Harnessing the Potential of Nanotechnology for Liquid Biopsy of Cancer
Abstract
1. Introduction: Crystal Clear Nano and Liquid Biopsy
2. Using Nanotechnology to Aid the Clinical Translation of Liquid Biopsy-Based Diagnostics
3. Nanomaterials Utilized for Liquid Biopsy Applications
3.1. Gold Nanostructures
3.1.1. MicroRNAs
3.1.2. Circulating Tumor DNA
3.1.3. Circulating Tumor Cells
3.2. Graphene Oxide (GO) Nanostructures
3.2.1. MicroRNAs
3.2.2. Circulating Tumor Cells
3.3. Quantum Dot (QD) Nanostructures
3.4. Copper Nanoparticles (CuNPs)
3.5. Silver Nanoparticles (AgNPs)
3.6. Silica Nanoparticles (SiNPs)
3.7. Iron and Magnetic Nanostructures
4. Limitation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Crowley, E.; Di Nicolantonio, F.; Loupakis, F.; Bardelli, A. Liquid biopsy: Monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 2013, 10, 472. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Real-time liquid biopsy in cancer patients: Fact or fiction? Cancer Res. 2013, 73, 6384–6388. [Google Scholar] [CrossRef]
- Alix-Panabieres, C. The future of liquid biopsy. Nature 2020, 579, S9. [Google Scholar] [CrossRef] [PubMed]
- Pantel, K.; Alix-Panabières, C. Liquid biopsy and minimal residual disease—Latest advances and implications for cure. Nat. Rev. Clin. Oncol. 2019, 16, 409–424. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.; Zhao, Z.; Gao, H.; Liu, C.; Zhu, L.; Wang, C.; Yang, Y. Emerging nanotechnologies for liquid biopsy: The detection of circulating tumor cells and extracellular vesicles. Adv. Mater. 2019, 31, 1805344. [Google Scholar] [CrossRef]
- Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science 2011, 331, 1559–1564. [Google Scholar] [CrossRef]
- Alix-Panabières, C.; Pantel, K. Circulating tumor cells: Liquid biopsy of cancer. Clin. Chem. 2013, 59, 110–118. [Google Scholar] [CrossRef]
- Sorenson, G.; Pribish, D.; Valone, F.H.; Memoli, V.A.; Bzik, D.J.; Yao, S.L. Soluble normal and mutated DNA sequences from single—Copy genes in human blood. Cancer Epidemiol. Biomark. Prev. 1994, 3, 67–71. [Google Scholar]
- Nawroz, H.; Koch, W.; Anker, P.; Stroun, M.; Sidransky, D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat. Med. 1996, 2, 1035–1037. [Google Scholar] [CrossRef]
- Chaput, N.; Théry, C. Exosomes: Immune properties and potential clinical implementations. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 419–440. [Google Scholar]
- Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002, 2, 569–579. [Google Scholar] [CrossRef]
- Andaloussi, S.E.; Mäger, I.; Breakefield, X.O.; Wood, M.J. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, H. Next-generation sequencing in liquid biopsy: Cancer screening and early detection. Hum. Genom. 2019, 13, 34. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Y.; Chen, X.; Wang, Y.; Li, Z.; Du, S.; Wang, L.; Chen, S. Nanotechnology-based strategies for early cancer diagnosis using circulating tumor cells as a liquid biopsy. Nanotheranostics 2018, 2, 21. [Google Scholar] [CrossRef]
- Lin, D.; Wu, Q.; Qiu, S.; Chen, G.; Feng, S.; Chen, R.; Zeng, H. Label-free liquid biopsy based on blood circulating DNA detection using SERS-based nanotechnology for nasopharyngeal cancer screening. Nanomed. Nanotechnol. Biol. Med. 2019, 22, 102100. [Google Scholar] [CrossRef]
- Wong, I.Y.; Bhatia, S.N.; Toner, M. Nanotechnology: Emerging tools for biology and medicine. Genes Dev. 2013, 27, 2397–2408. [Google Scholar] [CrossRef]
- Whitesides, G.M. The’right’size in nanobiotechnology. Nat. Biotechnol. 2003, 21, 1161–1165. [Google Scholar] [CrossRef]
- Khurana, A.; Allawadhi, P.; Khurana, I.; Allwadhi, S.; Weiskirchen, R.; Banothu, A.K.; Chhabra, D.; Joshi, K.; Bharani, K.K. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 2021, 38, 101142. [Google Scholar] [CrossRef]
- Allawadhi, P.; Khurana, A.; Allwadhi, S.; Joshi, K.; Packirisamy, G.; Bharani, K.K. Nanoceria as a possible agent for the management of COVID-19. Nano Today 2020, 35, 100982. [Google Scholar] [CrossRef]
- Gogotsi, Y. Nanomaterials Handbook; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Ozin, G.A.; Arsenault, A. Nanochemistry: A Chemical Approach to Nanomaterials; Royal Society of Chemistry: London, UK, 2015. [Google Scholar]
- Ravishankar Rai, V. Nanoparticles and their potential application as antimicrobials. In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances; FORMATEX: Badajoz, Spain, 2011. [Google Scholar]
- Lohr, J.G.; Adalsteinsson, V.A.; Cibulskis, K.; Choudhury, A.D.; Rosenberg, M.; Cruz-Gordillo, P.; Francis, J.M.; Zhang, C.-Z.; Shalek, A.K.; Satija, R. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat. Biotechnol. 2014, 32, 479. [Google Scholar] [CrossRef]
- Qian, W.; Zhang, Y.; Chen, W. Capturing cancer: Emerging microfluidic technologies for the capture and characterization of circulating tumor cells. Small 2015, 11, 3850–3872. [Google Scholar] [CrossRef]
- Shao, H.; Chung, J.; Lee, K.; Balaj, L.; Min, C.; Carter, B.S.; Hochberg, F.H.; Breakefield, X.O.; Lee, H.; Weissleder, R. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun. 2015, 6, 6999. [Google Scholar] [CrossRef]
- Sestini, S.; Boeri, M.; Marchiano, A.; Pelosi, G.; Galeone, C.; Verri, C.; Suatoni, P.; Sverzellati, N.; La Vecchia, C.; Sozzi, G. Circulating microRNA signature as liquid-biopsy to monitor lung cancer in low-dose computed tomography screening. Oncotarget 2015, 6, 32868. [Google Scholar] [CrossRef]
- Shao, H.; Chung, J.; Balaj, L.; Charest, A.; Bigner, D.D.; Carter, B.S.; Hochberg, F.H.; Breakefield, X.O.; Weissleder, R.; Lee, H. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat. Med. 2012, 18, 1835–1840. [Google Scholar] [CrossRef]
- Bai, L.; Du, Y.; Peng, J.; Liu, Y.; Wang, Y.; Yang, Y.; Wang, C. Peptide-based isolation of circulating tumor cells by magnetic nanoparticles. J. Mater. Chem. B 2014, 2, 4080–4088. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, Q.; Zheng, W.; Li, W.; Li, P.; Zhu, L.; Liu, X.; Shao, B.; Li, H.; Wang, C. Peptide-functionalized nanomaterials for the efficient isolation of HER2-positive circulating tumor cells. ACS Appl. Mater. Interfaces 2017, 9, 18423–18428. [Google Scholar] [CrossRef]
- Xiong, K.; Wei, W.; Jin, Y.; Wang, S.; Zhao, D.; Wang, S.; Gao, X.; Qiao, C.; Yue, H.; Ma, G. Biomimetic Immuno-Magnetosomes for High-Performance Enrichment of Circulating Tumor Cells. Adv. Mater. 2016, 28, 7929–7935. [Google Scholar] [CrossRef]
- Cohen, S.J.; Punt, C.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.; Mitchell, E.; Miller, M.C. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. Clin. Oncol 2008, 26, 3213–3221. [Google Scholar] [CrossRef]
- Haun, J.B.; Devaraj, N.K.; Marinelli, B.S.; Lee, H.; Weissleder, R. Probing intracellular biomarkers and mediators of cell activation using nanosensors and bioorthogonal chemistry. ACS Nano 2011, 5, 3204–3213. [Google Scholar] [CrossRef]
