Next Article in Journal
Harnessing the Potential of Nanotechnology for Liquid Biopsy of Cancer
Previous Article in Journal
The Development, Characteristics, and Challenges of Biosensors: The Example of Blood Glucose Meters
Previous Article in Special Issue
A Photo-Controllable DNAzyme-Based Nanosensor for miRNA Imaging in Living Cells
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Advances in Chemical Sensors and Biosensors: Celebrating the 60th Birthday of Professors Huangxian Ju and Xueji Zhang

1
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
2
Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, China
3
School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, China
4
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
5
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
*
Authors to whom correspondence should be addressed.
Chemosensors 2025, 13(8), 301; https://doi.org/10.3390/chemosensors13080301
Submission received: 28 July 2025 / Accepted: 8 August 2025 / Published: 11 August 2025
Chemical sensors and biosensors, as a critical interdisciplinary field bridging analytical chemistry and chemical/biomedical engineering, have achieved remarkable progress over recent decades. This domain focuses on developing highly sensitive and selective detection tools for diverse applications including clinical diagnostics [1,2,3], food safety [4], environmental monitoring [5], and life sciences research [6,7]. Rapid advancements in nanotechnology, materials science, micro/nano-fabrication, and artificial intelligence [8,9] have driven significant breakthroughs in detection principles, signal transduction, and application scopes [10,11,12,13,14,15,16,17,18,19,20,21]. The core of modern chemical sensors and biosensors lies in converting target recognition events into measurable signals, a process that relies on the ingenious designs of functional materials and innovative signal amplification strategies [22,23,24]. The recent introductions of novel nanomaterials—such as graphene [25], metal–organic frameworks (MOFs) [4,26] and covalent organic frameworks [27], upconversion nanoparticles [28], 2D MoS2 and MoSe2 [29], and hydrogel [30,31]—have dramatically enhanced sensor performance. Concurrently, the integration of emerging technologies like DNA nanotechnology [32,33,34,35], biomimetic recognition elements [36], and microfluidic chips [37,38,39] has significantly improved detection capabilities in complex matrices [2]. Notably, the rise of near-infrared fluorescence [40], photoacoustic imaging [41,42], and surface-enhanced Raman scattering (SERS) techniques [40,43] provides powerful tools for in vivo real-time monitoring and dynamic tracking, advancing both fundamental research and precision medicine.
This Special Issue compiles 16 cutting-edge studies to celebrate the 60th birthdays of Professors Huangxian Ju [21,24,35,44,45,46,47,48,49,50,51,52] and Xueji Zhang, whose pioneering contributions have laid essential foundations for the field [53,54,55,56,57,58,59,60,61,62,63,64,65]. Professor Ju was born in Jiangsu, China, on November 10, 1964, graduated from Nanjing University, and then joined this university in 1992. As one of the creators, he has been working as the director of the State Key Laboratory of Analytical Chemistry for Life Science since 2011. In 1994, he developed the first biosensor for the determination of proteins [44]. As one of the earliest groups, his group introduced nanotechnology to the biosensing field in 1997, which led to new concepts of signal amplification and nanobiosensing and offered high performance and versatility for biosensing applications, especially in life analytical chemistry [45]. In 2000, his group combined PCR technology with an electrochemical sensor to design the methods for detecting several DNA fragments. He then developed the electrochemical cytosensing field, and presented the methods for the exogenous effect study of cell viability [46]. In 2004, he proposed the first electrochemiluminescence (ECL) biosensor based on the intrinsic ECL emission of quantum dots [47], which brought a new field for ECL biosensing application of quantum dots and set off a research hotspot of ECL biosensing with inorganic nanoparticles. During 2005–2008, he presented six signal resolution strategies for fast chemiluminescent multiplex immunosensing [24]. After 2007, he proposed some biosensing protocols for the in situ monitoring of cell surface carbohydrates, particularly protein-specific glycans [48], which was reviewed as one of the founding works for this field. Since 2011, Ju’s group has developed the first biosensing method for the in situ quantitation of intracellular microRNA [49] and the in situ detection of telomerase activity [50], designed a series of nanotheranostics for photodynamic therapy and real-time monitoring of therapeutic effect and signal amplification strategies with nanotechnologies and molecular biological technologies for sensitive biosensing of small biomolecules, proteins (tumor markers), genes (DNA and RNA), tumor cells, and glycans on cell surfaces, and for the in situ analysis of intracellular functional species and cell-secreted molecules [51], and proposed the new concepts of spectrometric biosensing and energy concentrated zone, the fixed-point labeling and hierarchical coding strategies of glycosyls [52], and DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. These works led to 995 papers and 14 books [24,45,51], with nearly 59,000 citations and an h-index of 124, greatly expanding the biosensing field and driving the development of measurement science.
