# The Design of a Wideband Antenna with Notching Characteristics for Small Devices Using a Genetic Algorithm

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Antenna Design and Methodology

#### 2.1. Antenna Design

#### 2.2. Design of a Notch Band Antenna

#### 2.3. Numerical Analysis

_{Si}, L

_{SI}and C

_{S}

_{i}, as illustrated in Figure 5. The series combination of the lumped effect of the slots was then added to the inductive patch and capacitive ground plane. Both the inductive and capacitive effects of all mentioned components contributed to the input impedance of the antenna.

#### 2.4. Design Methodology and Optimization

_{x}and S

_{y}) was carried out to obtain the optimal dimensions for a maximum bandwidth. To mitigate the desired adjacent band from the UWB region, two symmetrical slots were then etched in the radiating patch. Finally, we performed the optimization of parameters A

_{1}, A

_{2}, A

_{3}and A

_{w}to achieve the best performance.

_{11}bandwidth and high notching characteristics at the desired band) and designating the antenna parameters (input variable), the optimization was done quickly and efficiently. The block diagram of the GA is plotted in Figure 8. The details of the GA in antenna optimization can be found in [36].

## 3. Results and Discussion

#### 3.1. Measurement Setup

#### 3.2. Return Loss and VSWR

_{11}| < −10 dB bandwidth of the resulting antenna ranged from 3.18 to 3.75 GHz and from 4.785 to 14.25 GHz; i.e., 180% of FBW in regard to the reference frequency of 5.25 GHz, which proved that the antenna successfully attenuated the desired sub-band from 3.75 to 4.875 GHz. In addition, the simulated and measured results showed a return loss coefficient of less than −20 dB, proving that the antenna was well matched to the source.

