Advances in Chemical Sensors and Biosensors: Celebrating the 60th Birthday of Professors Huangxian Ju and Xueji Zhang
Conflicts of Interest
References
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, S.; Kanwal, T.; Ahmad, N.; Fatima, B.; Najam-ul-Haq, M.; Hussain, D. Advances and challenges in portable optical biosensors for onsite detection and point-of-care diagnostics. TrAC Trends Anal. Chem. 2024, 173, 117640. [Google Scholar] [CrossRef]
- Mahato, K.; Saha, T.; Ding, S.C.; Sandhu, S.S.; Chang, A.Y.; Wang, J.S. Hybrid multimodal wearable sensors for comprehensive health monitoring. Nat. Electron. 2024, 7, 735–750. [Google Scholar] [CrossRef]
- Zhang, X.X.; Huang, T.; Gao, Y.Q.; Cai, Y.R.; Liu, J.Q.; Ramachandraiah, K.; Mao, J.; Ke, F. Functional modification engineering of metal-organic frameworks for the contaminants detection in food. Coord. Chem. Rev. 2024, 516, 215990. [Google Scholar] [CrossRef]
- Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef]
- Park, J.; Lee, Y.; Cho, S.; Choe, A.; Yeom, J.; Ro, Y.G.; Kim, J.; Kang, D.H.; Lee, S.; Ko, H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem. Rev. 2024, 124, 1464–1534. [Google Scholar] [CrossRef]
- Lee, L.C.C.; Lo, K.K.W. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem. Rev. 2024, 124, 8825–9014. [Google Scholar] [CrossRef]
- Cui, F.Y.; Yue, Y.; Zhang, Y.; Zhang, Z.M.; Zhou, H.S. Advancing Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef]
- Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal biomedical AI. Nat. Med. 2022, 28, 1773–1784. [Google Scholar] [CrossRef]
- Xue, L.; Yamazaki, H.; Ren, R.; Wanunu, M.; Ivanov, A.P.; Edel, J.B. Solid-state nanopore sensors. Nat. Rev. Mater. 2020, 5, 931–951. [Google Scholar] [CrossRef]
- Wu, L.L.; Huang, C.S.; Emery, B.; Sedgwick, A.C.; Bull, S.D.; He, X.P.; Tian, H.; Yoon, J.; Sessler, J.L.; James, T.D. Forster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110–5139. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Wustoni, S.; Surgailis, J.; Zhong, Y.Z.; Koklu, A.; Inal, S. Designing organic mixed conductors for electrochemical transistor applications. Nat. Rev. Mater. 2024, 9, 249–265. [Google Scholar] [CrossRef]
- Vora, L.K.; Sabri, A.H.; McKenna, P.E.; Himawan, A.; Hutton, A.R.J.; Detamornrat, U.; Paredes, A.J.; Larrañeta, E.; Donnelly, R.F. Microneedle-based biosensing. Nat. Rev. Bioeng. 2024, 2, 64–81. [Google Scholar] [CrossRef]
- Shen, J.; Chen, J.; Qian, Y.P.; Wang, X.Q.; Wang, D.S.; Pan, H.G.; Wang, Y.G. Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications. Adv. Mater. 2024, 36, 2313406. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Eadi, S.B.; Noothalapati, H.; Otyepka, M.; Lee, H.D.; Jayaramulu, K. Porous materials as effective chemiresistive gas sensors. Chem. Soc. Rev. 2024, 53, 2530–2577. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Lu, Y.; Yin, J.L.; Levin, A.; Cheng, W.L. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem. Rev. 2024, 124, 455–553. [Google Scholar] [CrossRef]
- Ding, Y.C.; Jiang, J.X.; Wu, Y.S.; Zhang, Y.K.; Zhou, J.H.; Zhang, Y.F.; Huang, Q.Y.; Zheng, Z.J. Porous Conductive Textiles for Wearable Electronics. Chem. Rev. 2024, 124, 1535–1648. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.S. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Chang, S.; Koo, J.H.; Yoo, J.; Kim, M.S.; Choi, M.K.; Kim, D.H.; Song, Y.M. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem. Rev. 2024, 124, 768–859. [Google Scholar] [CrossRef]