- Haun, J.B.; Devaraj, N.K.; Hilderbrand, S.A.; Lee, H.; Weissleder, R. Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. Nat. Nanotechnol. 2010, 5, 660–665. [Google Scholar] [CrossRef]
- Yoon, H.J.; Kim, T.H.; Zhang, Z.; Azizi, E.; Pham, T.M.; Paoletti, C.; Lin, J.; Ramnath, N.; Wicha, M.S.; Hayes, D.F. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat. Nanotechnol. 2013, 8, 735–741. [Google Scholar] [CrossRef]
- Pang, C.; Koo, J.H.; Nguyen, A.; Caves, J.M.; Kim, M.G.; Chortos, A.; Kim, K.; Wang, P.J.; Tok, J.B.H.; Bao, Z. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 2015, 27, 634–640. [Google Scholar] [CrossRef]
- Wang, S.; Liu, K.; Liu, J.; Yu, Z.T.F.; Xu, X.; Zhao, L.; Lee, T.; Lee, E.K.; Reiss, J.; Lee, Y.K. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew. Chem. 2011, 123, 3140–3144. [Google Scholar] [CrossRef]
- Shen, Q.; Xu, L.; Zhao, L.; Wu, D.; Fan, Y.; Zhou, Y.; OuYang, W.H.; Xu, X.; Zhang, Z.; Song, M. Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates. Adv. Mater. 2013, 25, 2368–2373. [Google Scholar] [CrossRef]
- Chung, J.; Yokoyama, M.; Yamato, M.; Aoyagi, T.; Sakurai, Y.; Okano, T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly (N-isopropylacrylamide) and poly (butylmethacrylate). J. Control Release 1999, 62, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, Y.; Sun, K.; Fan, J.; Zhang, P.; Meng, J.; Wang, S.; Jiang, L. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 2013, 135, 7603–7609. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Li, C.; Lu, S.; Zhou, W.; Tang, F.; Xie, X.S.; Huang, Y. Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc. Natl. Acad. Sci. USA 2015, 112, 11923–11928. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Wan, S.; Cansiz, S.; Cui, C.; Liu, Y.; Cai, R.; Hong, C.; Teng, I.-T.; Shi, M. Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano 2017, 11, 3943–3949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Deng, Y.; Tai, Q.; Cheng, B.; Zhao, L.; Shen, Q.; He, R.; Hong, L.; Liu, W.; Guo, S. Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Adv. Mater. 2012, 24, 2756–2760. [Google Scholar] [CrossRef]
- Jan, Y.J.; Chen, J.-F.; Zhu, Y.; Lu, Y.-T.; Chen, S.H.; Chung, H.; Smalley, M.; Huang, Y.-W.; Dong, J.; Chen, L.-C. NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells. Adv. Drug Deliv. Rev. 2018, 125, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, H.; Jiao, J.; Chen, K.J.; Owens, G.E.; Kamei, K.i.; Sun, J.; Sherman, D.J.; Behrenbruch, C.P.; Wu, H. Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew. Chem. Int. Ed. 2009, 48, 8970–8973. [Google Scholar] [CrossRef]
- Zhang, P.; He, M.; Zeng, Y. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 2016, 16, 3033–3042. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Zhang, J.; Sluyter, R.; Zhao, Q.; Yan, S.; Alici, G.; Li, W. Continuous plasma extraction under viscoelastic fluid in a straight channel with asymmetrical expansion–contraction cavity arrays. Lab Chip 2016, 16, 3919–3928. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Vermesh, O.; Mani, V.; Ge, T.J.; Madsen, S.J.; Sabour, A.; Hsu, E.-C.; Gowrishankar, G.; Kanada, M.; Jokerst, J.V. The exosome total isolation chip. ACS Nano 2017, 11, 10712–10723. [Google Scholar] [CrossRef]
- Galanzha, E.I.; Shashkov, E.V.; Kelly, T.; Kim, J.-W.; Yang, L.; Zharov, V.P. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 2009, 4, 855–860. [Google Scholar] [CrossRef]
- Bamrungsap, S.; Chen, T.; Shukoor, M.I.; Chen, Z.; Sefah, K.; Chen, Y.; Tan, W. Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano 2012, 6, 3974–3981. [Google Scholar] [CrossRef]
- Jiang, Y.; Palma, J.F.; Agus, D.B.; Wang, Y.; Gross, M.E. Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin. Chem. 2010, 56, 1492–1495. [Google Scholar] [CrossRef]
- Andree, K.C.; van Dalum, G.; Terstappen, L.W. Challenges in circulating tumor cell detection by the CellSearch system. Mol. Oncol. 2016, 10, 395–407. [Google Scholar] [CrossRef]
- Kraan, J.; Sleijfer, S.; Strijbos, M.H.; Ignatiadis, M.; Peeters, D.; Pierga, J.Y.; Farace, F.; Riethdorf, S.; Fehm, T.; Zorzino, L. External quality assurance of circulating tumor cell enumeration using the CellSearch® system: A feasibility study. Cytom. Part B Clin. Cytom. 2011, 80, 112–118. [Google Scholar] [CrossRef]
- Welinder, C.; Jansson, B.; Lindell, G.; Wenner, J. Cytokeratin 20 improves the detection of circulating tumor cells in patients with colorectal cancer. Cancer Lett. 2015, 358, 43–46. [Google Scholar] [CrossRef]
- Gradilone, A.; Iacovelli, R.; Cortesi, E.; Raimondi, C.; Gianni, W.; Nicolazzo, C.; Petracca, A.; Palazzo, A.; Longo, F.; Frati, L. Circulating tumor cells and “suspicious objects” evaluated through CellSearch® in metastatic renal cell carcinoma. Anticancer Res. 2011, 31, 4219–4221. [Google Scholar]
- Neely, A.; Perry, C.; Varisli, B.; Singh, A.K.; Arbneshi, T.; Senapati, D.; Kalluri, J.R.; Ray, P.C. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 2009, 3, 2834–2840. [Google Scholar] [CrossRef]
- Khurana, I.; Allawadhi, P.; Neeradi, D.; Banothu, A.K.; Thalugula, S.; Naik, R.R.; Packirisamy, G.; Bharani, K.K.; Khurana, A. Introduction to nanoengineering and nanotechnology for biomedical applications. In Emerging Nanotechnologies for Medical Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–34. [Google Scholar]
- Kalkal, A.; Pradhan, R.; Kadian, S.; Manik, G.; Packirisamy, G. Biofunctionalized Graphene Quantum Dots Based Fluorescent Biosensor toward Efficient Detection of Small Cell Lung Cancer. ACS Appl. Bio Mater. 2020, 3, 4922–4932. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Su, S.; Guo, Y.; Jiang, X.; Zhong, Y.; Su, Y.; Fan, C.; Lee, S.-T.; He, Y. A Molecular Beacon-Based Signal-Off Surface-Enhanced Raman Scattering Strategy for Highly Sensitive, Reproducible, and Multiplexed DNA Detection. Small 2013, 9, 2493–2499. [Google Scholar] [CrossRef]
- Wu, X.; Xia, Y.; Huang, Y.; Li, J.; Ruan, H.; Chen, T.; Luo, L.; Shen, Z.; Wu, A. Improved SERS-Active Nanoparticles with Various Shapes for CTC Detection without Enrichment Process with Supersensitivity and High Specificity. ACS Appl. Mater. Interfaces 2016, 8, 19928–19938. [Google Scholar] [CrossRef]
- Hou, S.; Zhao, L.; Shen, Q.; Yu, J.; Ng, C.; Kong, X.; Wu, D.; Song, M.; Shi, X.; Xu, X.; et al. Polymer nanofiber-embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma cells. Angew. Chem. Int. Ed. Engl. 2013, 52, 3379–3383. [Google Scholar] [CrossRef]
- Silverman, S.K. Catalytic DNA: Scope, Applications, and Biochemistry of Deoxyribozymes. Trends Biochem. Sci. 2016, 41, 595–609. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Y.; Turberfield, A.J.; Yurke, B.; Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science 2007, 318, 1121–1125. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Choi, H.M.; Calvert, C.R.; Pierce, N.A. Programming biomolecular self-assembly pathways. Nature 2008, 451, 318–322. [Google Scholar] [CrossRef]
