elliott, C.T.; Petchkongkaew, A. A 10-year analysis of RASFF notifications for mycotoxins in nuts. Trend in key mycotoxins and impacted countries. Food Res. Int. 2023, 172, 112915. [Google Scholar] [CrossRef]
- Fernández Pinto, V.; Patriarca, A.; Locani, O.; Vaamonde, G. Natural co-occurrence of aflatoxin and cyclopiazonic acid in peanuts grown in Argentina. Food Addit. Contam. 2001, 18, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- Kujbida, P.; Maia, P.P.; de Araújo, A.N.; Mendes, L.D.; de Oliveira, M.L.; Silva-Rocha, W.P.; de Brito, G.Q.; Chaves, G.M.; Martins, I. Risk assessment of the occurrence of aflatoxin and fungi in peanuts and cashew nuts. Braz. J. Pharm. Sci. 2019, 55, e18135. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, J.; Yan, Z.; Li, Z.; Cheng, Y.; Chang, W. Occurrence and co-occurrence of mycotoxins in nuts and dried fruits from China. Food Control 2018, 88, 181–189. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.-M. Contamination of aflatoxins in different kinds of foods in China. Biomed. Environ. Sci. 2007, 20, 483–487. [Google Scholar] [PubMed]
- Huang, B.; Han, Z.; Cai, Z.; Wu, Y.; Ren, Y. Simultaneous determination of aflatoxins B1, B2, G1, G2, M1 and M2 in peanuts and their derivative products by ultra-high-performance liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2010, 662, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Kamika, I.; Takoy, L.L. Natural occurrence of Aflatoxin B1 in peanut collected from Kinshasa, Democratic Republic of Congo. Food Control 2011, 22, 1760–1764. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, D.; Sharma, Y.P. Natural Incidence of Aflatoxins, Ochratoxin A, Patulin and Their Co-Occurrence in Chilgoza Pine Nuts Marketed in Jammu, India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 85, 45–50. [Google Scholar] [CrossRef]
- Singh, P.K.; Shukla, A. Survey of mycoflora counts, aflatoxin production and induced biochemical changes in walnut kernels. J. Stored Prod. Res. 2008, 44, 169–172. [Google Scholar] [CrossRef]
- Cheraghali, A.; Yazdanpanah, H.; Doraki, N.; Abouhossain, G.; Hassibi, M.; Ali-Abadi, S.; Aliakbarpoor, M.; Amirahmadi, M.; Askarian, A.; Fallah, N.; et al. Incidence of aflatoxins in Iran pistachio nuts. Food Chem. Toxicol. 2007, 45, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Diella, G.; Caggiano, G.; Ferrieri, F.; Ventrella, A.; Palma, M.; Napoli, C.; Rutigliano, S.; Lopuzzo, M.; Lovero, G.; Montagna, M.T. Aflatoxin contamination in nuts marketed in Italy: Preliminary results. Ann. Ig. Med. Prev. Comunità 2018, 30, 401–409. [Google Scholar] [CrossRef]
- Leong, Y.-H.; Ismail, N.; Latif, A.A.; Ahmad, R. Aflatoxin occurrence in nuts and commercial nutty products in Malaysia. Food Control 2010, 21, 334–338. [Google Scholar] [CrossRef]
- Juan, C.; Zinedine, A.; Moltó, J.; Idrissi, L.; Mañes, J. Aflatoxins levels in dried fruits and nuts from Rabat-Salé area, Morocco. Food Control 2008, 19, 849–853. [Google Scholar] [CrossRef]
- Adetunji, M.C.; Alika, O.P.; Awa, N.P.; Atanda, O.O.; Mwanza, M. Microbiological Quality and Risk Assessment for Aflatoxins in Groundnuts and Roasted Cashew Nuts Meant for Human Consumption. J. Toxicol. 2018, 2018, 1308748. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.Z.; Mehmood, Z.; Asi, M.R.; Shahid, M.; Sehar, M.; Malik, N. Co-occurrence of aflatoxins and ochratoxin A in nuts, dry fruits, and nuty products. J. Food Saf. 2018, 38, e12462. [Google Scholar] [CrossRef]
- Chun, H.S.; Kim, H.J.; Ok, H.E.; Hwang, J.-B.; Chung, D.-H. Determination of aflatoxin levels in nuts and their products consumed in South Korea. Food Chem. 2007, 102, 385–391. [Google Scholar] [CrossRef]
- Siahi Shadbad, M.R.; Ansarin, M.; Tahavori, A.; Ghaderi, F.; Nemati, M. Determination of aflatoxins in nuts of Tabriz confectionaries by ELISA and HPLC methods. Adv. Pharm. Bull. 2012, 2, 123–126. [Google Scholar] [CrossRef]
- Hepsag, F.; Golge, O.; Kabak, B. Quantitation of aflatoxins in pistachios and groundnuts using HPLC-FLD method. Food Control 2014, 38, 75–81. [Google Scholar] [CrossRef]
- Kanik, T.; Kabak, B. Aflatoxins in almonds: Monitoring and exposure assessment. J. Food Saf. 2019, 39, e12646. [Google Scholar] [CrossRef]
- Bumbangi, N.F.; Muma, J.B.; Choongo, K.; Mukanga, M.; Velu, M.R.; Veldman, F.; Hatloy, A.; Mapatano, M.A. Occurrence and factors associated with aflatoxin contamination of raw peanuts from Lusaka district’s markets, Zambia. Food Control 2016, 68, 291–296. [Google Scholar] [CrossRef]