#### 3.3. Radiation Pattern

#### 3.4. Peak Gain and Efficiency

#### 3.5. Comparison with State-of-the-Art Works

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Malik, J.; Patnaik, A.; Kartikeyan, M. Compact Antennas for High Data Rate Communication; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Dougherty, E.R.; Shmulevich, I.; Chen, J.; Wang, Z.J. EURASIP Book Series on Signal Processing and Communications. In Genomic Signal Processing and Statistics; Hindawi Publishing Corporation: Cairo, Egypt, 2005; Volume 2, pp. 11–14. [Google Scholar]
- Guha, D.; Antar, Y.M. (Eds.) Microstrip and Printed Antennas: New Trends, Techniques and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Tseng, V.; Chang, C.-Y. Linear Tapered Slot Antenna for Ultra-Wideband Radar Sensor: Design Consideration and Recommendation. Sensors
**2019**, 19, 1212. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Baard, C.; Liu, Y.; Nikolova, N. Ultra-Wideband Low-Cost High-Efficiency Cavity-Backed Compound Spiral Antenna. Electronics
**2020**, 9, 1399. [Google Scholar] [CrossRef] - Trinh-Van, S.; Kwon, O.H.; Jung, E.; Park, J.; Yu, B.; Kim, K.; Seo, J.; Hwang, K.C. A Low-Profile High-Gain and Wideband Log-Periodic Meandered Dipole Array Antenna with a Cascaded Multi-Section Artificial Magnetic Conductor Structure. Sensors
**2019**, 19, 4404. [Google Scholar] [CrossRef] [Green Version] - Tampouratzis, M.G.; Vouyioukas, D.; Stratakis, D.; Yioultsis, T. Use Ultra-Wideband Discone Rectenna for Broadband RF Energy Harvesting Applications. Technologies
**2020**, 8, 21. [Google Scholar] [CrossRef] [Green Version] - Lalbakhsh, A.; Afzal, M.U.; Hayat, T.; Esselle, K.P.; Mandal, K. All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources. Sci. Rep.
**2021**, 11, 9421. [Google Scholar] [CrossRef] - Hayat, T.; Afzal, M.U.; Lalbakhsh, A.; Esselle, K.P. Additively Manufactured Perforated Superstrate to Improve Directive Radiation Characteristics of Electromagnetic Source. IEEE Access
**2019**, 7, 153445–153452. [Google Scholar] [CrossRef] - Lalbakhsh, A.; Afzal, M.U.; Esselle, K.; Smith, S. A High-gain Wideband EBG Resonator Antenna for 60 GHz Unlicenced Frequency Band. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Smith, S.L. Low-Cost Nonuniform Metallic Lattice for Rectifying Aperture Near-Field of Electromagnetic Bandgap Resonator Antennas. IEEE Trans. Antennas Propag.
**2020**, 68, 3328–3335. [Google Scholar] [CrossRef] - Mohamadzade, B.; Simorangkir, R.B.V.B.; Hashmi, R.M.; Lalbakhsh, A. A Conformal Ultrawideband Antenna with Monopole-Like Radiation Patterns. IEEE Trans. Antennas Propag.
**2020**, 68, 6383–6388. [Google Scholar] [CrossRef] - Mohamadzade, B.; Simorangkir, R.B.V.B.; Hashmi, R.M.; Gharaei, R.; Lalbakhsh, A.; Shrestha, S.; Zhadobov, M.; Sauleau, R. A Conformal, Dynamic Pattern-Reconfigurable Antenna Using Conductive Textile-Polymer Composite. IEEE Trans. Antennas Propag.
**2021**, 1. [Google Scholar] [CrossRef] - Chen, Z.; Lu, B.; Zhu, Y.; Lv, H. A Compact Printed Monopole Antenna for WiMAX/WLAN and UWB Applications. Future Internet
**2018**, 10, 122. [Google Scholar] [CrossRef] [Green Version] - Samsuzzaman, M.; Islam, M.T. Circularly Polarized Broadband Printed Antenna for Wireless Applications. Sensors
**2018**, 18, 4261. [Google Scholar] [CrossRef] [Green Version] - Li, K.; Dong, T.; Xia, Z. Wideband Printed Wide-Slot Antenna with Fork-Shaped Stub. Electronics
**2019**, 8, 347. [Google Scholar] [CrossRef] [Green Version] - Siddiqui, J.Y.; Saha, C.; Antar, Y.M.M. Compact Dual-SRR-Loaded UWB Monopole Antenna with Dual Frequency and Wideband Notch Characteristics. IEEE Antennas Wirel. Propag. Lett.
**2014**, 14, 100–103. [Google Scholar] [CrossRef] - Peng, L.; Wen, B.-J.; Li, X.-F.; Jiang, X.; Li, S.-M. CPW Fed UWB Antenna by EBGs with Wide Rectangular Notched-Band. IEEE Access
**2016**, 4, 9545–9552. [Google Scholar] [CrossRef] - Rahman, M.; NagshvarianJahromi, M.; Mirjavadi, S.S.; Hamouda, A.M. Compact UWB Band-Notched Antenna with Integrated Bluetooth for Personal Wireless Communication and UWB Applications. Electronics
**2019**, 8, 158. [Google Scholar] [CrossRef] [Green Version] - Ghaffar, A.; Awan, W.A.; Zaidi, A.; Hussain, N.; Rizvi, S.M.; Li, X.J. Compact Ultra Wide-Band and Tri-Band Antenna for Portable Device. Radioengineering
**2020**, 29, 601–608. [Google Scholar] [CrossRef] - Kadam, A.A.; Deshmukh, A.A.; Ray, K.P. Slit Loaded Pentagon Shaped Ultra Wideband Antenna for Band Notch Characteristics. In Proceedings of the 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 20–22 February 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Touhami, N.A.; Yahyaoui, Y.; Zakriti, A.; Bargach, K.; Boussouis, M.; Lamsalli, M.; Tribak, A. A compact CPW-fed planar pentagon antenna for UWB applications. Prog. Electromagn. Res.
**2014**, 46, 153–161. [Google Scholar] [CrossRef] [Green Version] - Awan, W.A.; Zaidi, A.; Hussain, N.; Iqbal, A.; Baghdad, A. Stub loaded, low profile UWB antenna with independently controllable notch-bands. Microw. Opt. Technol. Lett.
**2019**, 61, 2447–2454. [Google Scholar] [CrossRef] - Jeong, M.J.; Hussain, N.; Bong, H.; Park, J.W.; Shin, K.S.; Lee, S.W.; Rhee, S.Y.; Kim, N. Ultrawideband microstrip patch antenna with quadruple band notch characteristic using negative permittivity unit cells. Microw. Opt. Technol. Lett.
**2019**, 62, 816–824. [Google Scholar] [CrossRef] - Sun, Y.; Guo, T.; Wang, X.; Sun, R. The design for multi-frequency microstrip antenna based on gap-coupled. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; pp. 1965–1967. [Google Scholar] [CrossRef]
- Abbas, A.; Hussain, N.; Jeong, M.-J.; Park, J.; Shin, K.S.; Kim, T.; Kim, N. A Rectangular Notch-Band UWB Antenna with Controllable Notched Bandwidth and Centre Frequency. Sensors
**2020**, 20, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Madhav, B.T.P.; Rao, M.V.; Anilkumar, T. Conformal Band Notched Circular Monopole Antenna Loaded with Split Ring Resonator. Wirel. Pers. Commun.
**2018**, 103, 1965–1976. [Google Scholar] [CrossRef] - Yadav, A.; Agrawal, S.; Yadav, R. SRR and S-shape slot loaded triple band notched UWB antenna. AEU—Int. J. Electron. Commun.
**2017**, 79, 192–198. [Google Scholar] [CrossRef] - Iqbal, A.; Smida, A.; Mallat, N.K.; Islam, M.T.; Kim, S. A Compact UWB Antenna with Independently Controllable Notch Bands. Sensors
**2019**, 19, 1411. [Google Scholar] [CrossRef] [Green Version] - Mirmosaei, S.S.; Afjei, E.; Mehrshahi, E.; Fakharian, M.M. A dual band-notched ultra-wideband monopole antenna with spiral-slots and folded SIR-DGS as notch band structures. Int. J. Microw. Wirel. Technol.
**2015**, 8, 1197–1206. [Google Scholar] [CrossRef] - Abbosh, A.M.; Bialkowski, M.E. Design of UWB Planar Band-Notched Antenna Using Parasitic Elements. IEEE Trans. Antennas Propag.
**2009**, 57, 796–799. [Google Scholar] [CrossRef] - Devana, V.N.K.R.; Rao, A.M. Design and Analysis of Dual Band-Notched UWB Antenna Using a Slot in Feed and Asymmetrical Parasitic stub. IETE J. Res.
**2020**, 1–11. [Google Scholar] [CrossRef] - Guichi, F.; Challal, M.; Denidni, T.A. A novel dual band-notch ultra-wideband monopole antenna using parasitic stubs and slot. Microw. Opt. Technol. Lett.
**2018**, 60, 1737–1744. [Google Scholar] [CrossRef] - Ullah, S.; Ruan, C.; Sadiq, M.S.; Haq, T.U.; Fahad, A.K.; He, W. Super wide band, defected ground structure (DGS), and stepped meander line antenna for WLAN/ISM/WiMAX/U.W.B. and other wireless communication applications. Sensors
**2020**, 20, 1735. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Haupt, R.L.; Haupt, S.E. Practical Genetic Algorithms; John Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Mandal, T.; Das, S. Design of a microstrip fed printed monopole antenna for bluetooth and UWB applications with WLAN notch band characteristics. Int. J. RF Microw. Comput. Eng.
**2015**, 25, 66–74. [Google Scholar] [CrossRef] - Fang, R.; Song, R.; Zhao, X.; Wang, Z.; Qian, W.; He, D. Compact and Low-Profile UWB Antenna Based on Graphene-Assembled Films for Wearable Applications. Sensors
**2020**, 20, 2552. [Google Scholar] [CrossRef] - Simorangkir, R.B.V.B.; Kiourti, A.; Esselle, K. UWB Wearable Antenna with a Full Ground Plane Based on PDMS-Embedded Conductive Fabric. IEEE Antennas Wirel. Propag. Lett.
**2018**, 17, 493–496. [Google Scholar] [CrossRef] - Rahman, M.; Naghshvarianjahromi, M.; Mirjavadi, S.S.; Hamouda, A.M. Resonator Based Switching Technique between Ultra Wide Band (UWB) and Single/Dual Continuously Tunable-Notch Behaviors in UWB Radar for Wireless Vital Signs Monitoring. Sensors
**2018**, 18, 3330. [Google Scholar] [CrossRef] [PubMed] [Green Version]