- Hu, J.; Sheng, Y.; Kwak, K.J.; Shi, J.; Yu, B.; Lee, L.J. A signal-amplifiable biochip quantifies extracellular vesicle-associated RNAs for early cancer detection. Nat. Commun. 2017, 8, 1683. [Google Scholar] [CrossRef]
- Kalogianni, D.P. Nanotechnology in emerging liquid biopsy applications. Nano Converg. 2021, 8, 13. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, L.; Huang, Y.; Yang, Y.; He, Y.; Lu, C.; Yang, H. DNA-mediated reversible capture and release of circulating tumor cells with a multivalent dual-specific aptamer coating network. Chem. Commun. 2019, 55, 5387–5390. [Google Scholar] [CrossRef]
- Hu, X.; Wei, C.-W.; Xia, J.; Pelivanov, I.; O’Donnell, M.; Gao, X. Trapping and photoacoustic detection of CTCs at the single cell per milliliter level with magneto-optical coupled nanoparticles. Small 2013, 9, 2046. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, F.; Dan, W.; Fu, Y.; Liu, S. Construction of carbon nanotube based nanoarchitectures for selective impedimetric detection of cancer cells in whole blood. Analyst 2014, 139, 5086–5092. [Google Scholar] [CrossRef]
- Hou, S.; Zhao, H.; Zhao, L.; Shen, Q.; Wei, K.S.; Suh, D.Y.; Nakao, A.; Garcia, M.A.; Song, M.; Lee, T.; et al. Capture and stimulated release of circulating tumor cells on polymer-grafted silicon nanostructures. Adv. Mater. 2013, 25, 1547–1551. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-y.; Hoshino, K.; Chen, P.; Wu, C.-h.; Lane, N.; Huebschman, M.; Liu, H.; Sokolov, K.; Uhr, J.W.; Frenkel, E.P. Immunomagnetic nanoscreening of circulating tumor cells with a motion controlled microfluidic system. Biomed. Microdevices 2013, 15, 673–681. [Google Scholar] [CrossRef]
- Hoshino, K.; Huang, Y.-Y.; Lane, N.; Huebschman, M.; Uhr, J.W.; Frenkel, E.P.; Zhang, X. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 2011, 11, 3449–3457. [Google Scholar] [CrossRef]
- Ozkumur, E.; Shah, A.M.; Ciciliano, J.C.; Emmink, B.L.; Miyamoto, D.T.; Brachtel, E.; Yu, M.; Chen, P.-i.; Morgan, B.; Trautwein, J. Inertial focusing for tumor antigen–dependent and–independent sorting of rare circulating tumor cells. Sci. Transl. Med. 2013, 5, ra147–ra179. [Google Scholar] [CrossRef] [PubMed]
- Poudineh, M.; Aldridge, P.M.; Ahmed, S.; Green, B.J.; Kermanshah, L.; Nguyen, V.; Tu, C.; Mohamadi, R.M.; Nam, R.K.; Hansen, A. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotechnol. 2017, 12, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Ibsen, S.D.; Wright, J.; Lewis, J.M.; Kim, S.; Ko, S.-Y.; Ong, J.; Manouchehri, S.; Vyas, A.; Akers, J.; Chen, C.C. Rapid isolation and detection of exosomes and associated biomarkers from plasma. ACS Nano 2017, 11, 6641–6651. [Google Scholar] [CrossRef]
- Oliveira-Rodríguez, M.; López-Cobo, S.; Reyburn, H.T.; Costa-García, A.; López-Martín, S.; Yáñez-Mó, M.; Cernuda-Morollón, E.; Paschen, A.; Valés-Gómez, M.; Blanco-López, M.C. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids. J. Extracell. Vesicles 2016, 5, 31803. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, Y.; Lu, Y.; Xing, W. Isolation and visible detection of tumor-derived exosomes from plasma. Anal. Chem. 2018, 90, 14207–14215. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Liu, J.-W.; Adkins, G.B.; Shen, W.; Trinh, M.P.; Duan, L.-Y.; Jiang, J.-H.; Zhong, W. Enhancement of the intrinsic peroxidase-like activity of graphitic carbon nitride nanosheets by ssDNAs and its application for detection of exosomes. Anal. Chem. 2017, 89, 12327–12333. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, J.; Wu, Y.; Xing, S.; Lai, Y.; Zhang, G. Target-induced proximity ligation triggers recombinase polymerase amplification and transcription-mediated amplification to detect tumor-derived exosomes in nasopharyngeal carcinoma with high sensitivity. Biosens. Bioelectron. 2018, 102, 204–210. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Yue, S.; Lu, Y.; Yang, C.; Fang, J.; Xu, Z. Sensitive multicolor visual detection of exosomes via dual signal amplification strategy of enzyme-catalyzed metallization of Au nanorods and hybridization chain reaction. ACS Sens. 2019, 4, 3210–3218. [Google Scholar] [CrossRef]
- He, F.; Wang, J.; Yin, B.-C.; Ye, B.-C. Quantification of exosome based on a copper-mediated signal amplification strategy. Anal. Chem. 2018, 90, 8072–8079. [Google Scholar] [CrossRef]
- Gao, M.-L.; Yin, B.-C.; Ye, B.-C. Construction of a DNA-AuNP-based satellite network for exosome analysis. Analyst 2019, 144, 5996–6003. [Google Scholar] [CrossRef] [PubMed]
- Zong, S.; Zong, J.; Chen, C.; Jiang, X.; Zhang, Y.; Wang, Z.; Cui, Y. Single molecule localization imaging of exosomes using blinking silicon quantum dots. Nanotechnology 2018, 29, 065705. [Google Scholar] [CrossRef]
- Tayebi, M.; Yaraki, M.T.; Yang, H.Y.; Ai, Y. A MoS 2–MWCNT based fluorometric nanosensor for exosome detection and quantification. Nanoscale Adv. 2019, 1, 2866–2872. [Google Scholar] [CrossRef]
- Jin, D.; Yang, F.; Zhang, Y.; Liu, L.; Zhou, Y.; Wang, F.; Zhang, G.-J. ExoAPP: Exosome-oriented, aptamer nanoprobe-enabled surface proteins profiling and detection. Anal. Chem. 2018, 90, 14402–14411. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, F.; Zhang, H.; Zhang, Y.; Liu, M.; Liu, Y. Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal. Chem. 2018, 90, 12737–12744. [Google Scholar] [CrossRef] [PubMed]
- Boriachek, K.; Masud, M.K.; Palma, C.; Phan, H.-P.; Yamauchi, Y.; Hossain, M.S.A.; Nguyen, N.-T.; Salomon, C.; Shiddiky, M.J. Avoiding pre-isolation step in exosome analysis: Direct isolation and sensitive detection of exosomes using gold-loaded nanoporous ferric oxide nanozymes. Anal. Chem. 2019, 91, 3827–3834. [Google Scholar] [CrossRef]
- Boriachek, K.; Islam, M.N.; Gopalan, V.; Lam, A.K.; Nguyen, N.-T.; Shiddiky, M.J. Quantum dot-based sensitive detection of disease specific exosome in serum. Analyst 2017, 142, 2211–2219. [Google Scholar] [CrossRef]
- Zhou, Y.G.; Mohamadi, R.M.; Poudineh, M.; Kermanshah, L.; Ahmed, S.; Safaei, T.S.; Stojcic, J.; Nam, R.K.; Sargent, E.H.; Kelley, S.O. Interrogating circulating microsomes and exosomes using metal nanoparticles. Small 2016, 12, 727–732. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Zhang, Q.; Wang, F.; Liu, Y. Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens. Bioelectron. 2019, 124, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Zong, S.; Wang, L.; Chen, C.; Lu, J.; Zhu, D.; Zhang, Y.; Wang, Z.; Cui, Y. Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. Anal. Methods 2016, 8, 5001–5008. [Google Scholar] [CrossRef]