- Zhang, K.; Banerjee, K. A Review: Sample Preparation and Chromatographic Technologies for Detection of Aflatoxins in Foods. Toxins 2020, 12, 539. [Google Scholar] [CrossRef] [PubMed]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods 2020, 9, 518. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Zhang, Y.; Zhou, Y.; Wei, B.; Feng, X. Recent Insights into Sample Pretreatment Methods for Mycotoxins in Different Food Matrices: A Critical Review on Novel Materials. Toxins 2023, 15, 215. [Google Scholar] [CrossRef] [PubMed]
- Panuwet, P.; Hunter, R.E.; D’Souza, P.E.; Chen, X.; Radford, S.A.; Cohen, J.R.; Marder, M.E.; Kartavenka, K.; Ryan, P.B.; Barr, D.B. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring. Crit. Rev. Anal. Chem. 2016, 46, 93–105. [Google Scholar] [CrossRef]
- Ouakhssase, A.; Fatini, N.; Addi, E.A. A simple extraction method with no lipid removal for the determination of aflatoxins in almonds by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Food Addit. Contam. Part A 2021, 38, 1561–1570. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Ruiz, J.L.; Romero-González, R.; Martínez Vidal, J.L.; Garrido Frenich, A. Determination of mycotoxins in nuts by ultra high-performance liquid chromatography-tandem mass spectrometry: Looking for a representative matrix. J. Food Compos. Anal. 2019, 82, 103228. [Google Scholar] [CrossRef]
- Cunha, S.C.; Sá, S.V.M.; Fernandes, J.O. Multiple mycotoxin analysis in nut products: Occurrence and risk characterization. Food Chem. Toxicol. 2018, 114, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, V.S. Simple, Rapid, and Inexpensive Cleanup Method for Quantitation of Aflatoxins in Important Agricultural Products by HPLC. J. Agric. Food Chem. 2007, 55, 2136–2141. [Google Scholar] [CrossRef]
- Saito, K.; Ikeuchi, R.; Kataoka, H. Determination of ochratoxins in nuts and grain samples by in-tube solid-phase microextraction coupled with liquid chromatography–mass spectrometry. J. Chromatogr. A 2012, 1220, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Amde, M.; Temsgen, A.; Dechassa, N. Ionic liquid functionalized zinc oxide nanorods for solid-phase microextraction of aflatoxins in food products. J. Food Compos. Anal. 2020, 91, 103528. [Google Scholar] [CrossRef]
- Fang, L.; Tian, M.; Yan, X.; Xiao, W. Isolation of Aflatoxin B1 from Moldy Foods by Solid-Phase Extraction Combined with Bifunctional Ionic Liquid-Based Silicas. J. Anal. Methods Chem. 2018, 2018, 8427580. [Google Scholar] [CrossRef] [PubMed]
- Rhemrev, R.; Pazdanska, M.; Marley, E.; Biselli, S.; Staiger, S. Automated Aflatoxin Analysis Using Inline Reusable Immunoaffinity Column Cleanup and LC-Fluorescence Detection. J. AOAC Int. 2015, 98, 1585–1590. [Google Scholar] [CrossRef] [PubMed]
- Blesa, J.; Soriano, J.M.; Moltó, J.C.; Marín, R.; Mañes, J. Determination of aflatoxins in peanuts by matrix solid-phase dispersion and liquid chromatography. J. Chromatogr. A 2003, 1011, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, X.; Yang, Y.; Liu, Y.; Chen, X. Development of a deep eutectic solvent-based matrix solid phase dispersion methodology for the determination of aflatoxins in crops. Food Chem. 2019, 291, 239–244. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Huertas-Pérez, J.F.; Gámiz-Gracia, L.; García-Campaña, A.M. A new approach in sample treatment combined with UHPLC-MS/MS for the determination of multiclass mycotoxins in edible nuts and seeds. Talanta 2013, 115, 61–67. [Google Scholar] [CrossRef]
- Vosough, M.; Bayat, M.; Salemi, A. Matrix-free analysis of aflatoxins in pistachio nuts using parallel factor modeling of liquid chromatography diode-array detection data. Anal. Chim. Acta 2010, 663, 11–18. [Google Scholar] [CrossRef]
- Stroka, J.; van Otterdijk, R.; Anklam, E. Immunoaffinity column clean-up prior to thin-layer chromatography for the determination of aflatoxins in various food matrices. J. Chromatogr. A 2000, 904, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Karami-Osboo, R.; Mirabolfathi, M. A Novel Dispersive Nanomagnetic Particle Solid-Phase Extraction Method to Determine Aflatoxins in Nut and Cereal Samples. Food Anal. Methods 2017, 10, 4086–4093. [Google Scholar] [CrossRef]
- Quigley, A.; Cummins, W.; Connolly, D. Dispersive Liquid-Liquid Microextraction in the Analysis of Milk and Dairy Products: A Review. J. Chem. 2016, 2016, 4040165. [Google Scholar] [CrossRef]
- Huertas-Pérez, J.F.; Arroyo-Manzanares, N.; García-Campaña, A.M.; Gámiz-Gracia, L. Solid phase extraction as sample treatment for the determination of Ochratoxin A in foods: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3405–3420. [Google Scholar] [CrossRef]