Parameter | Dimension (mm) | Parameter | Dimension (mm) | Parameter | Dimension (mm) |
---|---|---|---|---|---|

W | 15 | a_{4} | 7 | S_{x} | 0.2 |

L | 20 | a_{5} | 0.9 | F | 1.5 |

H | 0.508 | a_{x} | 8.2 | C_{x} | 5 |

a_{1} | 6.7 | a_{y} | 8.2 | C_{y} | 6.25 |

a_{2} | 6 | a_{w} | 0.56 | G_{1} | 0.5 |

a_{3} | 1 | S_{y} | 3.25 | G_{2} | 1.8 |

Ref (Publication Year) | Dimension (mm^{3}) | FBW (%) | Operating Frequency (GHz) | Peak Gain (dBi) | Stop-Band Function |
---|---|---|---|---|---|

[19] (2019) | $30\times 31\times 1.5$ | 136 | 3.1–10.6 | 4.29 | Yes |

[37] (2015) | $50\times 24\times 1.6$ | 144 | 3.1–10.66 | 5.78 | Yes |

[38] (2020) | $32\times 52\times 0.28$ | 67 | 4–8 | 3.9 | No |

[39] (2018) | $80\times 67\times 3.4$ | 124 | 3.7–10.3 | 4.53 | No |

[40] (2018) | $24\times 31\times 1.5$ | 137 | 3.1–10.6 | 3.89 | Yes |

This Work | $15\times 20\times 0.51$ | 180 | 3–14.3 | 5.8 | Yes |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Awan, W.A.; Zaidi, A.; Hussain, M.; Hussain, N.; Syed, I.
The Design of a Wideband Antenna with Notching Characteristics for Small Devices Using a Genetic Algorithm. *Mathematics* **2021**, *9*, 2113.
https://doi.org/10.3390/math9172113

**AMA Style**

Awan WA, Zaidi A, Hussain M, Hussain N, Syed I.
The Design of a Wideband Antenna with Notching Characteristics for Small Devices Using a Genetic Algorithm. *Mathematics*. 2021; 9(17):2113.
https://doi.org/10.3390/math9172113

**Chicago/Turabian Style**

Awan, Wahaj Abbas, Abir Zaidi, Musa Hussain, Niamat Hussain, and Ikram Syed.
2021. "The Design of a Wideband Antenna with Notching Characteristics for Small Devices Using a Genetic Algorithm" *Mathematics* 9, no. 17: 2113.
https://doi.org/10.3390/math9172113