- Jeong, S.; Park, J.; Pathania, D.; Castro, C.M.; Weissleder, R.; Lee, H. Integrated magneto–electrochemical sensor for exosome analysis. ACS Nano 2016, 10, 1802–1809. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Liu, B.; Liu, J. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017, 139, 5412–5419. [Google Scholar] [CrossRef]
- Chen, X.; Lan, J.; Liu, Y.; Li, L.; Yan, L.; Xia, Y.; Wu, F.; Li, C.; Li, S.; Chen, J. A paper-supported aptasensor based on upconversion luminescence resonance energy transfer for the accessible determination of exosomes. Biosens. Bioelectron. 2018, 102, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Im, H.; Shao, H.; Park, Y.I.; Peterson, V.M.; Castro, C.M.; Weissleder, R.; Lee, H. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 2014, 32, 490–495. [Google Scholar] [CrossRef]
- Yang, K.S.; Im, H.; Hong, S.; Pergolini, I.; Del Castillo, A.F.; Wang, R.; Clardy, S.; Huang, C.-H.; Pille, C.; Ferrone, S. Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. Sci. Transl. Med. 2017, 9, eaal3226. [Google Scholar] [CrossRef]
- Liang, K.; Liu, F.; Fan, J.; Sun, D.; Liu, C.; Lyon, C.J.; Bernard, D.W.; Li, Y.; Yokoi, K.; Katz, M.H. Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. 2017, 1, 21. [Google Scholar] [CrossRef]
- Coutinho, C.; Somoza, Á. MicroRNA sensors based on gold nanoparticles. Anal. Bioanal. Chem. 2019, 411, 1807–1824. [Google Scholar] [CrossRef]
- He, W.; Li, S.; Wang, L.; Zhu, L.; Zhang, Y.; Luo, Y.; Huang, K.; Xu, W. AuNPs-DNAzyme molecular motor biosensor mediated by neighborhood click chemistry reactions for the ultrasensitive detection of microRNA-155. Sens. Actuators B Chem. 2019, 290, 503–511. [Google Scholar] [CrossRef]
- Borghei, Y.-S.; Hosseini, M. A New eye Dual-readout Method for MiRNA Detection based on Dissolution of Gold nanoparticles via LspR by Cdte QDs photoinduction. Sci. Rep. 2019, 9, 5453. [Google Scholar] [CrossRef] [PubMed]
- Nossier, A.I.; Abdelzaher, H.; Matboli, M.; Eissa, S. Dual approach for the colorimetric determination of unamplified microRNAs by using citrate capped gold nanoparticles. Microchim. Acta 2018, 185, 236. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Wang, X.; Chen, W. The formulation of a refined hybrid enhanced assumed strain solid shell element and its application to model smart structures containing distributed piezoelectric sensors/actuators. Smart Mater. Struct. 2004, 13, N43. [Google Scholar] [CrossRef]
- Yao, M.; Lv, X.; Deng, Y.; Rasheed, M. Specific and simultaneous detection of micro RNA 21 and let-7a by rolling circle amplification combined with lateral flow strip. Anal. Chim. Acta 2019, 1055, 115–125. [Google Scholar] [CrossRef]
- Gao, X.; Xu, L.-P.; Wu, T.; Wen, Y.; Ma, X.; Zhang, X. An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224. Talanta 2016, 146, 648–654. [Google Scholar] [CrossRef]
- Mohammadniaei, M.; Go, A.; Chavan, S.G.; Koyappayil, A.; Kim, S.-E.; Yoo, H.J.; Min, J.; Lee, M.-H. Relay-race RNA/barcode gold nanoflower hybrid for wide and sensitive detection of microRNA in total patient serum. Biosens. Bioelectron. 2019, 141, 111468. [Google Scholar] [CrossRef] [PubMed]
- Fredj, Z.; Azzouzi, S.; Turner, A.P.; Ali, M.B.; Mak, W.C. Neutravidin biosensor for direct capture of dual-functional biotin-molecular beacon-AuNP probe for sensitive voltammetric detection of microRNA. Sens. Actuators B Chem. 2017, 248, 77–84. [Google Scholar] [CrossRef]
- Li, T.; Wu, X.; Tao, G.; Yin, H.; Zhang, J.; Liu, F.; Li, N. A simple and non-amplification platform for femtomolar DNA and microRNA detection by combining automatic gold nanoparticle enumeration with target-induced strand-displacement. Biosens. Bioelectron. 2018, 105, 137–142. [Google Scholar] [CrossRef]
- Sguassero, A.; Artiga, Á.; Morasso, C.; Jimenez, R.R.; Rapún, R.M.; Mancuso, R.; Agostini, S.; Hernis, A.; Abols, A.; Linē, A. A simple and universal enzyme-free approach for the detection of multiple microRNAs using a single nanostructured enhancer of surface plasmon resonance imaging. Anal. Bioanal. Chem. 2019, 411, 1873–1885. [Google Scholar] [CrossRef] [PubMed]
- Tadimety, A.; Zhang, Y.; Kready, K.M.; Palinski, T.J.; Tsongalis, G.J.; Zhang, J.X. Design of peptide nucleic acid probes on plasmonic gold nanorods for detection of circulating tumor DNA point mutations. Biosens. Bioelectron. 2019, 130, 236–244. [Google Scholar] [CrossRef]
- Khanna, S.; Padhan, P.; Das, S.; Jaiswal, K.S.; Tripathy, A.; Smita, S.; Tripathy, S.K.; Raghav, S.K.; Gupta, B. A Simple Colorimetric Method for Naked-Eye Detection of Circulating Cell-Free DNA Using Unlabelled Gold Nanoparticles. ChemistrySelect 2018, 3, 11541–11551. [Google Scholar] [CrossRef]
- Wang, C.; Chen, X.; Wu, Y.; Li, H.; Wang, Y.; Pan, X.; Tang, T.; Liu, Z.; Li, X. Lateral flow strip for visual detection of K-ras mutations based on allele-specific PCR. Biotechnol. Lett. 2016, 38, 1709–1714. [Google Scholar] [CrossRef]
- Li, X.; Chen, B.; He, M.; Hu, B. Immunodetection and counting of circulating tumor cells (HepG2) by combining gold nanoparticle labeling, rolling circle amplification and ICP-MS detection of gold. Microchim. Acta 2019, 186, 344. [Google Scholar] [CrossRef]
- Chiu, W.-J.; Ling, T.-K.; Chiang, H.-P.; Lin, H.-J.; Huang, C.-C. Monitoring cluster ions derived from aptamer-modified gold nanofilms under laser desorption/ionization for the detection of circulating tumor cells. ACS Appl. Mater. Interfaces 2015, 7, 8622–8630. [Google Scholar] [CrossRef]
- Liu, G.; Mao, X.; Phillips, J.A.; Xu, H.; Tan, W.; Zeng, L. Aptamer− nanoparticle strip biosensor for sensitive detection of cancer cells. Anal. Chem. 2009, 81, 10013–10018. [Google Scholar] [CrossRef]
- Khoothiam, K.; Treerattrakoon, K.; Iempridee, T.; Luksirikul, P.; Dharakul, T.; Japrung, D. Ultrasensitive detection of lung cancer-associated miRNAs by multiple primer-mediated rolling circle amplification coupled with a graphene oxide fluorescence-based (MPRCA-GO) sensor. Analyst 2019, 144, 4180–4187. [Google Scholar] [CrossRef]
- Treerattrakoon, K.; Jiemsakul, T.; Tansarawiput, C.; Pinpradup, P.; Iempridee, T.; Luksirikul, P.; Khoothiam, K.; Dharakul, T.; Japrung, D. Rolling circle amplification and graphene-based sensor-on-a-chip for sensitive detection of serum circulating miRNAs. Anal. Biochem. 2019, 577, 89–97. [Google Scholar] [CrossRef]
- Ou, X.; Zhan, S.; Sun, C.; Cheng, Y.; Wang, X.; Liu, B.; Zhai, T.; Lou, X.; Xia, F. Simultaneous detection of telomerase and miRNA with graphene oxide-based fluorescent aptasensor in living cells and tissue samples. Biosens. Bioelectron. 2019, 124, 199–204. [Google Scholar] [CrossRef]