- Bacaloni, A.; Cavaliere, C.; Cucci, F.; Foglia, P.; Samperi, R.; Laganà, A. Determination of aflatoxins in hazelnuts by various sample preparation methods and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2008, 1179, 182–189. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, A.; Yan, G.; Han, Y.; Sun, H. UHPLC-MS for the analytical characterization of traditional Chinese medicines. TrAC Trends Anal. Chem. 2014, 63, 180–187. [Google Scholar] [CrossRef]
- Dhanshetty, M.; Thorat, P.; Banerjee, K. High-Throughput Analysis of Aflatoxins in Cereals, Nuts, and Processed Products Involving Automated Immunoaffinity Cleanup and Inline HPLC–Fluorescence Detection. J. AOAC Int. 2021, 104, 1526–1532. [Google Scholar] [CrossRef] [PubMed]
- Vaclavikova, M.; MacMahon, S.; Zhang, K.; Begley, T.H. Application of single immunoaffinity clean-up for simultaneous determination of regulated mycotoxins in cereals and nuts. Talanta 2013, 117, 345–351. [Google Scholar] [CrossRef]
- Karapınar, H.S.; Bilgiç, A. A new magnetic Fe3O4@SiO2@TiO2-APTMS-CPA adsorbent for simple, fast and effective extraction of aflatoxins from some nuts. J. Food Compos. Anal. 2022, 105, 104261. [Google Scholar] [CrossRef]
- Tsai, J.-J.; Lai, Y.-T.; Chen, Y.-C. Using Solid-Phase Microextraction Coupled with Reactive Carbon Fiber Ionization-Mass Spectrometry for the Detection of Aflatoxin B1 from Complex Samples. Separations 2022, 9, 199. [Google Scholar] [CrossRef]
- Rezaee, M.; Khalilian, F.; Mashayekhi, H.A.; Fattahi, N. A novel method for the high preconcentration of trace amounts of the aflatoxins in pistachios by dispersive liquid–liquid microextraction after solid-phase extraction. Anal. Methods 2014, 6, 3456–3461. [Google Scholar] [CrossRef]
- Zhu, A.; Jiao, T.; Ali, S.; Xu, Y.; Ouyang, Q.; Chen, Q. Dispersive micro solid phase extraction based ionic liquid functionalized ZnO nanoflowers couple with chromatographic methods for rapid determination of aflatoxins in wheat and peanut samples. Food Chem. 2022, 391, 133277. [Google Scholar] [CrossRef]
- Taherimaslak, Z.; Amoli-Diva, M.; Allahyari, M.; Pourghazi, K.; Manafi, M.H. Low density solvent based dispersive liquid–liquid microextraction followed by vortex-assisted magnetic nanoparticle based solid-phase extraction and surfactant enhanced spectrofluorimetric detection for the determination of aflatoxins in pistachio nuts. RSC Adv. 2015, 5, 12747–12754. [Google Scholar] [CrossRef]
- Karapınar, H.S.; Balıkçıoğlu, A. Boron-doped activated carbon nanocomposite as a selective adsorbent for rapid extraction of aflatoxins in nut samples. J. Food Compos. Anal. 2022, 112, 104680. [Google Scholar] [CrossRef]
- Karami-Osboo, R.; Ahmadpoor, F.; Nasrollahzadeh, M.; Maham, M. Polydopamine-coated magnetic Spirulina nanocomposite for efficient magnetic dispersive solid-phase extraction of aflatoxins in pistachio. Food Chem. 2022, 377, 131967. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Nez, O.; Gallart-Ayala, H.; Martins, C.P.; Lucci, P. New trends in fast liquid chromatography for food and environmental analysis. J. Chromatogr. A 2012, 1228, 298–323. [Google Scholar] [CrossRef]
- Mateus, A.R.S.; Barros, S.; Pena, A.; Silva, A.S. Development and Validation of QuEChERS Followed by UHPLC-ToF-MS Method for Determination of Multi-Mycotoxins in Pistachio Nuts. Molecules 2021, 26, 5754. [Google Scholar] [CrossRef]
- Alcántara-Durán, J.; Moreno-González, D.; García-Reyes, J.F.; Molina-Díaz, A. Use of a modified QuEChERS method for the determination of mycotoxin residues in edible nuts by nano flow liquid chromatography high resolution mass spectrometry. Food Chem. 2019, 279, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Zamora, C.; González-Sálamo, J.; Hernández-Borges, J. Deep Eutectic Solvents Application in Food Analysis. Molecules 2021, 26, 6846. [Google Scholar] [CrossRef] [PubMed]
- Manousi, N.; Rosenberg, E.; Deliyanni, E.; Zachariadis, G.A.; Samanidou, V. Magnetic Solid-Phase Extraction of Organic Compounds Based on Graphene Oxide Nanocomposites. Molecules 2020, 25, 1148. [Google Scholar] [CrossRef] [PubMed]
- Reiter, E.; Zentek, J.; Razzazi, E. Review on sample preparation strategies and methods used for the analysis of aflatoxins in food and feed. Mol. Nutr. Food Res. 2009, 53, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Barker, S.A. Matrix solid phase dispersion (MSPD). J. Biochem. Biophys. Methods 2007, 70, 151–162. [Google Scholar] [CrossRef]
- Boyacı, E.; Rodríguez-Lafuente, Á.; Gorynski, K.; Mirnaghi, F.; Souza-Silva, É.A.; Hein, D.; Pawliszyn, J. Sample preparation with solid phase microextraction and exhaustive extraction approaches: Comparison for challenging cases. Anal. Chim. Acta 2015, 873, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Spietelun, A.; Marcinkowski, Ł.; De La Guardia, M.; Namieśnik, J. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J. Chromatogr. A 2013, 1321, 1–13. [Google Scholar] [CrossRef]