Professor Zhang has made profound and sustained contributions to biosensing, achieving internationally recognized innovations in diagnostics and sensor technologies. He pioneered a scalable argon ion beam method for fabricating carbon fiber nanoelectrodes with controllable tip diameters (50–500 nm) [53], enabling commercialized sensors for NO, H2S, glucose, and pH detection. His team developed the world’s first intelligent free radical detection system, capable of ultra-trace, rapid, and multiplex analysis, and his work underpinned international NO detection standards adopted in over 100 countries. Furthermore, they revealed that gold nanoparticles induce oxidative stress via NO release, raising significant biosafety concerns [54]. Zhang’s group engineered a series of high-sensitivity (fM-level) microRNA detection strategies for biological samples [55], culminating in the seminal review on miRNA detection in Chem. Rev. [56] and an authoritative book [57]. Recently, they discovered LbuCas13a’s high-specificity DNA targeting and created the SUREST platform for precise genotyping [58]. He also advanced disease imaging through dual-modality V2C nanosheet probes [59], hybrid membrane-wrapped CuS nanoprobes [60], and asymmetric urease-powered nanomotors [61]—breakthroughs in targeted delivery. In microbial diagnostics, Professor Zhang developed bacterial nucleic acid fingerprinting and led the creation of China’s first clinically certified time-of-flight (TOF) mass spectrometer. Professor Zhang proposed new theories and concepts in intelligent biosensing, establishing a foundational framework for next-generation diagnostic technologies. For wearable sensing, his team created the following: a DNA hydrogel sensor for on-site, naked-eye cocaine detection [62]; smart textiles monitoring motion and temperature [63,64]; and a microneedle patch enabling rapid interstitial fluid sampling/glucose monitoring [65]. His scholarly impact includes 800+ publications (cited >52,000 times; H-index: 115), 8 academic books, and 100+ granted international patents. His distinguished contributions are recognized by election to prestigious academies: Foreign Member of the Russian Academy of Engineering, Fellow of the Royal Society of Chemistry (FRSC), Fellow of the American Institute for Medical and Biological Engineering (AIMBE), and Member of the European Academy of Sciences.
In this Special Issue, the featured research spans three key directions: novel sensing materials, signal amplification strategies, and practical applications.
In nanomaterial innovation, Li et al. comprehensively reviews DNA-templated metal nanoclusters, highlighting their programmable synthesis and unique optical properties for biosensing and imaging [66]. Wu et al. summarizes advances in NIR-II molecular aggregates (J/H/AIE-aggregates), emphasizing their tunable spectral shifts and high quantum yields for deep-tissue imaging and photothermal/photodynamic therapy [67].
For signal amplification, Zhang et al. develops a UV-triggered DNAzyme nanodevice with dual gating, achieving 260 pM sensitivity for intracellular miRNA imaging [68]. Zhang et al. reports an upconversion nanoparticle-based sensor utilizing dual DNA cycling amplification, detecting bla-TEM genes at 0.093 aM with exceptional specificity [69].
Wearable sensors represent a growing focus [3,19,70]. Dai et al. describes a DNA hydrogel electrochemical sensor for interferon-γ detection in sweat, integrating smartphone readouts for real-time health monitoring [71]. Wang et al. designs a flexible glucose sensor using Ti3C2Tx/PANI composites, where coral-like nanostructures enhance enzyme immobilization and catalytic activity for sweat-based glucose sensing [72].