- Esteban-Fernaández de AÁvila, B.; Martín, A.; Soto, F.; Lopez-Ramirez, M.A.; Campuzano, S.; Vasquez-Machado, G.M.; Gao, W.; Zhang, L.; Wang, J. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 2015, 9, 6756–6764. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, S.-R.; Lee, J.; Yeo, J.; Na, H.-K.; Kim, Y.-K.; Jang, H.; Lee, J.H.; Han, S.W.; Lee, Y.; Kim, V.N. Quantitative and multiplexed microRNA sensing in living cells based on peptide nucleic acid and nano graphene oxide (PANGO). ACS Nano 2013, 7, 5882–5891. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.-k.; Lee, S.; Yoon, S.; Kim, W.-k. Graphene oxide-based NET strategy for enhanced colorimetric sensing of miRNA. Sens. Actuators B Chem. 2019, 282, 861–867. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, J.; Jin, X.; Liu, Y.; Huang, S. Ultrasensitive electrochemical microRNA-21 biosensor coupling with carboxylate-reduced graphene oxide-based signal-enhancing and duplex-specific nuclease-assisted target recycling. Sens. Actuators B Chem. 2019, 297, 126740. [Google Scholar] [CrossRef]
- Wang, F.; Chu, Y.; Ai, Y.; Chen, L.; Gao, F. Graphene oxide with in-situ grown Prussian Blue as an electrochemical probe for microRNA-122. Microchim. Acta 2019, 186, 116. [Google Scholar] [CrossRef]
- Song, Y.; Li, L.; Yang, Z.; Zhao, G.; Zhang, X.; Wang, L.; Zheng, L.; Zhuo, F.; Yin, H.; Ge, X. Target of rapamycin (TOR) regulates the expression of lncRNAs in response to abiotic stresses in cotton. Front. Genet. 2019, 9, 690. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Wang, Z.; Gu, Y.; Li, Y.; Jia, Y. Clinical available circulating tumor cell assay based on tetra (4-aminophenyl) porphyrin mediated reduced graphene oxide field effect transistor. Electrochim. Acta 2019, 313, 415–422. [Google Scholar] [CrossRef]
- Xiao, K.; Liu, J.; Chen, H.; Zhang, S.; Kong, J. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification. Biosens. Bioelectron. 2017, 91, 76–81. [Google Scholar] [CrossRef]
- Kun, Q.; Lin, Y.; Peng, H.; Cheng, L.; Cui, H.; Hong, N.; Xiong, J.; Fan, H. A “signal-on” switch electrochemiluminescence biosensor for the detection of tumor cells. J. Electroanal. Chem. 2018, 808, 101–106. [Google Scholar] [CrossRef]
- Xu, Z.; Chang, Y.; Chai, Y.; Wang, H.; Yuan, R. Ultrasensitive electrochemiluminescence biosensor for speedy detection of microrna based on a DNA rolling machine and target recycling. Anal. Chem. 2019, 91, 4883–4888. [Google Scholar] [CrossRef]
- Zhu, H.-Y.; Ding, S.-N. Dual-signal-amplified electrochemiluminescence biosensor for microRNA detection by coupling cyclic enzyme with CdTe QDs aggregate as luminophor. Biosens. Bioelectron. 2019, 134, 109–116. [Google Scholar] [CrossRef]
- Hao, N.; Lu, J.; Chi, M.; Xiong, M.; Zhang, Y.; Hua, R.; Wang, K. A universal photoelectrochemical biosensor for dual microRNA detection based on two CdTe nanocomposites. J. Mater. Chem. B 2019, 7, 1133–1141. [Google Scholar] [CrossRef]
- Yu, X.; Hu, L.; Zhang, F.; Wang, M.; Xia, Z.; Wei, W. MoS2 quantum dots modified with a labeled molecular beacon as a ratiometric fluorescent gene probe for FRET based detection and imaging of microRNA. Microchim. Acta 2018, 185, 239. [Google Scholar] [CrossRef]
- Xie, M.; Lu, N.-N.; Cheng, S.-B.; Wang, X.-Y.; Wang, M.; Guo, S.; Wen, C.-Y.; Hu, J.; Pang, D.-W.; Huang, W.-H. Engineered decomposable multifunctional nanobioprobes for capture and release of rare cancer cells. Anal. Chem. 2014, 86, 4618–4626. [Google Scholar] [CrossRef]
- Min, H.; Jo, S.M.; Kim, H.S. Efficient capture and simple quantification of circulating tumor cells using quantum dots and magnetic beads. Small 2015, 11, 2536–2542. [Google Scholar] [CrossRef]
- Borghei, Y.-S.; Hosseini, M.; Ganjali, M.R. Visual detection of miRNA using peroxidase-like catalytic activity of DNA-CuNCs and methylene blue as indicator. Clin. Chim. Acta 2018, 483, 119–125. [Google Scholar] [CrossRef]
- Xu, F.; Luo, L.; Shi, H.; He, X.; Lei, Y.; Tang, J.; He, D.; Qiao, Z.; Wang, K. Label-free and sensitive microRNA detection based on a target recycling amplification-integrated superlong poly (thymine)-hosted copper nanoparticle strategy. Anal. Chim. Acta 2018, 1010, 54–61. [Google Scholar] [CrossRef]
- Koo, K.M.; Carrascosa, L.G.; Trau, M. DNA-directed assembly of copper nanoblocks with inbuilt fluorescent and electrochemical properties: Application in simultaneous amplification-free analysis of multiple RNA species. Nano Res. 2018, 11, 940–952. [Google Scholar] [CrossRef]
- Liao, H.; Zhou, Y.; Chai, Y.; Yuan, R. An ultrasensitive electrochemiluminescence biosensor for detection of MicroRNA by in-situ electrochemically generated copper nanoclusters as luminophore and TiO2 as coreaction accelerator. Biosens. Bioelectron. 2018, 114, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kang, S.; Park, K.S.; Park, H.G. Enzyme-free and label-free miRNA detection based on target-triggered catalytic hairpin assembly and fluorescence enhancement of DNA-silver nanoclusters. Sens. Actuators B Chem. 2018, 260, 140–145. [Google Scholar] [CrossRef]
- Miao, X.; Cheng, Z.; Ma, H.; Li, Z.; Xue, N.; Wang, P. Label-free platform for microRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters. Anal. Chem. 2018, 90, 1098–1103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, Y.; Jiang, X.; Dong, C.; Song, C.; Han, C.; Wang, L. Ultrasensitive SERS detection of nucleic acids via simultaneous amplification of target-triggered enzyme-free recycling and multiple-reporter. Biosens. Bioelectron. 2019, 141, 111402. [Google Scholar] [CrossRef]
- Ruan, H.; Wu, X.; Yang, C.; Li, Z.; Xia, Y.; Xue, T.; Shen, Z.; Wu, A. A supersensitive CTC analysis system based on triangular silver nanoprisms and SPION with function of capture, enrichment, detection, and release. ACS Biomater. Sci. Eng. 2018, 4, 1073–1082. [Google Scholar] [CrossRef]
- Zhang, Y.; Ning, X.; Mao, G.; Ji, X.; He, Z. Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching. Anal. Bioanal. Chem. 2018, 410, 3209–3216. [Google Scholar] [CrossRef]
- Su, X.; Kuang, L.; Battle, C.; Shaner, T.; Mitchell, B.S.; Fink, M.J.; Jayawickramarajah, J. Mild two-step method to construct DNA-conjugated silicon nanoparticles: Scaffolds for the detection of microRNA-21. Bioconjugate Chem. 2014, 25, 1739–1743. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, C.; Wu, S.; Shen, Y.; Zhou, C.; Neng, J.; Yi, Y.; Jin, Y.; Zhu, Y. Magnetic-capture-based SERS detection of multiple serum microRNA biomarkers for cancer diagnosis. Anal. Methods 2019, 11, 783–793. [Google Scholar] [CrossRef]
- Liu, F.; Li, P.; Chen, M.; Luo, Y.; Prabhakar, M.; Zheng, H.; He, Y.; Qi, Q.; Long, H.; Zhang, Y. Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase Bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population. Sci. Rep. 2017, 7, 11798. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, S.; Wu, T.; Ni, D.; Fan, W.; Zhu, Y.; Qian, R.; Shi, J. Fe–Au Nanoparticle-Coupling for Ultrasensitive Detections of Circulating Tumor DNA. Adv. Mater. 2018, 30, 1801690. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, S.; Li, C.; Wang, Y.; Yan, C. Dual-target recognition sandwich assay based on core-shell magnetic mesoporous silica nanoparticles for sensitive detection of breast cancer cells. Talanta 2018, 182, 306–313. [Google Scholar] [CrossRef] [PubMed]