- Pereira, V.; Fernandes, J.; Cunha, S. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
- Pascale, M. Detection methods for mycotoxins in cereal grains and cereal products. Zb Mat Srp Prir Nauk 2009, 117, 15–25. [Google Scholar] [CrossRef]
- Magoke, G.; Alders, R.; Krockenberger, M.; Bryden, W.L. Aflatoxin and Mycotoxin Analysis: An Overview Including Options for Resource-limited Settings. In Aflatoxins-Occurrence, Detection and Novel Detoxification Strategies; Claude Assaf, J., Ed.; IntechOpen: Dekouaneh, Lebanon, 2022. [Google Scholar]
- Malik, A.K.; Blasco, C.; Picó, Y. Liquid chromatography–mass spectrometry in food safety. J. Chromatogr. A 2010, 1217, 4018–4040. [Google Scholar] [CrossRef] [PubMed]
- Vestal, M.L. High-performance liquid chromatography-mass spectrometry. Science 1984, 226, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Kos, G.; Sieger, M.; McMullin, D.; Zahradnik, C.; Sulyok, M.; Öner, T.; Mizaikoff, B.; Krska, R. A novel chemometric classification for FTIR spectra of mycotoxin-contaminated maize and peanuts at regulatory limits. Food Addit. Contam. Part A 2016, 33, 1596–1607. [Google Scholar] [CrossRef]
- Prelle, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Aflatoxin monitoring in Italian hazelnut products by LC-MS. Food Addit. Contam. Part B 2012, 5, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of >500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020, 412, 2607–2620. [Google Scholar] [CrossRef]
- Malachová, A.; Stránská, M.; Václavíková, M.; Elliott, C.T.; Black, C.; Meneely, J.; Hajšlová, J.; Ezekiel, C.N.; Schuhmacher, R.; Krska, R. Advanced LC–MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Anal. Bioanal. Chem. 2018, 410, 801–825. [Google Scholar] [CrossRef]
- Trufelli, H.; Palma, P.; Famiglini, G.; Cappiello, A. An overview of matrix effects in liquid chromatography-mass spectrometry. Mass Spectrom. Rev. 2011, 30, 491–509. [Google Scholar] [CrossRef]
- Cervino, C.; Asam, S.; Knopp, D.; Rychlik, M.; Niessner, R. Use of Isotope-Labeled Aflatoxins for LC-MS/MS Stable Isotope Dilution Analysis of Foods. J. Agric. Food Chem. 2008, 56, 1873–1879. [Google Scholar] [CrossRef]
- Xavier, J.J.M.; Scussel, V.M. Development of an LC-MS/MS method for the determination of aflatoxins B1, B2, G1, and G2 in Brazil nut. Int. J. Environ. Anal. Chem. 2008, 88, 425–433. [Google Scholar] [CrossRef]
- Sataque Ono, E.Y.; Hirozawa, M.T.; Omori, A.M.; De Oliveira, A.J.; Ono, M.A. Mycotoxins in Nuts and Seeds. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2020; pp. 255–270. [Google Scholar]
- Oyedele, O.A.; Ezekiel, C.N.; Sulyok, M.; Adetunji, M.C.; Warth, B.; Atanda, O.O.; Krska, R. Mycotoxin risk assessment for consumers of groundnut in domestic markets in Nigeria. Int. J. Food Microbiol. 2017, 251, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Ryu, D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.-C.; Madec, S.; Coton, E.; Hymery, N. Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef]
- Di Stefano, V.; Avellone, G.; Bongiorno, D.; Cunsolo, V.; Muccilli, V.; Sforza, S.; Dossena, A.; Drahos, L.; Vékey, K. Applications of liquid chromatography–mass spectrometry for food analysis. J. Chromatogr. A 2012, 1259, 74–85. [Google Scholar] [CrossRef]
- Righetti, L.; Paglia, G.; Galaverna, G.; Dall’Asta, C. Recent Advances and Future Challenges in Modified Mycotoxin Analysis: Why HRMS Has Become a Key Instrument in Food Contaminant Research. Toxins 2016, 8, 361. [Google Scholar] [CrossRef] [PubMed]
- Spanjer, M.C.; Rensen, P.M.; Scholten, J.M. LC–MS/MS multi-method for mycotoxins after single extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs. Food Addit. Contam. Part A 2008, 25, 472–489. [Google Scholar] [CrossRef]
- Warth, B.; Parich, A.; Atehnkeng, J.; Bandyopadhyay, R.; Schuhmacher, R.; Sulyok, M.; Krska, R. Quantitation of Mycotoxins in Food and Feed from Burkina Faso and Mozambique Using a Modern LC-MS/MS Multitoxin Method. J. Agric. Food Chem. 2012, 60, 9352–9363. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-D.; Wong, J.W.; Zhang, K.; Hayward, D.G.; Lee, N.S.; Trucksess, M.W. Multi-mycotoxin Analysis of Finished Grain and Nut Products Using High-Performance Liquid Chromatography–Triple-Quadrupole Mass Spectrometry. J. Agric. Food Chem. 2013, 61, 4771–4782. [Google Scholar] [CrossRef]