In biomedical applications, Yan et al. presents the Gal-QCS probe for dual-modal fluorescence/photoacoustic imaging of drug-induced liver senescence, showing 10.5-fold fluorescence and 1.4-fold photoacoustic signal enhancement in the livers of senescent mice [73]. Zhong et al. introduces the Bio-B-Cy probe with a removable biotin unit, enabling tumor-specific NIR imaging while avoiding metabolic accumulation [74]. Li et al. discusses microelectrode-based photoelectrochemical (PEC) technology for in vivo neurochemical analysis with high sensitivity [75].
Environmental monitoring advances include Kou et al.’s liquid-gated graphene field-effect transistor (Gr-FET) sensor for polycyclic aromatic hydrocarbons (PAHs; detection range: 10−10–10−6 mol/L) [76], and Cao et al.’s portable 3D-printed paper microfluidic system for rapid (2 min) Cu2+ detection (LOD: 1.51 ng/mL) in water and biological samples [77].
This collection highlights three transformative trends: smart materials with environment-responsive properties enhance adaptability; miniaturization enables wearable sensors for personalized health monitoring; and multimodal integration expands application scenarios. Innovations such as metabolic accumulation mitigation, anti-fouling interfaces, and ultrasensitive amplification strategies bridge fundamental research with clinical and environmental applications.
As editors, we extend our deepest gratitude to all contributors and honor Professors Ju and Zhang for their visionary leadership and lasting impact. Their legacy continues to inspire advancements in chemical sensors and biosensors, driving innovations for human health and technological progress.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef] [PubMed]
  2. Rasheed, S.; Kanwal, T.; Ahmad, N.; Fatima, B.; Najam-ul-Haq, M.; Hussain, D. Advances and challenges in portable optical biosensors for onsite detection and point-of-care diagnostics. TrAC Trends Anal. Chem. 2024, 173, 117640. [Google Scholar] [CrossRef]
  3. Mahato, K.; Saha, T.; Ding, S.C.; Sandhu, S.S.; Chang, A.Y.; Wang, J.S. Hybrid multimodal wearable sensors for comprehensive health monitoring. Nat. Electron. 2024, 7, 735–750. [Google Scholar] [CrossRef]
  4. Zhang, X.X.; Huang, T.; Gao, Y.Q.; Cai, Y.R.; Liu, J.Q.; Ramachandraiah, K.; Mao, J.; Ke, F. Functional modification engineering of metal-organic frameworks for the contaminants detection in food. Coord. Chem. Rev. 2024, 516, 215990. [Google Scholar] [CrossRef]
  5. Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef]
  6. Park, J.; Lee, Y.; Cho, S.; Choe, A.; Yeom, J.; Ro, Y.G.; Kim, J.; Kang, D.H.; Lee, S.; Ko, H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem. Rev. 2024, 124, 1464–1534. [Google Scholar] [CrossRef]
  7. Lee, L.C.C.; Lo, K.K.W. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem. Rev. 2024, 124, 8825–9014. [Google Scholar] [CrossRef]
  8. Cui, F.Y.; Yue, Y.; Zhang, Y.; Zhang, Z.M.; Zhou, H.S. Advancing Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef]