S. No | Detection Tool | Diagnostic Marker | Clinical Applications | Advantages | Ref |
---|---|---|---|---|---|
CTC Isolation | |||||
1. | Peptide-modified magnetic nanoparticles (MNPs) | EpCAM and HER2 | - | Low cost, constant properties and maintenance of the CTCs in a viable state | [30,31] |
2. | Magnetic nanospheres | EpCAM | Utilized in lung, liver, colon, and breast cancer blood sample | Rapid, sensitive, greater reliability and reproducibility, maintains the viability of the isolated cells | [32] |
3. | Cell membrane-coated magnetic nanoparticles | EpCAM | - | Biocompatible in nature, eliminates the risk of non-specific binding of WBCs, great capture efficiency of CTCs | [33] |
5. | CellSearch (MNPs) | EpCAM | - | Good reliability and can be employed for routine examination of cancer patients | [34,35] |
6. | GO nanosheets | EpCAM | Early-stage lung cancer patients, breast, and pancreatic cancer blood sample | Enhanced capture potential, specificity, and sensitivity | [36,37] |
7. | Silicon nanowires | EpCAM and DNA in cells | - | Efficient and promotes specified targeting and release of CTCs | [38,39] |
8. | Polymer-grafted silicon nanowires | EpCAM | - | Enhanced capture efficiency | [40] |
9. | Silicon nanowires | Sialic acid | - | Efficient cell capture and release | [41] |
10. | Polysaccharide nanofiber-embedded chip | EpCAM and CD146 | Two stage-IV melanoma patients blood sample | Isolation and sequencing of CTC | [42,43] |
11. | TiO2 nanofibers | EpCAM | Colorectal cancer and gastric cancer patient-derived blood samples | High affinity | [44] |
13. | Nanopillars | EpCAM | - | Convenient, Efficient, and cost-effective | [45,46] |
14. | Nanodots | EpCAM | - | Efficient | [46] |
EV Isolation | |||||
15. | GO-modified nanostructure | CD81 | - | Excellent isolation efficiency and minimal non-specific adsorption | [47] |
16. | Nano-DLD silicon arrays | - | - | Fast and sensitive, label-free, small sample requirement | [48] |
17. | Nanoporous isolation chip (Nanostructured surface) | - | Highly efficient plasma ultracentrifugation of lung cancer patients | Inexpensive, simple, fast, good-yield, and easy handling | [49] |
S. No | Study Objective/Title | Sample Size | Intervention | Status/Study Type | Disease Condition | Trial ID |
---|---|---|---|---|---|---|
1. | Ovarian cancer detection by TEPs and ctDNA | 500 | TEP, ctDNA | Observational | Ovarian neoplasms | NCT04022863 |
2. | Ovarium Cancer Detection by TEPs and ctDNA | 100 | ctDNA and CTCs | Interventional | Invasive breast carcinoma | NCT04223492 |
3. | Treatment of high-risk stage II and stage III colon cancer patients post-surgery using liquid biopsy: the PEGASUS trial | 140 | ctDNA | Phase 2/Interventional | Colon cancer | NCT04259944 |
4. | Assessment of early detection based on liquid biopsy in lung cancer (ASCEND-LUNG) | 467 | cfDNA methylation | Observational | Lung cancer | NCT04817046 |
5. | Detecting resistance against targeted therapy in prostate cancer patients by liquid biopsy (PEARL) | 120 | CTCs | Observational | Prostate cancer | NCT03601143 |
6. | Advance detection of stage IV relapses in colorectal cancer patients (REDCLOUD) | 141 | cfDNA | Observational | Stage IV colorectal cancer | NCT04232891 |
7. | Liquid biopsy evaluation and repository development at princess Margaret (LIBERATE) | 2500 | cfNA, cfDNA, cfRNA | Observational | Solid tumor or hematological malignancy | NCT03702309 |
8. | NSCLC heterogeneity in early-stage cancer patients and predicting relapse through personalized liquid biopsy | 50 | ctDNA and CTCs | Interventional | Non-small cell lung carcinoma | NCT03771404 |
9. | Sample collection from patients with non-hematologic cancer and use in developing a liquid biopsy assay | 3000 | (ctDNA) | Observational | Non-hematologic cancer | NCT02586389 |
10. | Clinical Application of Liquid Biopsy for Precise Diagnosis and Prognosis in Lymphoma | 50 | cfDNA | Observational | Lymphoma | NCT04062877 |
11. | Multicenter liquid biopsy for verifying assumed biomarkers for the treatment of pancreatic cancer | 662 | ctDNA | Observational | Pancreatic adenocarcinoma | NCT04241367 |
12. | Early detection of prostate cancer (PROLIPSY) | 320 | CTCs, cfDNA, exosomes | Interventional | Prostate cancer | NCT04556916 |
13. | Liquid biopsy in mature B-cell tumors | 444 | cfDNA, | Observational | Mature B-Cell neoplasm | NCT03280394 |
14. | Pan-cancer early-stage detection by liquid Biopsy technique project (PRESCIENT) | 11879 | cfDNA, | Observational | Cancer | NCT04822792 |
15. | Preventing viral pandemic-associated risk of cancer death using less invasive diagnostic tests—liquid biopsies (PREVAIL ctDNA) | 112 | ctDNA | Observational | Colorectal, lung, bladder, pancreatic biliary tract neoplasm | NCT04566614 |
16. | Therapeutic resistance and clonal evolution assessed with liquid biopsy in ICI-treated NSCLC Patients | 250 | ctDNA | Observational | Lung cancer | NCT04566432 |
17. | Liquid biopsy in analysing the Operation in Gastric Cancer and Neoadjuvant Chemotherapy | 40 | CTC, ctDNA, cfDNA | Phase 2 Interventional | Gastric cancer | NCT03957564 |
18. | Cambridge liquid biopsy and tumour profiling study for patients on experimental therapeutics trials (CALIBRATE) | 100 | ctDNA | Observational | Cancer | NCT02994511 |
19. | The tracking molecular evolution for NSCLC (T-MENC) study | 200 | ctDNA | Observational | Lung cancer | NCT03838588 |
20. | Circulating DNA to improve outcomes of oncology patients—a randomized study (COPE) | 332 | ctDNA | Phase 2 interventional | Colorectal cancer and non-small cell lung cancer | NCT04258137 |
21. | Detecting MSI in circulating tumor DNA of colorectal carcinoma patients | 35 | cfDNA | Observational | Colorectal cancer stage IV | NCT03594448 |
22. | Prognostic role of circulating tumor DNA in resectable pancreatic cancer (PROJECTION) | 200 | ctDNA | Observational | Pancreatic cancer | NCT04246203 |
23. | Liquid biopsy using methylation sequencing for lung cancer | 280 | ctDNA | Observational | Lung cancer | NCT04253509 |
24. | Advanced Analysis of Single Cells in Colorectal Cancer | 45 | CTCs | Observational | Metastatic liver carcinoma and stage IV colorectal cancer | NCT02809716 |
25. | Phenotypic spectrum of CTCs in tumors of the female reproductive system (CTCs) | 150 | CTCs | Observational | Breast cancer, ovarian cancer, endometrial cancer | NCT04817501 |
26. | Fluid biopsy for the diagnosis of lung cancer | 75 | ctDNA | Observational | Lung carcinoma | NCT04162678 |