- Frenich, A.G.; Romero-González, R.; Del Mar Aguilera-Luiz, M. Comprehensive analysis of toxics (pesticides, veterinary drugs and mycotoxins) in food by UHPLC-MS. TrAC Trends Anal. Chem. 2014, 63, 158–169. [Google Scholar] [CrossRef]
- Kafouris, D.; Christofidou, M.; Christodoulou, M.; Christou, E.; Ioannou-Kakouri, E. A validated UPLC-MS/MS multi-mycotoxin method for nuts and cereals: Results of the official control in Cyprus within the EU requirements. Food Agric. Immunol. 2017, 28, 90–108. [Google Scholar] [CrossRef]
- Varga, E.; Glauner, T.; Berthiller, F.; Krska, R.; Schuhmacher, R.; Sulyok, M. Development and validation of a (semi-)quantitative UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Anal. Bioanal. Chem. 2013, 405, 5087–5104. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, I.S.; Rodriguez, J.A.; Galán-Vidal, C.A.; Cepeda, A.; Miranda, J.M. Magnetic Solid Phase Extraction Applied to Food Analysis. J. Chem. 2015, 2015, 919414. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Li, N.; Cui, L.; Wang, X.; Zhao, R.-S. Recent application of magnetic solid phase extraction for food safety analysis. TrAC Trends Anal. Chem. 2019, 120, 115632. [Google Scholar] [CrossRef]
- Ozay, G.; Seyhan, F.; Pembeci, C.; Saklar, S.; Yilmaz, A. Factors influencing fungal and aflatoxin levels in Turkish hazelnuts (Corylus avellana L.) during growth, harvest, drying and storage: A 3-year study. Food Addit. Contam. Part A 2008, 25, 209–218. [Google Scholar] [CrossRef]
- Bueno, D.; Istamboulie, G.; Muñoz, R.; Marty, J.L. Determination of Mycotoxins in Food: A Review of Bioanalytical to Analytical Methods. Appl. Spectrosc. Rev. 2015, 50, 728–774. [Google Scholar] [CrossRef]
- Zheng, M.Z.; Richard, J.L.; Binder, J. A Review of Rapid Methods for the Analysis of Mycotoxins. Mycopathologia 2006, 161, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Miklós, G.; Angeli, C.; Ambrus, Á.; Nagy, A.; Kardos, V.; Zentai, A.; Kerekes, K.; Farkas, Z.; Jóźwiak, Á.; Bartók, T. Detection of Aflatoxins in Different Matrices and Food-Chain Positions. Front. Microbiol. 2020, 11, 1916. [Google Scholar] [CrossRef] [PubMed]
- Calleri, E.; Marrubini, G.; Brusotti, G.; Massolini, G.; Caccialanza, G. Development and integration of an immunoaffinity monolithic disk for the on-line solid-phase extraction and HPLC determination with fluorescence detection of aflatoxin B1 in aqueous solutions. J. Pharm. Biomed. Anal. 2007, 44, 396–403. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Q.; Zhang, W.; Zhang, J.; Chen, X.; Jiang, J.; Xie, L.; Zhang, D. Development of a class-specific monoclonal antibody-based ELISA for aflatoxins in peanut. Food Chem. 2009, 115, 313–317. [Google Scholar] [CrossRef]
- Yao, H.; Hruska, Z.; Di Mavungu, J.D. Developments in detection and determination of aflatoxins. World Mycotoxin J. 2015, 8, 181–191. [Google Scholar] [CrossRef]
- Li, P.; Zhou, Q.; Wang, T.; Zhou, H.; Zhang, W.; Ding, X.; Zhang, Z.; Chang, P.-K.; Zhang, Q. Development of an Enzyme-Linked Immunosorbent Assay Method Specific for the Detection of G-Group Aflatoxins. Toxins 2015, 8, 5. [Google Scholar] [CrossRef]
- Oplatowska-Stachowiak, M.; Sajic, N.; Xu, Y.; Haughey, S.A.; Mooney, M.H.; Gong, Y.Y.; Verheijen, R.; Elliott, C.T. Fast and sensitive aflatoxin B1 and total aflatoxins ELISAs for analysis of peanuts, maize and feed ingredients. Food Control 2016, 63, 239–245. [Google Scholar] [CrossRef]
- Goryacheva, I.Y.; De Saeger, S.; Eremin, S.A.; Van Peteghem, C. Immunochemical methods for rapid mycotoxin detection: Evolution from single to multiple analyte screening: A review. Food Addit. Contam. 2007, 24, 1169–1183. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Niessner, R.; Tang, D.; Knopp, D. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal. Chim. Acta 2016, 912, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, P.; Zhang, Q.; Li, R.; Zhang, W.; Zhang, Z.; Ding, X.; Tang, X. Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B1, ochratoxin A and zearalenone in agro-food. Biosens. Bioelectron. 2013, 49, 426–432. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Q.; Han, M.; Zhou, J.; Gong, L.; Niu, Y.; Zhang, Y.; He, L.; Zhang, L. Development and optimization of a multiplex lateral flow immunoassay for the simultaneous determination of three mycotoxins in corn, rice and peanut. Food Chem. 2016, 213, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, P.; Zhang, Q.; Zhang, W. Ultrasensitive nanogold probe-based immunochromatographic assay for simultaneous detection of total aflatoxins in peanuts. Biosens. Bioelectron. 2011, 26, 2877–2882. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, J.; Zhang, Z.; Zhang, Q.; Zhang, W.; Yu, L.; Jiang, J.; Chen, X.; Wang, X.; Li, P. Simultaneous Lateral Flow Immunoassay for Multi-Class Chemical Contaminants in Maize and Peanut with One-Stop Sample Preparation. Toxins 2019, 11, 56. [Google Scholar] [CrossRef]