- Altug, H.; Oh, S.H.; Maier, S.A.; Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 2022, 17, 5–16. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Chen, W.W.; Ma, B.; Ju, H.X. Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 2023, 1, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Xu, W.Q.; Wu, Y.; Yan, H.Y.; Gu, W.L.; Du, D.; Lin, Y.H.; Zhu, C.Z. Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev. 2021, 50, 750–765. [Google Scholar] [CrossRef] [PubMed]
- Sena-Torralba, A.; Alvarez-Diduk, R.; Parolo, C.; Piper, A.; Merkoci, A. Toward Next Generation Lateral Flow Assays: Integration of Nanomaterials. Chem. Rev. 2022, 122, 14881–14910. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.X.; Lai, G.S.; Yan, F. Signal Amplification for Immunosensing; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Rohaizad, N.; Mayorga-Martinez, C.C.; Fojtu, M.; Latiff, N.M.; Pumera, M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev. 2021, 50, 619–657. [Google Scholar] [CrossRef]
- Mohanty, B.; Kumari, S.; Yadav, P.; Kanoo, P.; Chakraborty, A. Metal-organic frameworks (MOFs) and MOF composites based biosensors. Coord. Chem. Rev. 2024, 519, 216102. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, R.; Gao, Y.Y.; Zhou, Y.; Zhu, J.J. Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks. Nano-Micro Lett. 2024, 16, 37. [Google Scholar] [CrossRef]
- Ansari, A.A.; Thakur, V.K.; Chen, G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord. Chem. Rev. 2021, 436, 213821. [Google Scholar] [CrossRef]
- Kumar, S.; Mirzaei, A.; Kumar, A.; Lee, M.H.; Ghahremani, Z.; Kim, T.U.; Kim, J.Y.; Kwoka, M.; Kumar, M.; Kim, S.S.; et al. Nanoparticles anchored strategy to develop 2D MoS2 and MoSe2 based room temperature chemiresistive gas sensors. Coord. Chem. Rev. 2024, 503, 215657. [Google Scholar] [CrossRef]
- Lu, P.L.; Ruan, D.X.; Huang, M.Q.; Tian, M.; Zhu, K.S.; Gan, Z.Q.; Xiao, Z.C. Harnessing the potential of hydrogels for advanced therapeutic applications: Current achievements and future directions. Signal Transduct. Target. Ther. 2024, 9, 166. [Google Scholar] [CrossRef]
- Cao, H.; Duan, L.X.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther. 2021, 6, 426. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Zuo, X.L.; Li, Q.L.; Chen, F.; Chen, Y.-R.; Deng, J.Q.; Han, D.; Hao, C.L.; Huang, F.J.; Huang, Y.Y.; et al. Nucleic Acids Analysis. Sci. China Chem. 2021, 64, 171–203. [Google Scholar] [CrossRef]
- Yue, S.Z.; Li, Y.W.; Qiao, Z.J.; Song, W.L.; Bi, S. Rolling Circle Replication for Biosensing, Bioimaging, and Biomedicine. Trends Biotechnol. 2021, 39, 1160–1172. [Google Scholar] [CrossRef]
- Ebrahimi, S.B.; Samanta, D.; Mirkin, C.A. DNA-Based Nanostructures for Live-Cell Analysis. J. Am. Chem. Soc. 2020, 142, 11343–11356. [Google Scholar] [CrossRef]
- Liu, H.P.; Chen, Y.L.; Ju, H.X. Functional DNA structures for cytosensing. TrAC Trends Anal. Chem. 2023, 159, 116933. [Google Scholar] [CrossRef]
- Haupt, K.; Rangel, P.X.M.; Bui, B.T.S. Molecularly Imprinted Polymers: Antibody Mimics for Bioimaging and Therapy. Chem. Rev. 2020, 120, 9554–9582. [Google Scholar] [CrossRef]
