Previous Article in Journal
Existence of Generalized Maxwell–Einstein Metrics on Completions of Certain Line Bundles
Previous Article in Special Issue
Stochastic SO(2) Lie Group Method for Approximating Correlation Matrices
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Article

Black–Litterman Portfolio Optimization with Dynamic CAPM via ABC-MCMC

by
Sebastián Flández
1,
Rolando Rubilar-Torrealba
1,*,
Karime Chahuán-Jiménez
2,
Hanns de la Fuente-Mella
3 and
Claudio Elórtegui-Gómez
4
1
Departamento de Industrias, Universidad Técnica Federico Santa María, Valparaíso 2090123, Chile
2
Centro de Investigación en Negocios y Gestión Empresarial, Escuela de Auditoría, Facultad de Ciencias Económicas y Aministrativas, Universidad de Valparaiso, Valparaíso 2340027, Chile
3
Facultad de Ciencias, Instituto de Estadística, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340031, Chile
4
Facultad de Ciencias Económicas y Administrativas, Escuela de Periodismo, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(20), 3265; https://doi.org/10.3390/math13203265 (registering DOI)
Submission received: 7 September 2025 / Revised: 8 October 2025 / Accepted: 10 October 2025 / Published: 12 October 2025

Abstract

The present research proposes a methodology for portfolio construction that integrates the Black–Litterman model with expected returns generated through simulations under dynamic Capital Asset Pricing Model (CAPM) with conditional betas, estimated via Approximate Bayesian Computation Markov Chain Monte Carlo (ABC-MCMC). Bayesian estimation enables the incorporation of volatility regimes and the adjustment of each asset’s sensitivity to the market, thereby delivering expected returns that more accurately reflect the structural state of the assets compared to historical methods. This strategy is applied to the United States stock market, and the results suggest that the Black–Litterman portfolio performs competitively against portfolios optimised using the classic Markowitz model, even maintaining the same fixed weights throughout the month. Specifically, it has been demonstrated to outperform the minimum variance portfolio with regard to cumulative return and attains a Sharpe ratio that approaches the Markowitz maximum Sharpe portfolio, although it does so with a distinct and more concentrated asset allocation. It has been observed that, while the maximum return portfolio attains the highest absolute profit, it does so at the expense of significantly higher volatility.
Keywords: Black–Litterman; ABC-MCMC; optimization; stock market Black–Litterman; ABC-MCMC; optimization; stock market

Share and Cite

MDPI and ACS Style

Flández, S.; Rubilar-Torrealba, R.; Chahuán-Jiménez, K.; de la Fuente-Mella, H.; Elórtegui-Gómez, C. Black–Litterman Portfolio Optimization with Dynamic CAPM via ABC-MCMC. Mathematics 2025, 13, 3265. https://doi.org/10.3390/math13203265

AMA Style

Flández S, Rubilar-Torrealba R, Chahuán-Jiménez K, de la Fuente-Mella H, Elórtegui-Gómez C. Black–Litterman Portfolio Optimization with Dynamic CAPM via ABC-MCMC. Mathematics. 2025; 13(20):3265. https://doi.org/10.3390/math13203265

Chicago/Turabian Style

Flández, Sebastián, Rolando Rubilar-Torrealba, Karime Chahuán-Jiménez, Hanns de la Fuente-Mella, and Claudio Elórtegui-Gómez. 2025. "Black–Litterman Portfolio Optimization with Dynamic CAPM via ABC-MCMC" Mathematics 13, no. 20: 3265. https://doi.org/10.3390/math13203265

APA Style

Flández, S., Rubilar-Torrealba, R., Chahuán-Jiménez, K., de la Fuente-Mella, H., & Elórtegui-Gómez, C. (2025). Black–Litterman Portfolio Optimization with Dynamic CAPM via ABC-MCMC. Mathematics, 13(20), 3265. https://doi.org/10.3390/math13203265

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Article metric data becomes available approximately 24 hours after publication online.
Back to TopTop