- Aït Mimoune, N.; Riba, A.; Verheecke, C.; Sabaou, N. Fungal contamination and mycotoxin production by Aspergillus spp. in nuts and sesame seeds. J. Microbiol. Biotechnol. Food Sci. 2016, 5, 301–305. [Google Scholar] [CrossRef]
- Asis, R.; Di Paola, R.D.; Aldao, M.A.J. Determination of Aflatoxin B 1 in Highly Contaminated Peanut Samples Using HPLC and ELISA. Food Agric. Immunol. 2002, 14, 201–208. [Google Scholar] [CrossRef]
- Razzazi-Fazeli, E.; Noviandi, C.T.; Porasuphatana, S.; Agus, A.; Böhm, J. A survey of aflatoxin B1 and total aflatoxin contamination in baby food, peanut and corn products sold at retail in Indonesia analysed by ELISA and HPLC. Mycotoxin Res. 2004, 20, 51–58. [Google Scholar] [CrossRef] [PubMed]
Country | Nuts | Number of Samples | Mycotoxin Types | Mean | Detection Methods | References |
---|---|---|---|---|---|---|
Algeria | Pistachios | 8 | Total AFs AFB1/ | Total AFs: 6.70 ± 3.40 µg/kg AFB1: 4.45 ± 2.64 µg/kg | HPLC | [17] |
Roasted hazelnuts | 8 | Total AFs: 1.33 ± 0.88 µg/kg AFB1: 1.33 ± 0.88 µg/kg | ||||
Shelled almonds | 8 | Total AFs: 2.12 ± 1.56 µg/kg AFB1: 2.12 ± 1.56 µg/kg | ||||
Shelled peanuts | 8 | Total AFs: 7.10 ± 3.80 µg/kg AFB1: 6.30 ± 3.64 µg/kg | ||||
Unshelled walnuts | 8 | Total AFs: 4.90 ± 2.44 µg/kg AFB1: 3.42 ± 1.35 µg/kg | ||||
Argentina | Peanuts | 50 | CPA/AFB1/AFG1 | CPA: 493–4300 µg/kg AFB1: 435–625 µg/kg AFG1: 83–625 µg/kg | TLC-UV | [21] |
Peanuts | 38 | CPA | CPA: 1–10 µg/kg | |||
Brazil | Peanuts | 22 | Total AFs | Total AFs: 27.5 ± 44.7 µg/kg | TLC + HPLC | [22] |
Cashew nuts | 12 | Total AFs: 3.3 ± 2.3 µg/kg | ||||
China | Almond | 25 | Total AFs | Total AFs: 1.16 ± 0.03 µg/kg | UPLC-QqQ-MS/MS | [23] |
Chestnut | 33 | Total AFs: 20.03 ± 0.64 µg/kg | ||||
Hazelnut | 20 | Total AFs: 2.10 ± 0.17µg/kg | ||||
Walnut | 35 | Total AFs: 1.16 ± 0.01 µg/kg | ||||
China | Peeled peanuts | 65 | Total AFs/AFB1/AFB2/AFG1/AFG2 | Total AFs: 0.03–28.39 µg/kg AFB1: 0.15–22.39 µg/kg AFB2: 0.03–6.00 µg/kg AFG1: 0.42–11.73 µg/kg AFG2: 0.12–2.36 µg/kg | HPLC | [24] |
Walnuts | 48 | Total AFs: 0.02–1.20 µg/kg AFB1: 0.14–0.32 µg/kg AFB2: 0.02–0.70 µg/kg AFG1: 0.36–0.83 µg/kg AFG2; 0.07–0.12 µg/kg | ||||
Pine nuts | 12 | Total AFs: 0.19–0.25 µg/kg AFB1: 0.19–0.23 µg/kg AFB2: 0.02 µg/kg AFG1: nd AFG2: nd | ||||
China | Fresh peanuts | 35 | Total AFs/ AFB1/AFB2/ AFG1/AFG2/ AFM1/AFM2 | Total AFs: 2.5 µg/kg AFB1: 1.0 µg/kg AFB2: 0.7 µg/kg AFG1: 0.2 µg/kg AFG2: 0.6 µg/kg AFM1: nd AFM2: nd | UHPLC-MS/MS | [25] |
Musty peanuts | 5 | Total AFs: 323.3 µg/kg AFB1: 245.1 µg/kg AFB2: 63.5 µg/kg AFG1: 0.03 µg/kg AFG2: 0.4 µg/kg AFM1: 13.6 µg/kg AFM2: 0.7 µg/kg | ||||
Congo | Peanuts | 60 | AFB1 | AFB1: 229.07 µg/kg | TLC | [26] |
India | Chilgoza pine nuts | 58 | Total AFs OTA Patulin PAT | Total AFs: 0.493913 ± 0.088785 μg/kg OTA: 0.002253 ± 0.000487 μg/kg PAT: 0.004556 ± 0.002219 μg/kg | HPLC | [27] |
India | Walnuts | 62 | AFB1 | AFB1: 140–1220 µg/kg | TLC-UV spectro-photometer | [28] |
Iran | Pistachios | 10,068 | Total AFs/AFB1 | Total AFs: 0.0073 μg/kg AFB1: 0.0059 μg/kg | HPLC TLC-coupled to scanner | [29] |
Italy | Almonds, apricot kernels, chestnuts, hazelnuts, peanuts, pistachios, walnuts, Brazil nuts | 124 | Total AFs/AFB1 |
| HPLC | [30] |
| ||||||
| ||||||
Malaysia | Raw groundnut shelled | 14 | Total AFs/ AFB1/ AFB2 | Total AFs: 17.8–711 µg/kg AFB1: 15.5–618 µg/kg AFB2: 2.31–92.8 µg/kg | ELISA kit + HPLC | [31] |
Walnut | 3 | Total AFs: 17.2 µg/kg AFB1: 13.5 µg/kg AFB2: 3.63 µg/kg | ||||
Roasted groundnut in shell | 10 | Total AFs: 29.7–179 µg/kg AFB1: 25.3–126 µg/kg AFB2: 4.46–33.0 µg/kg | ||||
Roasted groundnut shelled | 20 | Total AFs: 40.1–46.0 µg/kg AFB1: 32.9–37.9 µg/kg AFB2: 7.20–8.77 µg/kg | ||||
Coated nut products | 20 | Total AFs: 113–514 µg/kg AFB1: 97.8–453 µg/kg AFB2: 15.3–61.7 µg/kg | ||||
Morocco | Peanuts | 20 | Total AFs/AFB1 | Total AFs: 0.30 ± 0.1 µg/kg AFB1: 0.17 ± 0.1 µg/kg | LC coupled to fluorescence detector | [32] |
Walnuts | 20 | Total AFs: 730 ± 9.5 µg/kg AFB1: 360 ± 7.6 µg/kg | ||||
Pistachio | 20 | Total AFs: 163 ± 5.4 µg/kg AFB1: 158 ± 6.3 µg/kg | ||||
Nigeria | Raw groundnuts | 15 | Total AFs | Total AFs: 0.029–0.03378 μg/kg | ELISA | [33] |
Roasted cashew nuts | 27 | Total AFs: 0.0001–0.0068 μg/kg | ||||
Pakistan | Almonds without shell | 15 | Total AFs/ AFB1 | Total AFs: 6.20 ± 0.76 µg/kg AFB1: 4.90 ± 1.20 µg/kg | HPLC | [34] |
Almonds with shell | 14 | Total AFs: 4.50 ± 1.40 µg/kg AFB1: 3.20 ± 0.50 µg/kg | ||||