- Noviana, E.; McCord, C.P.; Clark, K.M.; Jang, I.; Henry, C.S. Electrochemical paper-based devices: Sensing approaches and progress toward practical applications. Lab Chip 2020, 20, 9–34. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.B.; Min, J.H.; Song, Y.; Xu, C.H.; Li, J.H.; Moore, J.; Hanson, J.; Hu, E.; Parimon, T.; Wang, T.-Y.; et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. 2023, 7, 1293–1306. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Wang, M.; Min, J.; Tay, R.Y.; Lukas, H.; Sempionatto, J.R.; Li, J.; Xu, C.; Gao, W. A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nat. Nanotechnol. 2024, 19, 330–337. [Google Scholar] [CrossRef]
- Hang, Y.; Boryczka, J.; Wu, N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: A review. Chem. Soc. Rev. 2022, 51, 329–375. [Google Scholar] [CrossRef] [PubMed]
- Hang, Y.; Wang, A.; Wu, N. Plasmonic silver and gold nanoparticles: Shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chem. Soc. Rev. 2024, 53, 2932–2971. [Google Scholar] [CrossRef]
- Park, J.; Choi, S.; Knieling, F.; Clingman, B.; Bohndiek, S.; Wang, L.V.; Kim, C. Clinical translation of photoacoustic imaging. Nat. Rev. Bioeng. 2025, 3, 193–212. [Google Scholar] [CrossRef]
- Lee, S.; Dang, H.; Moon, J.I.; Kim, K.; Joung, Y.; Park, S.; Yu, Q.; Chen, J.; Lu, M.; Chen, L.X.; et al. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem. Soc. Rev. 2024, 53, 5394–5427. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Ju, H.X.; Xun, Y.G. Methylene-blue perfluorosulfonated ionomer modified microcylinder carbon-fiber electrode and its application for the determination of hemoglobin. Anal. Chem. 1994, 66, 4538–4542. [Google Scholar] [CrossRef]
- Ju, H.X.; Zhang, X.J.; Wang, J. Nanobiosensing: Principles, Development and Application; Springer: Berlin, Germany, 2011. [Google Scholar]
- Du, D.; Liu, S.L.; Chen, J.; Ju, H.X.; Lian, H.Z.; Li, J.X. Colloidal gold nanoparticle modified carbon paste interface for studies of tumor cell adhesion and viability. Biomaterials 2005, 26, 6487–6495. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.Z.; Ju, H.X. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal. Chem. 2004, 76, 6871–6876. [Google Scholar] [CrossRef]
- Chen, Y.L.; Ding, L.; Ju, H.X. In Situ Cellular Glycan Analysis. Acc. Chem. Res. 2018, 51, 890–899. [Google Scholar] [CrossRef]
- Dong, H.F.; Lei, J.P.; Ju, H.X.; Zhi, F.; Wang, H.; Guo, W.J.; Zhu, Z.; Yan, F. Target-Cell-Specific Delivery, Imaging, and Detection of Intracellular MicroRNA with a Multifunctional SnO2 Nanoprobe. Angew. Chem. Int. Ed. 2012, 51, 4607–4612. [Google Scholar] [CrossRef]
- Qian, R.C.; Ding, L.; Ju, H.X. Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive mesoporous silica nanoparticle. J. Am. Chem. Soc. 2013, 135, 13282–13285. [Google Scholar] [CrossRef]
- Ju, H.X.; Tang, B.; Ding, L. In Situ Analysis of Cellular Functional Molecules; Royal Society of Chemistry: Cambridge, UK, 2020. [Google Scholar]
- Li, S.; Liu, Y.; Liu, L.; Feng, Y.; Ding, L.; Ju, H. A Hierarchical Coding Strategy for Live Cell Imaging of Protein-Specific Glycoform. Angew. Chem. Int. Ed. 2018, 57, 12007–12011. [Google Scholar] [CrossRef]
