This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Open AccessArticle
Black–Litterman Portfolio Optimization with Dynamic CAPM via ABC-MCMC
1
Departamento de Industrias, Universidad Técnica Federico Santa María, Valparaíso 2090123, Chile
2
Centro de Investigación en Negocios y Gestión Empresarial, Escuela de Auditoría, Facultad de Ciencias Económicas y Aministrativas, Universidad de Valparaiso, Valparaíso 2340027, Chile
3
Facultad de Ciencias, Instituto de Estadística, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340031, Chile
4
Facultad de Ciencias Económicas y Administrativas, Escuela de Periodismo, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(20), 3265; https://doi.org/10.3390/math13203265 (registering DOI)
Submission received: 7 September 2025
/
Revised: 8 October 2025
/
Accepted: 10 October 2025
/
Published: 12 October 2025
Abstract
The present research proposes a methodology for portfolio construction that integrates the Black–Litterman model with expected returns generated through simulations under dynamic Capital Asset Pricing Model (CAPM) with conditional betas, estimated via Approximate Bayesian Computation Markov Chain Monte Carlo (ABC-MCMC). Bayesian estimation enables the incorporation of volatility regimes and the adjustment of each asset’s sensitivity to the market, thereby delivering expected returns that more accurately reflect the structural state of the assets compared to historical methods. This strategy is applied to the United States stock market, and the results suggest that the Black–Litterman portfolio performs competitively against portfolios optimised using the classic Markowitz model, even maintaining the same fixed weights throughout the month. Specifically, it has been demonstrated to outperform the minimum variance portfolio with regard to cumulative return and attains a Sharpe ratio that approaches the Markowitz maximum Sharpe portfolio, although it does so with a distinct and more concentrated asset allocation. It has been observed that, while the maximum return portfolio attains the highest absolute profit, it does so at the expense of significantly higher volatility.
Share and Cite
MDPI and ACS Style
Flández, S.; Rubilar-Torrealba, R.; Chahuán-Jiménez, K.; de la Fuente-Mella, H.; Elórtegui-Gómez, C.
Black–Litterman Portfolio Optimization with Dynamic CAPM via ABC-MCMC. Mathematics 2025, 13, 3265.
https://doi.org/10.3390/math13203265
AMA Style
Flández S, Rubilar-Torrealba R, Chahuán-Jiménez K, de la Fuente-Mella H, Elórtegui-Gómez C.
Black–Litterman Portfolio Optimization with Dynamic CAPM via ABC-MCMC. Mathematics. 2025; 13(20):3265.
https://doi.org/10.3390/math13203265
Chicago/Turabian Style
Flández, Sebastián, Rolando Rubilar-Torrealba, Karime Chahuán-Jiménez, Hanns de la Fuente-Mella, and Claudio Elórtegui-Gómez.
2025. "Black–Litterman Portfolio Optimization with Dynamic CAPM via ABC-MCMC" Mathematics 13, no. 20: 3265.
https://doi.org/10.3390/math13203265
APA Style
Flández, S., Rubilar-Torrealba, R., Chahuán-Jiménez, K., de la Fuente-Mella, H., & Elórtegui-Gómez, C.
(2025). Black–Litterman Portfolio Optimization with Dynamic CAPM via ABC-MCMC. Mathematics, 13(20), 3265.
https://doi.org/10.3390/math13203265
Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details
here.
Article Metrics
Article metric data becomes available approximately 24 hours after publication online.