  9. Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal biomedical AI. Nat. Med. 2022, 28, 1773–1784. [Google Scholar] [CrossRef]
  10. Xue, L.; Yamazaki, H.; Ren, R.; Wanunu, M.; Ivanov, A.P.; Edel, J.B. Solid-state nanopore sensors. Nat. Rev. Mater. 2020, 5, 931–951. [Google Scholar] [CrossRef]
  11. Wu, L.L.; Huang, C.S.; Emery, B.; Sedgwick, A.C.; Bull, S.D.; He, X.P.; Tian, H.; Yoon, J.; Sessler, J.L.; James, T.D. Forster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110–5139. [Google Scholar] [CrossRef]
  12. Wang, Y.Z.; Wustoni, S.; Surgailis, J.; Zhong, Y.Z.; Koklu, A.; Inal, S. Designing organic mixed conductors for electrochemical transistor applications. Nat. Rev. Mater. 2024, 9, 249–265. [Google Scholar] [CrossRef]
  13. Vora, L.K.; Sabri, A.H.; McKenna, P.E.; Himawan, A.; Hutton, A.R.J.; Detamornrat, U.; Paredes, A.J.; Larrañeta, E.; Donnelly, R.F. Microneedle-based biosensing. Nat. Rev. Bioeng. 2024, 2, 64–81. [Google Scholar] [CrossRef]
  14. Shen, J.; Chen, J.; Qian, Y.P.; Wang, X.Q.; Wang, D.S.; Pan, H.G.; Wang, Y.G. Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications. Adv. Mater. 2024, 36, 2313406. [Google Scholar] [CrossRef] [PubMed]
  15. Sharma, A.; Eadi, S.B.; Noothalapati, H.; Otyepka, M.; Lee, H.D.; Jayaramulu, K. Porous materials as effective chemiresistive gas sensors. Chem. Soc. Rev. 2024, 53, 2530–2577. [Google Scholar] [CrossRef] [PubMed]
  16. Gong, S.; Lu, Y.; Yin, J.L.; Levin, A.; Cheng, W.L. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem. Rev. 2024, 124, 455–553. [Google Scholar] [CrossRef]
  17. Ding, Y.C.; Jiang, J.X.; Wu, Y.S.; Zhang, Y.K.; Zhou, J.H.; Zhang, Y.F.; Huang, Q.Y.; Zheng, Z.J. Porous Conductive Textiles for Wearable Electronics. Chem. Rev. 2024, 124, 1535–1648. [Google Scholar] [CrossRef]
  18. Chen, C.; Wang, J.S. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
  19. Chang, S.; Koo, J.H.; Yoo, J.; Kim, M.S.; Choi, M.K.; Kim, D.H.; Song, Y.M. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem. Rev. 2024, 124, 768–859. [Google Scholar] [CrossRef]
  20. Altug, H.; Oh, S.H.; Maier, S.A.; Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 2022, 17, 5–16. [Google Scholar] [CrossRef]
  21. Wu, J.; Liu, H.; Chen, W.W.; Ma, B.; Ju, H.X. Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 2023, 1, 346–360. [Google Scholar] [CrossRef] [PubMed]
  22. Jiao, L.; Xu, W.Q.; Wu, Y.; Yan, H.Y.; Gu, W.L.; Du, D.; Lin, Y.H.; Zhu, C.Z. Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev. 2021, 50, 750–765. [Google Scholar] [CrossRef] [PubMed]
  23. Sena-Torralba, A.; Alvarez-Diduk, R.; Parolo, C.; Piper, A.; Merkoci, A. Toward Next Generation Lateral Flow Assays: Integration of Nanomaterials. Chem. Rev. 2022, 122, 14881–14910. [Google Scholar] [CrossRef] [PubMed]
  24. Ju, H.X.; Lai, G.S.; Yan, F. Signal Amplification for Immunosensing; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
  25. Rohaizad, N.; Mayorga-Martinez, C.C.; Fojtu, M.; Latiff, N.M.; Pumera, M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev. 2021, 50, 619–657. [Google Scholar] [CrossRef]