- Zhang, X.J.; Zhang, W.M.; Zhou, X.Y.; Ogorevc, B. Fabrication, characterization, and potential application of carbon fiber cone nanometer-size electrodes. Anal. Chem. 1996, 68, 3338–3343. [Google Scholar] [CrossRef]
- Jia, H.Y.; Liu, Y.; Zhang, X.J.; Han, L.; Du, L.B.; Tian, Q.; Xut, Y.C. Potential Oxidative Stress of Gold Nanoparticles by Induced-NO Releasing in Serum. J. Am. Chem. Soc. 2009, 131, 40–41. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.f.; Zhang, J.; Ju, H.X.; Lu, H.T.; Wang, S.Y.; Jin, S.; Hao, K.H.; Du, H.W.; Zhang, X.J. Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal. Chem. 2012, 84, 4587–4593. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.F.; Lei, J.P.; Ding, L.; Wen, Y.Q.; Ju, H.X.; Zhang, X.J. MicroRNA: Function, detection, and bioanalysis. Chem. Rev. 2013, 113, 6207–6233. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J. MicroRNA detection and pathological functions; Springer: Berlin, Germany, 2015. [Google Scholar]
- Wu, X.L.; Luo, S.Y.; Guo, C.H.; Zhao, Y.; Zhong, J.L.; Hu, R.H.; Yang, X.Y.; Liu, C.H.; Zhang, Q.L.; Zhuang, S.K.; et al. LbuCas13a directly targets DNA and elicits strong trans-cleavage activity. Nat. Biomed. Eng. 2025. [Google Scholar] [CrossRef]
- Zada, S.; Dai, W.; Kai, Z.; Lu, H.; Meng, X.; Zhang, Y.; Cheng, Y.; Yan, F.; Fu, P.; Zhang, X.; et al. Algae Extraction Controllable Delamination of Vanadium Carbide Nanosheets with Enhanced Near-Infrared Photothermal Performance. Angew. Chem. Int. Ed. 2020, 59, 6601–6606. [Google Scholar] [CrossRef]
- Wang, D.; Dong, H.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W.; Wang, C.; Zhang, X. Erythrocyte-Cancer Hybrid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/Chemotherapy of Melanoma. ACS Nano 2018, 12, 5241–5252. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, F.; Gong, H.; Wei, F.; Zhuang, J.; Karshalev, E.; de Avila, B.E.-F.; Huang, C.; Zhou, Z.; Li, Z.; et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 2020, 5, eaba6137. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Jiao, X.; Li, T.; Lv, Z.; Yang, C.J.; Zhang, X.; Wen, Y. Control of capillary behavior through target-responsive hydrogel permeability alteration for sensitive visual quantitative detection. Nat. Commun. 2019, 10, 1036. [Google Scholar] [CrossRef]
- Xu, T.L.; Xu, L.P.; Zhang, X.J.; Wang, S.T. Bioinspired superwettable micropatterns for biosensing. Chem. Soc. Rev. 2019, 48, 3153–3165. [Google Scholar] [CrossRef]
- Hu, X.; Tian, M.; Xu, T.; Sun, X.; Sun, B.; Sun, C.; Liu, X.; Zhang, X.; Qu, L. Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear. ACS Nano 2020, 14, 559–567. [Google Scholar] [CrossRef]
- Xie, Y.; He, J.; He, W.; Iftikhar, T.; Zhang, C.; Su, L.; Zhang, X. Enhanced Interstitial Fluid Extraction and Rapid Analysis via Vacuum Tube-Integrated Microneedle Array Device. Adv. Sci. 2024, 11, 2308716. [Google Scholar] [CrossRef]
- Li, J.C.; Parvez, S.; Shu, T. Advancing Biosensing and Imaging with DNA-Templated Metal Nanoclusters: Synthesis, Applications, and Future Challenges—A Review. Chemosensors 2024, 12, 271. [Google Scholar] [CrossRef]