Peanuts with shell | 14 | Total AFs: 6.10 ± 1.30 µg/kg AFB1: 5.50 ± 1.30 µg/kg | ||||
Peanuts without shell | 11 | Total AFs: 7.30 ± 1.80 µg/kg AFB1: 5.90 ± 1.10 µg/kg | ||||
Cashew nuts with shell | 18 | Total AFs: 4.30 ± 0.78 µg/kg AFB1: 3.90 ± 0.85 µg/kg | ||||
Pistachios with shell | 15 | Total AFs: 4.90 ± 0.90 µg/kg AFB1: 4.20 ± 0.75 µg/kg | ||||
Pistachios without shell | 16 | Total AFs: 7.10 ± 0.85 µg/kg AFB1: 5.80 ± 0.60 µg/kg | ||||
Cashew nuts without shell | 12 | Total AFs: 5.90± 0.68 µg/kg AFB1: 4.50 ± 0.95 µg/kg | ||||
South Korea | Raw peanuts | 85 | Total AFs/AFB1/AFB2/AFG1/AFG2 | Total AFs: 0.20 ± 0.14 μg/kg AFB1: 0.20 ± 0.14 μg/kg AFB2/AFG1/AFG2: nd | ELISA + HPLC | [35] |
Roasted peanuts | Total AFs: 10.7 ± 12.30 μg/kg AFB1: 8.0 ± 7.75 μg/kg AFB2: 0.77 ± 1.25 μg/kg AFG1: 1.04 ± 2.02 μg/kg AFG2: 0.87 ± 1.75 μg/kg | |||||
Pistachios | Total AFs: 3.41 ± 0.17 μg/kg AFB1: 3.36 ± 0.14 μg/kg AFB2/AFG1/AFG2: nd | |||||
Assorted nuts | Total AFs: 7.89 ± 0.73 μg/kg AFB1: 6.68 ± 0.60 μg/kg AFB2: 1.21 ± 0.18 μg/kg AFG1/AFG2: nd | |||||
Tabriz | Walnut | 26 | Total AFs/AFB1/AFB2/AFG1 | Total AFs: 1–54 µg/kg AFB1: 15.4–35.1 µg/kg AFB2: 4–8.1 µg/kg AFG1: 1.4–8.2 µg/kg | ELISA + HPLC | [36] |
Hazelnut | 13 | Total AFs: 1–13 µg/kg | ||||
Pistachio | 32 | Total AFs: 1–54 µg/kg AFB1: 9.5–43.8 µg/kg AFB2: 0.9–9.4 µg/kg | ||||
Cashew nuts | 14 | Total AFs: 11–20 µg/kg AFB1: 18.3 µg/kg AFB2: 2.7 µg/kg | ||||
Turkey | Groundnuts | 151 | Total AFs/AFB1/AFB2/AFG1/AFG2 | Total AFs: 0.16–60.9 µg/kg AFB1: 0.16–49.9 µg/kg AFB2: 0.11–11.0 µg/kg AFG1: 0.59 µg/kg AFG2: nd | HPLC-FLD | [37] |
Pistachios | 151 | Total AFs: 0.26–385 µg/kg AFB1: 0.26–368 µg/kg AFB2: 0.11–11.67 µg/kg AFG1: 0.79–8.72 µg/kg AFG2: 0.42 µg/kg | ||||
Turkey | Roasted almonds | 50 | Total AFs/AFB1/AFB2/AFG1/AFG2 | Total AFs: 0.118–0.508 µg/kg AFB1: 0.118–0.508 µg/kg AFB2: nd AFG1: nd AFG2: nd | HPLC-FLD | [38] |
Raw almonds | 50 | Total AFs: 0.305–0.436 µg/kg AFB1: 0.165–0.436 µg/kg AFB2: 0.057 µg/kg AFG1: 0.078 µg/kg AFG2: 0.071 µg/kg | ||||
Zambia | Peanuts | 92 | Total AFs AFB1/AFB2/AFG1/AFG2 | Total AFs: 0.43 ± 9.77 μg/kg AFB1: 0.45 ± 9.41 μg/kg AFB2: 0.15 ± 7.87 μg/kg AFG1: 0.04 ± 3.76 μg/kg AFG2: 0.012 ± 2.34 μg/kg | HPLC | [39] |
Sample | Mycotoxins | Detection Method | Pretreatment Method | Extraction Solution/ Cartridge | Stationary Phase | Mobile Phase | Recovery | LOD/LOQ | References |
---|---|---|---|---|---|---|---|---|---|
Almonds | Four mycotoxins (AFB1, AFB2, AFG1, AFG2) | LC-MS/MS | QuEChERS | Methanol/ Acetonitrile, MgSO4, NaCl (60:40, v/v) | Acquity BEH C18 (100 mm × 2.1 mm, 1.7 µm) | Methanol/ Water (5 mM ammonium and 0.1 % formic acid) | 82–107% | LOD: Nd LOQ: 0.34–0.5 μg/kg | [44] |
Almonds, hazelnuts, peanuts, pistachios, walnuts | Six mycotoxins (AFB1, AFB2, AFG1, AFG2, α-ZOL, ZEA) | UHPLC-QqQ-MS/MS | QuEChERS | Acetonitrile/ water, Na2SO4, NaCl (80:20, v/v) | Zorbax Plus C18 (100 mm × 2.1 mm, 1.8 µm) | Methanol/ Water (5 mM ammonium formate) | 70–120% | LOD: Nd LOQ: 0.5–1.0 µg/kg | [45] |
Almonds, hazelnuts, peanuts, walnuts, pine nuts, cashews, Brazil nuts, pecan nuts | Sixteen mycotoxins (DON, 3-AcDON, 15-AcDON, NEO, FUS-X, HT-2, DAS, T-2, AFB1, AFB2, AFG1, AFG2, OTA, ZEA, FB1, FB2) | LC-MS/MS | QuEChERS | Water/Acetonitrile (5% formic acid), MgSO4, NaCl | Kinetex C18 (150 mm × 4.6 mm, 2.6 µm) | Water/ acetonitrile/ acetic acid (94:5:1, v/v/v), 5 mM ammonium acetate Acetonitrile/ water/ acetic acid (97:2:1, v/v/v), 5 mM ammonium acetate | 70–93% | LOD: 0.3–3.5 μg/kg LOQ: 1.25–5 μg/kg | [46] |
Brazil nuts, peanuts, hazelnuts, pistachios, almonds, walnuts | 4 mycotoxins (AFB1, AFB2, AFG1, AFG2) | HPLC | SPE | Florisil column | XTerra MS C18 (50 mm × 4.8 mm, 2.5 µm) | Water/methanol (63:37, v/v) | 79.2–87.5% | LOD: Nd LOQ: Nd | [47] |
Cashew nuts | OTA + OTB | LC-MS | SPME | GC capillary column | Inertsil ODS-3 column (50 mm× 2.1 mm, 4 µm) | 5 mM Ammonium acetate/ acetonitrile (63:35, v/v) | 88.8–94.6% | LOD: 0.089–0.092 µg/kg | [48] |
Groundnuts | Four mycotoxins (AFB1, AFB2, AFG1, AFG2) | HPLC-FLD | SPME | IL-coated ZnO nanorods adsorbent | Agilent TC-C18 column (250 mm × 4.6 mm, 5 µm) | Acetonitrile/ methanol/water (8:27:65, v/v/v) | 88.6–99.8% | LOD: 0.01–0.07 µg/kg LOQ: 0.12–0.73 µg/kg | [49] |
Peanuts | AFB1 | HPLC | SPE | Ionic liquid-based silica column (Sil@HIm-Im) | Agilent TC-C18 (250 mm × 4.6 mm, 3 µm) | Acetonitrile /water (40:60, v/v) | 80–103.3% | LOD: Nd LOQ: Nd | [50] |
Peanuts | Four mycotoxins (AFB1, AFB2, AFG1, AFG2) | LC-FLD | SPE | IA column | Supelcosil LC-18 (150 mm × 4.6 mm, 5 µm | Water/ acetonitrile/ methanol (potassium bromide + nitric acid) | 90–97% | LOD: 0.03–0.08 μg/kg LOQ: Nd | [51] |