  26. Mohanty, B.; Kumari, S.; Yadav, P.; Kanoo, P.; Chakraborty, A. Metal-organic frameworks (MOFs) and MOF composites based biosensors. Coord. Chem. Rev. 2024, 519, 216102. [Google Scholar] [CrossRef]
  27. Cao, Y.; Wu, R.; Gao, Y.Y.; Zhou, Y.; Zhu, J.J. Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks. Nano-Micro Lett. 2024, 16, 37. [Google Scholar] [CrossRef]
  28. Ansari, A.A.; Thakur, V.K.; Chen, G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord. Chem. Rev. 2021, 436, 213821. [Google Scholar] [CrossRef]
  29. Kumar, S.; Mirzaei, A.; Kumar, A.; Lee, M.H.; Ghahremani, Z.; Kim, T.U.; Kim, J.Y.; Kwoka, M.; Kumar, M.; Kim, S.S.; et al. Nanoparticles anchored strategy to develop 2D MoS2 and MoSe2 based room temperature chemiresistive gas sensors. Coord. Chem. Rev. 2024, 503, 215657. [Google Scholar] [CrossRef]
  30. Lu, P.L.; Ruan, D.X.; Huang, M.Q.; Tian, M.; Zhu, K.S.; Gan, Z.Q.; Xiao, Z.C. Harnessing the potential of hydrogels for advanced therapeutic applications: Current achievements and future directions. Signal Transduct. Target. Ther. 2024, 9, 166. [Google Scholar] [CrossRef]
  31. Cao, H.; Duan, L.X.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther. 2021, 6, 426. [Google Scholar] [CrossRef]
  32. Zhao, Y.X.; Zuo, X.L.; Li, Q.L.; Chen, F.; Chen, Y.-R.; Deng, J.Q.; Han, D.; Hao, C.L.; Huang, F.J.; Huang, Y.Y.; et al. Nucleic Acids Analysis. Sci. China Chem. 2021, 64, 171–203. [Google Scholar] [CrossRef]
  33. Yue, S.Z.; Li, Y.W.; Qiao, Z.J.; Song, W.L.; Bi, S. Rolling Circle Replication for Biosensing, Bioimaging, and Biomedicine. Trends Biotechnol. 2021, 39, 1160–1172. [Google Scholar] [CrossRef]
  34. Ebrahimi, S.B.; Samanta, D.; Mirkin, C.A. DNA-Based Nanostructures for Live-Cell Analysis. J. Am. Chem. Soc. 2020, 142, 11343–11356. [Google Scholar] [CrossRef]
  35. Liu, H.P.; Chen, Y.L.; Ju, H.X. Functional DNA structures for cytosensing. TrAC Trends Anal. Chem. 2023, 159, 116933. [Google Scholar] [CrossRef]
  36. Haupt, K.; Rangel, P.X.M.; Bui, B.T.S. Molecularly Imprinted Polymers: Antibody Mimics for Bioimaging and Therapy. Chem. Rev. 2020, 120, 9554–9582. [Google Scholar] [CrossRef]
  37. Noviana, E.; McCord, C.P.; Clark, K.M.; Jang, I.; Henry, C.S. Electrochemical paper-based devices: Sensing approaches and progress toward practical applications. Lab Chip 2020, 20, 9–34. [Google Scholar] [CrossRef] [PubMed]
  38. Tu, J.B.; Min, J.H.; Song, Y.; Xu, C.H.; Li, J.H.; Moore, J.; Hanson, J.; Hu, E.; Parimon, T.; Wang, T.-Y.; et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. 2023, 7, 1293–1306. [Google Scholar] [CrossRef] [PubMed]
  39. Ye, C.; Wang, M.; Min, J.; Tay, R.Y.; Lukas, H.; Sempionatto, J.R.; Li, J.; Xu, C.; Gao, W. A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nat. Nanotechnol. 2024, 19, 330–337. [Google Scholar] [CrossRef]
  40. Hang, Y.; Boryczka, J.; Wu, N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: A review. Chem. Soc. Rev. 2022, 51, 329–375. [Google Scholar] [CrossRef] [PubMed]