27. | Evaluation of cfDNA as a marker of response in rectal cancer | 120 | cfDNA | Interventional | Cancer of rectum | NCT04319354 |
28. | Lung cancer biomarkers for risk stratification | 590 | ct-DNA LUNAR assay | Observational | Non-small cell lung cancer | NCT03774758 |
29. | Study of circulating tumor DNA (ctDNA) kinetics in immuno-oncology (IO-KIN) | 20 | ctDNA | Observational | Head and neck cancer, advanced metastatic cancer and squamous cell carcinoma | NCT04606940 |
30. | A study on differentiation of benign and malignant nodules and noninvasive advanced diagnosis of stromal and gastrointestinal tumors | 300 | cfDNA | Observational | Gastrointestinal stromal tumor | NCT04143048 |
31. | Monitoring of serial circulating tumor DNA (ctDNA) during adjuvant capecitabine in early triple-negative breast cancer | 25 | ctDNA | Interventional | Breast cancer | NCT04768426 |
32. | ctDNA as a biomarker for treatment response in HNSCC (PECAN) | 70 | ctDNA | Interventional | Squamous cell carcinoma of head and neck | NCT03540563 |
33. | Analysis of cfDNA in patients with hepatocarcinoma and treated by sorafenib or regorafenib (HELP) | 70 | cfDNA | Interventional | Hepatocarcinoma | NCT03956940 |
34. | Active surveillance in early lung cancer (ACTION-LUNG) | 600 | ctDNA | Observational | Colorectal cancer pancreatic cancer biliary tract cancer | NCT04776837 |
35. | Monitoring efficacy of radiotherapy in lung cancer and esophageal cancer | 26 | ctDNA CTCs | Interventional | Lung cancer | NCT03923777 |
36. | Mechanisms of resistance in EGFR mutated non-pretreated advanced lung cancer receiving osimertib (MELROSE) | 150 | ctDNA | Observational | Lung Cancer, esophageal cancer | NCT04014465 |
37. | Genotyping of Ebus-tbna supernant cell-free DNA in NSCLC (CELTICS) | 66 | ctDNA | Phase 2 interventional | Non-small cell lung cancer | NCT03865511 |
38. | Genomic profiling for metastatic solid tumor patients | 50 | cfDNA, supernatant free DNA (sfDNA) | Observational | Lung cancer | NCT04624373 |
39. | Osimertinib treatment on EGFR T790M plasma positive NSCLC patients (APPLE) | 100 | ctDNA | Observational | Solid tumor | NCT02215928 |
40. | Cell-free DNA methylation for epithelial ovarian cancer | 156 | cfDNA T790M mutation | Interventional | Non-small cell lung carcinoma | NCT02856893 |
41. | Study of circulating tumor DNA (ctDNA) kinetics in immuno-oncology (IO-KIN) | 400 | cfDNA | Phase 2 interventional | Ovarian cancer | NCT04651946 |
42. | Concordance between liquid and tissue biopsy | 20 | ctDNA | Observational | Head and neck squamous cell carcinoma | NCT04606940 |
43. | Concordance between liquid and tissue biopsy | 120 | CTCs ctDNA | Observational | Breast neoplasms | NCT04241237 |
44. | Tumor molecular profiling in early phase clinical trials | 40 | ctDNA | Observational | Advanced solid tumor, lymphoma | NCT04510766 |
45. | Multicenter Clinical Research utilizing Blood Plasma Derived Exosome for diagnosing Lung Cancer | 470 | Exosomes | Observational | Lung cancer | NCT04529915 |
46. | Monitoring breast cancer patients in Costa Rica using genetic markers of circulating tumor DNA | 25 | cfDNA | Observational | Metastatic breast cancer | NCT04163159 |
47. | Monitoring of blood sample of patients with EGFR-mutated lung cancer | 250 | ctDNA | Observational | Lung cancer | NCT02284633 |
48. | Dynamic monitoring of circulating tumor DNA in surgical patients with lung cancer (LUNGCA) | 150 | ctDNA | Observational | Lung cancer | NCT03317080 |
49. | A prospective study using circulatingcell-free DNA (cfDNA) in detecting RAS mutations in patients with advanced colorectal cancer | 60 | cfDNA | Interventional | Colon cancer | NCT04775862 |
51. | Prognosis and targeted therapy-associated molecular screening scheme for breast cancer patients in China | 300 | ctDNA, cfRNA | Observational | Breast cancer | NCT03792529 |
52. | Detecting circulating tumor cells (CTCs) and cell-free DNA (cfDNA) in peripheral blood for early detection, diagnostics and clinical application in breast cancer patients | 210 | cfDNA CTCs | Observational | Breast cancer | NCT03511859 |
53. | Evaluating the presence of urinary exosomes from clear cell renal cell carcinoma (PEP-C) | 100 | CD9+ and CA9+ exosomes | Observational | Clear cell renal cell carcinoma | NCT04053855 |
54. | ctDNA as a biomarker for treatment response in HNSCC (PECAN) | 70 | ctDNA | Interventional | Head and neck squamous cell carcinoma | NCT03540563 |
55. | Study of exosomes in monitoring sarcoma patients (EXOSARC) | 30 | Circulating exosomes | Observational | Sarcoma | NCT03800121 |
56. | Constituents of circulating extracellular vesicles: Biomarkers in colorectal cancer patients (ExoColon) | 172 | Circulating exosomes | Observational | Colorectal cancer | NCT04523389 |
57. | Liquid Biopsy to Distinguish Malignant From Benign Pulmonary Nodules and to Monitor Response to Therapy | 171 | DNA methylation | Observational | Non Small-cell Lung Cancer | NCT05462795 |
58. | The Feasibility of Dynamic Liquid Biopsy Monitoring During Neoadjuvant Treatment for EGFR-mutated NSCLC | 300 | ctDNA | Interventional | EGF-R Positive Non-Small Cell Lung Cancer | NCT06287593 |
59. | ctDNA in Cutaneous Squamous Cell Carcinoma | 60 | ctDNA | Observational | Cutaneous Squamous Cell Carcinoma | NCT06875609 |
60. | ctDNA Monitoring to Predict the Efficacy of Total Neoadjuvant Therapy for Rectal Cancer | 100 | ctDNA | Observational | Rectal Cancer | NCT06589388 |
61. | The circTeloDIAG: Liquid Biopsy for Glioma Tumor (circTeloDIAG) | 150 | ctDNA | Observational | Glioma | NCT04931732 |
62. | DANISH.MRD: Danish Assessment of Minimal Residual Disease by Liquid Biopsies | 1600 | ctDNA | Observational | Colorectal cancer | NCT06076811 |
63. | Liquid Biopsy in Head and Neck Cancer | 30 | ctDNA | Observational | Head and neck squamous cell carcinoma | NCT03926468 |
64. | Liquid Biopsy in Monitoring the Neoadjuvant Chemotherapy and Operation in Gastric Cancer | 40 | ctDNA, CTCs, cfDNA | Observational | Gastric Cancer | NCT03957564 |
65. | Study of Circulating Tumor DNA (ctDNA) Kinetics in Immuno-oncology (IO-KIN) | 18 | ctDNA | Observational | Head and neck squamous cell carcinoma | NCT04606940 |
66. | Longitudinal Tumor Burden Quantification Using Circulating Tumor DNA in Metastatic Lobular Breast Cancer (LBC-Monitor) | 20 | ctDNA | Observational | Breast cancers | NCT06666439 |
67. | Implementation of Up-front ctDNA Into Lung Cancer Care and Development of Liquid Biopsy-based Decision Support Models—LM2 Study (LM2) | 800 | ctDNA, CTCs | Observational | Lung cancer | NCT06105177 |
68. | Molecular Profiling and Dynamic Changes of ctDNA in Unresectable Locally Advanced NSCLC | 80 | ctDNA | Observational | Lung cancer | NCT05641870 |