Peanuts | Four mycotoxins AFB1, AFB2, AFG1, AFG2 | LC-FLD | MSPD | C18-bonded silica column (MSPD sorbent) | Kromasil SC-18 (150 mm × 4.6 mm, 5 µm) | Water/ acetonitrile (25:75, v/v) | 78–86% | LOD: 0.04–0.75 μg/kg LOQ: 0.13–2.5 μg/kg | |
Four mycotoxins (AFB1, AFB2, AFG1, AFG2) | LC-ESI-MS | LOD: 0.07–0.2 μg/kg LOQ: 0.2–0.6 μg/kg | [52] | ||||||
Peanuts | fOUR mycotoxins (AFB1, AFB2, AFG1, AFG2) | HPLC-FLD | DES-MSPD | TBAC- hexyl alcohol DES | Inertsil ODS-SP column (250 mm × 4.6 mm, 5 µm | Methanol/water (45:55, v/v) | 93.67–98.07% | LOD: 0.03–0.10 µg/kg LOQ: 0.10–0.33 µg/kg | [53] |
Peanuts, almonds, walnuts, pistachios, hazelnuts, pine nuts, macadamia nuts | Fourteen mycotoxins (AFB1, AFB2, AFG1, AFG2, OTA, FB1, FB2, T-2, HT-2, STE, CIT, F-X, DON, ZEN) | UHPLC-MS/MS | QuEChERS: for mycotoxins other than aflatoxins |
| Zorbax Eclipse Plus RHHD C18 (50 mm × 2.1 mm, 1.8 µm) | Methanol/ Water (0.3% formic acid and 5 mM ammonium formate) | 60.7–104.3% | LOD: 0.17–45.1 µg/kg LOQ: 0.57–150 µg/kg | [54] |
QuEChERS: +DLLME: for aflatoxins |
| ||||||||
Pistachios | Four mycotoxins (AFB1, AFB2, AFG1, AFG2) | HPLC-DAD | SPE | Bond Elut C18 SPE cartridge | Agilent C18 (25 cm × 0.46 cm, 10 µm) | Methanol/ water/Acetonitrile (30:55:15, v/v/v) | 77–121% | LOD: 0.0002– 0.003 μg/kg LOQ: Nd | [55] |
Pistachios | Four mycotoxins (AFB1, AFB2, AFG1, AFG2) | TLC | SPE | IA column | Silica gel TLC-plates | t-BME/ methanol/ water 480:15:5, v/v/v | 81–87% | LOD: 0.0001–0.0002 μg/kg LOQ: 0.0002–0.0003 μg/kg | [56] |
Pistachios | Four mycotoxins (AFB1, AFB2, AFG1, AFG2) | HPLC- FLD/ TLC | SPE | IA column | C18 (250 mm × 4.6 mm, 5 µm) | Water/ Methanol/ Acetonitrile (54:29:17, v/v/v) | 61.8–97.8% | LOD (HPLC): 0.1–0.4 μg/kg LOD (TLC): 0.2–1 μg/kg LOQ: Nd | [29] |
Pistachios | Four mycotoxins (AFB1, AFB2, AFG1, AFG2) | HPLC-FLD | MSPE | Fe3O4 magnetic nanoparticles (MNPs) | Nova-pak C18 (150 mm × 3.9 mm, 4 µm) | Water/ Methanol/ Acetonitrile (6:4:1, v/v/v) + KBr and 4 M HNO3 | 76.0–112.7% | LOD: 0.06–0.35 µg/kg LOQ: 0.2–1.0 µg/kg | [57] |
Walnuts, chestnuts, hazelnuts, almonds, pine nuts | Sixteen mycotoxins (AFB1, AFB2, AFG1, AFG2, ENA, ENA1, ENB ENB1, BEA, T-2, ZEA, AOH, AME, TEN, OTA, OTB) | UPLC-QqQ-MS/MS | QuEChER S | Water/acetonitrile (10 mMol/L citric acid), MgSO4, NaCl | BEH C18 (100 mm × 2.1 mm, 1.7 µm) | Acetonitrile/ Water (0.5% formic acid and 10 mMol/L citric acid | Nd | LOD: Nd LOQ: Nd | [23] |
Pretreatment Methods | Advantages | Disadvantages | References |
---|---|---|---|
Matrix solid-phase dispersion (MSPD) |
|
| [14,77,78] |
Solid-phase extraction (SPE) |
|
| [1,41,42,59,79] |
Magnetic solid-phaseextraction (MSPE) |
|
| [64,76,80,81] |
Immuno-affinitycolmns (IACs) |
|
| [1,41,59] |
Solid-phasemicroextraction (SPME) |
|
| [14,42,59,79,80] |
QUECHERS |
|
| [41,42,54,72,73,81] |
Analytical Techniques | Advantages | Limitations |
---|---|---|
HPLC | Accuracy, high sensitivity, high throughput, automation | Expensive, specialized expertise, derivatization requirement |
LC-MS | Sensitivity, multi-analyte detection, no need for derivatization | Time-consuming, high cost, matrix effects, signal suppression (enhancement), many steps |
UHPLC-QqQ-MS/MS | Multi-analyte detection, high accuracy, high resolution, minimization of sample matrix effects | Time-consuming, high cost |
TLC | Simple, inexpensive, high throughput | Poor separation, low accuracy, less sensitivity |
ELISA | High sensitivity, rapid, inexpensive | Cross-reactivity, false positives, false negatives, one-time use |
LFD | Rapid, simple, easy to handle | Semi-quantitative, low accuracy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellany, H.; Assaf, J.C.; El-Badan, D.; Khalil, M. Quantification, Prevalence, and Pretreatment Methods of Mycotoxins in Groundnuts and Tree Nuts: An Update. Processes 2023, 11, 3428. https://doi.org/10.3390/pr11123428
Hellany H, Assaf JC, El-Badan D, Khalil M. Quantification, Prevalence, and Pretreatment Methods of Mycotoxins in Groundnuts and Tree Nuts: An Update. Processes. 2023; 11(12):3428. https://doi.org/10.3390/pr11123428
Chicago/Turabian StyleHellany, Heba, Jean Claude Assaf, Dalia El-Badan, and Mahmoud Khalil. 2023. "Quantification, Prevalence, and Pretreatment Methods of Mycotoxins in Groundnuts and Tree Nuts: An Update" Processes 11, no. 12: 3428. https://doi.org/10.3390/pr11123428
APA StyleHellany, H., Assaf, J. C., El-Badan, D., & Khalil, M. (2023). Quantification, Prevalence, and Pretreatment Methods of Mycotoxins in Groundnuts and Tree Nuts: An Update. Processes, 11(12), 3428. https://doi.org/10.3390/pr11123428