  41. Hang, Y.; Wang, A.; Wu, N. Plasmonic silver and gold nanoparticles: Shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chem. Soc. Rev. 2024, 53, 2932–2971. [Google Scholar] [CrossRef]
  42. Park, J.; Choi, S.; Knieling, F.; Clingman, B.; Bohndiek, S.; Wang, L.V.; Kim, C. Clinical translation of photoacoustic imaging. Nat. Rev. Bioeng. 2025, 3, 193–212. [Google Scholar] [CrossRef]
  43. Lee, S.; Dang, H.; Moon, J.I.; Kim, K.; Joung, Y.; Park, S.; Yu, Q.; Chen, J.; Lu, M.; Chen, L.X.; et al. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem. Soc. Rev. 2024, 53, 5394–5427. [Google Scholar] [CrossRef] [PubMed]
  44. Chen, H.Y.; Ju, H.X.; Xun, Y.G. Methylene-blue perfluorosulfonated ionomer modified microcylinder carbon-fiber electrode and its application for the determination of hemoglobin. Anal. Chem. 1994, 66, 4538–4542. [Google Scholar] [CrossRef]
  45. Ju, H.X.; Zhang, X.J.; Wang, J. Nanobiosensing: Principles, Development and Application; Springer: Berlin, Germany, 2011. [Google Scholar]
  46. Du, D.; Liu, S.L.; Chen, J.; Ju, H.X.; Lian, H.Z.; Li, J.X. Colloidal gold nanoparticle modified carbon paste interface for studies of tumor cell adhesion and viability. Biomaterials 2005, 26, 6487–6495. [Google Scholar] [CrossRef] [PubMed]
  47. Zou, G.Z.; Ju, H.X. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal. Chem. 2004, 76, 6871–6876. [Google Scholar] [CrossRef]
  48. Chen, Y.L.; Ding, L.; Ju, H.X. In Situ Cellular Glycan Analysis. Acc. Chem. Res. 2018, 51, 890–899. [Google Scholar] [CrossRef]
  49. Dong, H.F.; Lei, J.P.; Ju, H.X.; Zhi, F.; Wang, H.; Guo, W.J.; Zhu, Z.; Yan, F. Target-Cell-Specific Delivery, Imaging, and Detection of Intracellular MicroRNA with a Multifunctional SnO2 Nanoprobe. Angew. Chem. Int. Ed. 2012, 51, 4607–4612. [Google Scholar] [CrossRef]
  50. Qian, R.C.; Ding, L.; Ju, H.X. Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive mesoporous silica nanoparticle. J. Am. Chem. Soc. 2013, 135, 13282–13285. [Google Scholar] [CrossRef]
  51. Ju, H.X.; Tang, B.; Ding, L. In Situ Analysis of Cellular Functional Molecules; Royal Society of Chemistry: Cambridge, UK, 2020. [Google Scholar]
  52. Li, S.; Liu, Y.; Liu, L.; Feng, Y.; Ding, L.; Ju, H. A Hierarchical Coding Strategy for Live Cell Imaging of Protein-Specific Glycoform. Angew. Chem. Int. Ed. 2018, 57, 12007–12011. [Google Scholar] [CrossRef]
  53. Zhang, X.J.; Zhang, W.M.; Zhou, X.Y.; Ogorevc, B. Fabrication, characterization, and potential application of carbon fiber cone nanometer-size electrodes. Anal. Chem. 1996, 68, 3338–3343. [Google Scholar] [CrossRef]
  54. Jia, H.Y.; Liu, Y.; Zhang, X.J.; Han, L.; Du, L.B.; Tian, Q.; Xut, Y.C. Potential Oxidative Stress of Gold Nanoparticles by Induced-NO Releasing in Serum. J. Am. Chem. Soc. 2009, 131, 40–41. [Google Scholar] [CrossRef] [PubMed]
  55. Dong, H.f.; Zhang, J.; Ju, H.X.; Lu, H.T.; Wang, S.Y.; Jin, S.; Hao, K.H.; Du, H.W.; Zhang, X.J. Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal. Chem. 2012, 84, 4587–4593. [Google Scholar] [CrossRef] [PubMed]