69. | SIBYL: obServation of Therapy Response With lIquid BiopsY evaLuation | 440 | ctDNA | Observational | Breast Cancer Colorectal Cancer Non-small Cell Lung Cancer | NCT05935384 |
70. | LIBERTY: Liquid Biopsy to Diagnose and Monitor CNS Involvement in High-risk B Cell Non-Hodgkin Lymphoma (SAKK 38/23) | 64 | ctDNA | Interventional | Non-Hodgkin B-cell lymphoma | NCT06090162 |
71. | Liquid Biopsy to Enable Diagnostics and Monitoring for Immune-mediated Lymphoproliferative Disorders (LIMPID) | 20 | ctDNA | Observational | Lymphoproliferative Disorders | NCT05803616 |
72. | Liquid Biopsies in Pediatric Solid Tumors | 320 | cfDNA | Observational | Non-CNS Malignant Pediatric Solid Tumors | NCT05068583 |
73. | Temozolomide and Irinotecan in Patients With MGMT-Silenced Colorectal Cancer After Adjuvant Chemotherapy (ERASE-TMZ) | 35 | ctDNA | Interventional | Colorectal Cancer | NCT05031975 |
74. | MEchanisms of Resistance in EGFR Mutated Non-pretreated Advanced Lung Cancer Receiving OSimErtib (MELROSE) | 150 | ctDNA | Interventional | Non-small Cell Lung Cancer | NCT03865511 |
75. | Monitoring luminAl Breast Cancer Through the Evaluation of Mutational and epiGeNEtic alteraTIons of Circulating ESR1 DNA (MAGNETIC1) | 164 | Circulating ESR1 DNA | Interventional | Hormone Receptor-Positive Breast Carcinoma, Breast Neoplasms, Neoplasms, Breast Breast Diseases, Antineoplastic Agents, Aromatase Inhibitors, ESR1 Gene Mutation | NCT05814224 |
S. No | Nanotools | Detection Method | Markers | Applications | Advantages | Ref. |
---|---|---|---|---|---|---|
CTC Detection | ||||||
1. | Gold nanorods and magnetic nanoparticles | Photoacoustic detection | Folic acid (FA) | - | High sensitivity | [45,68] |
2. | Multifunctional magnetic upconversion nanoparticle (MUNP) | Luminescence imaging | EpCAM | Lung cancer patients | Highly sensitive for detecting tumor cells | [69] |
3. | Carbon nanotubes | Impedimetric detection | EpCAM | Liver | Good conductivity | [70] |
4. | Si nanopillars (SiNP) | Optical detection | EpCAM | - | Specificity | [46,71] |
5. | Microchip- based immunomagnetic | Immunomagnetic microfluidic device | EpCAM | Breast, prostate and lung cancer | Sensitivity and specificity | [72,73] |
6. | CTC-iChip | Immunomagnetic microfluidic device | EpCAM | Prostate, breast, pancreas, colorectal and lung cancer | Highly sensitive and portable | [74] |
7. | Magnetic ranking cytometry (MagRC) | Immunomagnetic microfluidic device | EpCAM | Prostate | Accuracy and cost-effective | [75] |
EV Detection | ||||||
8. | ssDNA attached g-C3N4 nanosheets | Colorimetric detection | CD63 | - | Highly sensitive detection | [76] |
9. | Nanotetrahedron-assisted aptasensor | Electrochemical assay | - | - | Highly sensitive and portable | [43] |
10. | AuNPs | Lateral flow immunoassays | CD9, CD81 and CD63 | Metastatic melanoma | Inexpensive, simple, fast | [77] |
11. | Fe3O4 NPs | Colorimetric | EpCAM | - | Accurate, highly sensitive, and specific | [78] |
12. | Graphitic carbon nitride nanosheets | Colorimetric | CD63 | Breast cancer | Fast, highly sensitive and cost-effective | [79] |
13. | AuNPs | Colorimetric | LMP1 | Nasopharyngeal carcinoma | Inexpensive, simple, fast, and easy handling | [80] |
14. | AuNR | Colorimetric | CD63 and phospholipid membrane | Breast cancer | High sensitivity | [81] |
15. | CuO NPs | Fluorescence | CD63 | Liver cancer | Convenient, efficient, and cost-effective | [82] |
16. | AuNP-linker/complementor | Fluorescence | CD63 | Liver cancer | Inexpensive, simple, fast, and easy handling | [83] |
17. | QDs | Fluorescence | CD63 | Breast cancer | Convenient, Efficient, and cost-effective | [84] |
18. | MoS2-MWCNT | FRET (quenching fluorescence) | CD63 | Breast cancer | High sensitivity | [85] |
19. | GO | FRET (quenching fluorescence) | CD63, EpCAM, PDGF | Breast cancer, gastric cancer, cervical cancer and liver cancer | Convenient, efficient, and cost-effective | [86] |
20. | MXene nanosheets | FRET (quenching fluorescence) | CD63 | Breast cancer, ovarian carcinoma and liver cancer | Accurate, highly sensitive, and specific | [87] |
21. | Au-NPFe2O3NC | Electrochemical (voltametric) | CD63 | Placental choriocarcinoma | Convenient, efficient, and cost-effective | [88] |
22. | CdSeQD | Electrochemical | HER-2 and FAM134B | Colorectal carcinoma | Inexpensive, simple, fast, and easy handling | [89] |
23. | AgNPs and CuNPs | Electrochemical | EpCAM and PSMA | Prostate cancer | Fast, highly sensitive and cost-effective | [90] |
24. | Ti3C2MXenes | Electrochemiluminescence | EpCAM | Melanoma, breast cancer, and liver cancer | High sensitivity | [91] |
25. | Au@Ag NRs | SERS | CD63, HER2 | Breast cancer, lung fibroblasts | Fast, highly sensitive and cost-effective | [92] |
26. | Nanoholes patterned in a Au film + Au nanostars | Surface plasmon resonance spectroscopy (SPR) | CD63 | Ovarian cancer | Accurate, highly sensitive, and specific | [29] |
27. | Magnetic–electrochemical exosome device (iMEX) | Electrochemical assay | CD63, EpCAM, CD24, and CA125 | - | Sensitive, portable, high-throughput | [93] |
28. | Nanomaterials using Raman Scattering | Surface-enhanced Raman scattering (SERS) | Folic acid | - | Prominent sensitivity and specificity | [94] |
29. | AuNRs-UCNPS (paper) | Luminescence resonance energy transfer (LRET) | CD63 | Liver cancer | - | [95] |
30. | Nanoplasmonic sensor | Periodic nanohole array | CD24 and EpCAM | 97% for the ascites sample of patients having ovarian cancer | High sensitivity | [96] |
Periodic nanohole array | EGFR, EPCAM, MUC1, GPC1 and WNT2 | 86% for pancreatic ductal adenocarcinoma | Accurate, highly sensitive, and specific | [97] | ||
Nanoplasmon-enhanced scattering assay | CD81, CD63, CD9, and EphA2 | Plasma of pancreatic cancer patients | Fast, highly sensitive and cost-effective | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allawadhi, P.; Singh, V.; Allwadhi, S.; Banothu, A.K.; Bharani, K.K.; Khurana, A. Harnessing the Potential of Nanotechnology for Liquid Biopsy of Cancer. Chemosensors 2025, 13, 302. https://doi.org/10.3390/chemosensors13080302
Allawadhi P, Singh V, Allwadhi S, Banothu AK, Bharani KK, Khurana A. Harnessing the Potential of Nanotechnology for Liquid Biopsy of Cancer. Chemosensors. 2025; 13(8):302. https://doi.org/10.3390/chemosensors13080302
Chicago/Turabian StyleAllawadhi, Prince, Vishakha Singh, Sachin Allwadhi, Anil Kumar Banothu, Kala Kumar Bharani, and Amit Khurana. 2025. "Harnessing the Potential of Nanotechnology for Liquid Biopsy of Cancer" Chemosensors 13, no. 8: 302. https://doi.org/10.3390/chemosensors13080302
APA StyleAllawadhi, P., Singh, V., Allwadhi, S., Banothu, A. K., Bharani, K. K., & Khurana, A. (2025). Harnessing the Potential of Nanotechnology for Liquid Biopsy of Cancer. Chemosensors, 13(8), 302. https://doi.org/10.3390/chemosensors13080302