Abstract
Harmful substances in food and agricultural environments pose significant risks to human health, necessitating the development of sensitive detection technologies. Electrochemical sensors are ideal for rapid monitoring because of their low cost, high efficiency, and portability. Recently developed laser-induced graphene (LIG)-based electrochemical sensors have demonstrated exceptional potential owing to the unique structural properties and outstanding electrochemical performance of LIG. In this review, the key factors influencing the LIG material characteristics during fabrication are discussed. Then, LIG-based electrochemical sensors are systematically categorized as pristine LIG and nanomaterial-functionalized, biomaterial-modified, and polymer-functionalized electrochemical sensors, and their application in the detection of functional components, additives, and agrochemicals in food products, and the detection of environmental pollutants, is comprehensively analyzed. Finally, the current challenges and the directions for future development are discussed.