  56. Dong, H.F.; Lei, J.P.; Ding, L.; Wen, Y.Q.; Ju, H.X.; Zhang, X.J. MicroRNA: Function, detection, and bioanalysis. Chem. Rev. 2013, 113, 6207–6233. [Google Scholar] [CrossRef] [PubMed]
  57. Zhang, X.J. MicroRNA detection and pathological functions; Springer: Berlin, Germany, 2015. [Google Scholar]
  58. Wu, X.L.; Luo, S.Y.; Guo, C.H.; Zhao, Y.; Zhong, J.L.; Hu, R.H.; Yang, X.Y.; Liu, C.H.; Zhang, Q.L.; Zhuang, S.K.; et al. LbuCas13a directly targets DNA and elicits strong trans-cleavage activity. Nat. Biomed. Eng. 2025. [Google Scholar] [CrossRef]
  59. Zada, S.; Dai, W.; Kai, Z.; Lu, H.; Meng, X.; Zhang, Y.; Cheng, Y.; Yan, F.; Fu, P.; Zhang, X.; et al. Algae Extraction Controllable Delamination of Vanadium Carbide Nanosheets with Enhanced Near-Infrared Photothermal Performance. Angew. Chem. Int. Ed. 2020, 59, 6601–6606. [Google Scholar] [CrossRef]
  60. Wang, D.; Dong, H.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W.; Wang, C.; Zhang, X. Erythrocyte-Cancer Hybrid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/Chemotherapy of Melanoma. ACS Nano 2018, 12, 5241–5252. [Google Scholar] [CrossRef]
  61. Tang, S.; Zhang, F.; Gong, H.; Wei, F.; Zhuang, J.; Karshalev, E.; de Avila, B.E.-F.; Huang, C.; Zhou, Z.; Li, Z.; et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 2020, 5, eaba6137. [Google Scholar] [CrossRef]
  62. Li, Y.; Ma, Y.; Jiao, X.; Li, T.; Lv, Z.; Yang, C.J.; Zhang, X.; Wen, Y. Control of capillary behavior through target-responsive hydrogel permeability alteration for sensitive visual quantitative detection. Nat. Commun. 2019, 10, 1036. [Google Scholar] [CrossRef]
  63. Xu, T.L.; Xu, L.P.; Zhang, X.J.; Wang, S.T. Bioinspired superwettable micropatterns for biosensing. Chem. Soc. Rev. 2019, 48, 3153–3165. [Google Scholar] [CrossRef]
  64. Hu, X.; Tian, M.; Xu, T.; Sun, X.; Sun, B.; Sun, C.; Liu, X.; Zhang, X.; Qu, L. Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear. ACS Nano 2020, 14, 559–567. [Google Scholar] [CrossRef]
  65. Xie, Y.; He, J.; He, W.; Iftikhar, T.; Zhang, C.; Su, L.; Zhang, X. Enhanced Interstitial Fluid Extraction and Rapid Analysis via Vacuum Tube-Integrated Microneedle Array Device. Adv. Sci. 2024, 11, 2308716. [Google Scholar] [CrossRef]
  66. Li, J.C.; Parvez, S.; Shu, T. Advancing Biosensing and Imaging with DNA-Templated Metal Nanoclusters: Synthesis, Applications, and Future Challenges—A Review. Chemosensors 2024, 12, 271. [Google Scholar] [CrossRef]
  67. Wu, K.; Yang, R.W.; Song, X.F.; Ju, H.X.; Liu, Y. Recent Advances in NIR-II Molecular Aggregates and Applications in the Biomedical Field. Chemosensors 2025, 13, 67. [Google Scholar] [CrossRef]
  68. Zhang, Y.F.; Zhang, Y.L.; Ouyang, R.Q.; Dai, Z.; Liu, S.-Y. A Photo-Controllable DNAzyme-Based Nanosensor for miRNA Imaging in Living Cells. Chemosensors 2025, 13, 123. [Google Scholar] [CrossRef]
  69. Zhang, Y.Q.; Li, M.M.; Zhang, Y.; Shi, X.L.; Sun, Y.J.; Ge, C.P.; Mahmood, M.H.; Sun, Z.M.; Song, X.Y.; Zhang, S.S. Fabrication of a Near-Infrared Upconversion Nanosensor for the Ultrasensitive Detection of eARGs Using a Dual-Amplification Strategy. Chemosensors 2024, 12, 273. [Google Scholar] [CrossRef]