- Wu, K.; Yang, R.W.; Song, X.F.; Ju, H.X.; Liu, Y. Recent Advances in NIR-II Molecular Aggregates and Applications in the Biomedical Field. Chemosensors 2025, 13, 67. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Zhang, Y.L.; Ouyang, R.Q.; Dai, Z.; Liu, S.-Y. A Photo-Controllable DNAzyme-Based Nanosensor for miRNA Imaging in Living Cells. Chemosensors 2025, 13, 123. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Li, M.M.; Zhang, Y.; Shi, X.L.; Sun, Y.J.; Ge, C.P.; Mahmood, M.H.; Sun, Z.M.; Song, X.Y.; Zhang, S.S. Fabrication of a Near-Infrared Upconversion Nanosensor for the Ultrasensitive Detection of eARGs Using a Dual-Amplification Strategy. Chemosensors 2024, 12, 273. [Google Scholar] [CrossRef]
- Ates, H.C.; Nguyen, P.Q.; Gonzalez-Macia, L.; Morales-Narváz, E.; Guder, F.; Collins, J.J.; Dincer, C. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887–907. [Google Scholar] [CrossRef]
- Dai, Y.; Mao, X.R.; Abulaiti, M.A.; Wang, Q.Y.; Bai, Z.H.; Ding, Y.F.; Zhai, S.C.; Pan, Y.; Zhang, Y. Non-Invasive Detection of Interferon-Gamma in Sweat Using a Wearable DNA Hydrogel-Based Electrochemical Sensor. Chemosensors 2025, 13, 32. [Google Scholar] [CrossRef]
- Wang, J.H.; Chen, L.J.; Chen, F.; Lu, X.Y.; Li, X.Y.; Bao, Y.; Wang, W.; Han, D.X.; Niu, L. Coral-like Ti3C2Tx/PANI Binary Nanocomposite Wearable Enzyme Electrochemical Biosensor for Continuous Monitoring of Human Sweat Glucose. Chemosensors 2024, 12, 222. [Google Scholar] [CrossRef]
- Yan, Y.-H.; Zhou, J.-L.; Ren, L.-L.; Liang, P.-Z.; Zhang, W.; Ren, T.-B.; Yuan, L.; Yin, X.; Zhang, X.-B. An Activatable Fluorescence/Photoacoustic Bimodal Probe for the Detection of Drug-Induced Liver Senescence. Chemosensors 2025, 13, 74. [Google Scholar] [CrossRef]
- Zhong, L.Y.; Wang, Y.F.; Hao, Q.; Liu, H. A Hydrogen Peroxide Responsive Biotin-Guided Near-Infrared Hemicyanine-Based Fluorescent Probe for Early Cancer Diagnosis. Chemosensors 2025, 13, 104. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Y.R.; Pan, C.; Ma, W.J.; Yu, P. In Vivo Photoelectrochemical Analysis. Chemosensors 2024, 13, 2. [Google Scholar] [CrossRef]
- Kou, C.Y.; Xu, X.F.; Bao, Y.; Guo, Z.N.; Niu, L. Liquid-Gated Graphene Field Effect Transistor for High-Performance Label-Free Sensing of Polycyclic Aromatic Hydrocarbons. Chemosensors 2025, 13, 56. [Google Scholar] [CrossRef]
- Cao, J.Z.; Cheng, N.; Liu, Z.Y.; Lu, Q.; Li, L.; Lin, Y.H.; Zhang, X.; Du, D. Portable 3D-Printed Paper Microfluidic System with a Smartphone Reader for Fast and Reliable Copper Ion Monitoring. Chemosensors 2025, 13, 51. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Dong, H.; Dai, Z. Advances in Chemical Sensors and Biosensors: Celebrating the 60th Birthday of Professors Huangxian Ju and Xueji Zhang. Chemosensors 2025, 13, 301. https://doi.org/10.3390/chemosensors13080301
Ding L, Dong H, Dai Z. Advances in Chemical Sensors and Biosensors: Celebrating the 60th Birthday of Professors Huangxian Ju and Xueji Zhang. Chemosensors. 2025; 13(8):301. https://doi.org/10.3390/chemosensors13080301
Chicago/Turabian StyleDing, Lin, Haifeng Dong, and Zhihui Dai. 2025. "Advances in Chemical Sensors and Biosensors: Celebrating the 60th Birthday of Professors Huangxian Ju and Xueji Zhang" Chemosensors 13, no. 8: 301. https://doi.org/10.3390/chemosensors13080301
APA StyleDing, L., Dong, H., & Dai, Z. (2025). Advances in Chemical Sensors and Biosensors: Celebrating the 60th Birthday of Professors Huangxian Ju and Xueji Zhang. Chemosensors, 13(8), 301. https://doi.org/10.3390/chemosensors13080301