  70. Ates, H.C.; Nguyen, P.Q.; Gonzalez-Macia, L.; Morales-Narváz, E.; Guder, F.; Collins, J.J.; Dincer, C. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887–907. [Google Scholar] [CrossRef]
  71. Dai, Y.; Mao, X.R.; Abulaiti, M.A.; Wang, Q.Y.; Bai, Z.H.; Ding, Y.F.; Zhai, S.C.; Pan, Y.; Zhang, Y. Non-Invasive Detection of Interferon-Gamma in Sweat Using a Wearable DNA Hydrogel-Based Electrochemical Sensor. Chemosensors 2025, 13, 32. [Google Scholar] [CrossRef]
  72. Wang, J.H.; Chen, L.J.; Chen, F.; Lu, X.Y.; Li, X.Y.; Bao, Y.; Wang, W.; Han, D.X.; Niu, L. Coral-like Ti3C2Tx/PANI Binary Nanocomposite Wearable Enzyme Electrochemical Biosensor for Continuous Monitoring of Human Sweat Glucose. Chemosensors 2024, 12, 222. [Google Scholar] [CrossRef]
  73. Yan, Y.-H.; Zhou, J.-L.; Ren, L.-L.; Liang, P.-Z.; Zhang, W.; Ren, T.-B.; Yuan, L.; Yin, X.; Zhang, X.-B. An Activatable Fluorescence/Photoacoustic Bimodal Probe for the Detection of Drug-Induced Liver Senescence. Chemosensors 2025, 13, 74. [Google Scholar] [CrossRef]
  74. Zhong, L.Y.; Wang, Y.F.; Hao, Q.; Liu, H. A Hydrogen Peroxide Responsive Biotin-Guided Near-Infrared Hemicyanine-Based Fluorescent Probe for Early Cancer Diagnosis. Chemosensors 2025, 13, 104. [Google Scholar] [CrossRef]
  75. Li, L.; Zhao, Y.R.; Pan, C.; Ma, W.J.; Yu, P. In Vivo Photoelectrochemical Analysis. Chemosensors 2024, 13, 2. [Google Scholar] [CrossRef]
  76. Kou, C.Y.; Xu, X.F.; Bao, Y.; Guo, Z.N.; Niu, L. Liquid-Gated Graphene Field Effect Transistor for High-Performance Label-Free Sensing of Polycyclic Aromatic Hydrocarbons. Chemosensors 2025, 13, 56. [Google Scholar] [CrossRef]
  77. Cao, J.Z.; Cheng, N.; Liu, Z.Y.; Lu, Q.; Li, L.; Lin, Y.H.; Zhang, X.; Du, D. Portable 3D-Printed Paper Microfluidic System with a Smartphone Reader for Fast and Reliable Copper Ion Monitoring. Chemosensors 2025, 13, 51. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ding, L.; Dong, H.; Dai, Z. Advances in Chemical Sensors and Biosensors: Celebrating the 60th Birthday of Professors Huangxian Ju and Xueji Zhang. Chemosensors 2025, 13, 301. https://doi.org/10.3390/chemosensors13080301

AMA Style

Ding L, Dong H, Dai Z. Advances in Chemical Sensors and Biosensors: Celebrating the 60th Birthday of Professors Huangxian Ju and Xueji Zhang. Chemosensors. 2025; 13(8):301. https://doi.org/10.3390/chemosensors13080301

Chicago/Turabian Style

Ding, Lin, Haifeng Dong, and Zhihui Dai. 2025. "Advances in Chemical Sensors and Biosensors: Celebrating the 60th Birthday of Professors Huangxian Ju and Xueji Zhang" Chemosensors 13, no. 8: 301. https://doi.org/10.3390/chemosensors13080301

APA Style

Ding, L., Dong, H., & Dai, Z. (2025). Advances in Chemical Sensors and Biosensors: Celebrating the 60th Birthday of Professors Huangxian Ju and Xueji Zhang. Chemosensors, 13(8), 301. https://doi.org/10.3390/chemosensors13080301

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop