Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,536)

Search Parameters:
Keywords = stock market

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1177 KiB  
Article
An Empirical Study on the Impact of Financial Technology on the Profitability of China’s Listed Commercial Banks
by Xue Yuan, Chin-Hong Puah and Dayang Affizzah binti Awang Marikan
J. Risk Financial Manag. 2025, 18(8), 440; https://doi.org/10.3390/jrfm18080440 - 6 Aug 2025
Abstract
This paper selects 50 listed commercial banks in China from 2012 to 2023 as research samples, and employs the fixed effects model and Hansen’s threshold regression method to systematically examine the impact mechanism and non-linear characteristics of FinTech development on the profitability of [...] Read more.
This paper selects 50 listed commercial banks in China from 2012 to 2023 as research samples, and employs the fixed effects model and Hansen’s threshold regression method to systematically examine the impact mechanism and non-linear characteristics of FinTech development on the profitability of commercial banks. The key findings are summarized as follows: (1) FinTech significantly undermines the overall profitability of commercial banks by reshaping the competitive landscape of the industry and intensifying the technology substitution effect. This is primarily reflected in the reduction in traditional interest income and the erosion of market share in intermediary business. (2) Heterogeneity analysis indicates that large state-owned banks and joint-stock banks experience more pronounced negative impacts compared to small and medium-sized banks. (3) Additional research findings reveal a significant single-threshold effect between FinTech and bank profitability, with a critical value of 4.169. When the development level of FinTech surpasses this threshold, its inhibitory effect diminishes substantially, suggesting that after achieving a certain degree of technological integration, commercial banks may partially alleviate external competitive pressures through synergistic effects. This study offers crucial empirical evidence and theoretical support for commercial banks to develop differentiated technology strategies and for regulatory authorities to design dynamically adaptable policy frameworks. Full article
(This article belongs to the Section Financial Technology and Innovation)
Show Figures

Figure 1

30 pages, 20256 KiB  
Article
From Fields to Finance: Dynamic Connectedness and Optimal Portfolio Strategies Among Agricultural Commodities, Oil, and Stock Markets
by Xuan Tu and David Leatham
Int. J. Financial Stud. 2025, 13(3), 143; https://doi.org/10.3390/ijfs13030143 - 6 Aug 2025
Abstract
In this study, we investigate the return propagation mechanism, hedging effectiveness, and portfolio performance across several common agricultural commodities, crude oil, and S&P 500 index, ranging from July 2000 to June 2024 by using a time-varying parameter vector autoregression (TVP-VAR) connectedness approach and [...] Read more.
In this study, we investigate the return propagation mechanism, hedging effectiveness, and portfolio performance across several common agricultural commodities, crude oil, and S&P 500 index, ranging from July 2000 to June 2024 by using a time-varying parameter vector autoregression (TVP-VAR) connectedness approach and three common multiple assets portfolio optimization strategies. The empirical results show that, the total connectedness peaked during the 2008 global financial crisis, followed by the European debt crisis and the COVID-19 pandemic, while it remained relatively lower at the onset of the Russia-Ukraine conflict. In the transmission mechanism, commodities and S&P 500 index exhibit distinct and dynamic characteristics as transmitters or receivers. Portfolio analysis reveals that, with exception of the COVID-19 pandemic, all three dynamic portfolios outperform the S&P 500 benchmark across major global crises. Additionally, the minimum correlation and minimum connectedness strategies are superior than transitional minimum variance method in most scenarios. Our findings have implications for policymakers in preventing systemic risk, for investors in managing portfolio risk, and for farmers and agribusiness enterprises in enhancing economic benefits. Full article
Show Figures

Figure 1

23 pages, 2216 KiB  
Article
Development of Financial Indicator Set for Automotive Stock Performance Prediction Using Adaptive Neuro-Fuzzy Inference System
by Tamás Szabó, Sándor Gáspár and Szilárd Hegedűs
J. Risk Financial Manag. 2025, 18(8), 435; https://doi.org/10.3390/jrfm18080435 - 5 Aug 2025
Abstract
This study investigates the predictive performance of financial indicators in forecasting stock prices within the automotive sector using an adaptive neuro-fuzzy inference system (ANFIS). In light of the growing complexity of global financial markets and the increasing demand for automated, data-driven forecasting models, [...] Read more.
This study investigates the predictive performance of financial indicators in forecasting stock prices within the automotive sector using an adaptive neuro-fuzzy inference system (ANFIS). In light of the growing complexity of global financial markets and the increasing demand for automated, data-driven forecasting models, this research aims to identify those financial ratios that most accurately reflect price dynamics in this specific industry. The model incorporates four widely used financial indicators, return on assets (ROA), return on equity (ROE), earnings per share (EPS), and profit margin (PM), as inputs. The analysis is based on real financial and market data from automotive companies, and model performance was assessed using RMSE, nRMSE, and confidence intervals. The results indicate that the full model, including all four indicators, achieved the highest accuracy and prediction stability, while the exclusion of ROA or ROE significantly deteriorated model performance. These findings challenge the weak-form efficiency hypothesis and underscore the relevance of firm-level fundamentals in stock price formation. This study’s sector-specific approach highlights the importance of tailoring predictive models to industry characteristics, offering implications for both financial modeling and investment strategies. Future research directions include expanding the indicator set, increasing the sample size, and testing the model across additional industry domains. Full article
(This article belongs to the Section Economics and Finance)
Show Figures

Figure 1

17 pages, 1152 KiB  
Article
PortRSMs: Learning Regime Shifts for Portfolio Policy
by Bingde Liu and Ryutaro Ichise
J. Risk Financial Manag. 2025, 18(8), 434; https://doi.org/10.3390/jrfm18080434 - 5 Aug 2025
Viewed by 63
Abstract
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties [...] Read more.
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties over short periods and maintaining sensitivity to sudden shocks in price sequences. PortRSMs also performs cross-asset regime fusion through hypergraph attention mechanisms, providing a more comprehensive state space for describing changes in asset correlations and co-integration. Experiments conducted on two different trading frequencies in the stock markets of the United States and Hong Kong show the superiority of PortRSMs compared to other approaches in terms of profitability, risk–return balancing, robustness, and the ability to handle sudden market shocks. Specifically, PortRSMs achieves up to a 0.03 improvement in the annual Sharpe ratio in the U.S. market, and up to a 0.12 improvement for the Hong Kong market compared to baseline methods. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance, 2nd Edition)
Show Figures

Figure 1

17 pages, 1708 KiB  
Article
Research on Financial Stock Market Prediction Based on the Hidden Quantum Markov Model
by Xingyao Song, Wenyu Chen and Junyi Lu
Mathematics 2025, 13(15), 2505; https://doi.org/10.3390/math13152505 - 4 Aug 2025
Viewed by 207
Abstract
Quantum finance, as a key application scenario of quantum computing, showcases multiple significant advantages of quantum machine learning over traditional machine learning methods. This paper first aims to overcome the limitations of the hidden quantum Markov model (HQMM) in handling continuous data and [...] Read more.
Quantum finance, as a key application scenario of quantum computing, showcases multiple significant advantages of quantum machine learning over traditional machine learning methods. This paper first aims to overcome the limitations of the hidden quantum Markov model (HQMM) in handling continuous data and proposes an innovative method to convert continuous data into discrete-time sequence data. Second, a hybrid quantum computing model is developed to forecast stock market trends. The model was used to predict 15 stock indices from the Shanghai and Shenzhen Stock Exchanges between June 2018 and June 2021. Experimental results demonstrate that the proposed quantum model outperforms classical algorithmic models in handling higher complexity, achieving improved efficiency, reduced computation time, and superior predictive performance. This validation of quantum advantage in financial forecasting enables the practical deployment of quantum-inspired prediction models by investors and institutions in trading environments. This quantum-enhanced model empowers investors to predict market regimes (bullish/bearish/range-bound) using real-time data, enabling dynamic portfolio adjustments, optimized risk controls, and data-driven allocation shifts. Full article
Show Figures

Figure 1

25 pages, 384 KiB  
Article
Perception of Corporate Governance Factors in Mitigating Financial Statement Fraud in Emerging Markets: Jordan Experience
by Mohammed Shanikat and Mai Mansour Aldabbas
J. Risk Financial Manag. 2025, 18(8), 430; https://doi.org/10.3390/jrfm18080430 - 1 Aug 2025
Viewed by 347
Abstract
This study investigates the influence of corporate governance on reducing financial statement fraud (FSF) in Jordanian service and industrial companies listed on the Amman Stock Exchange from 2018 to 2022. To achieve this, the study employed the Beneish M-score model to assess the [...] Read more.
This study investigates the influence of corporate governance on reducing financial statement fraud (FSF) in Jordanian service and industrial companies listed on the Amman Stock Exchange from 2018 to 2022. To achieve this, the study employed the Beneish M-score model to assess the likelihood of FSF and logistic regression to examine the influence of corporate governance structure on fraud mitigation. The study identified 13 independent variables, including board size, board director’s independence, board director’s compensation, non-duality of CEO and chairman positions, board diversity, audit committee size, audit committee accounting background, number of annual audit committee meetings, external audit fees, board family business, the presence of women on the board of directors, firm size, and market listing on FSF. The study included 74 companies from both sectors—33 from the industrial sector and 41 from the service sector. Primary data was collected from financial statements and other information published in annual reports between 2018 and 2022. The results of the study revealed a total of 295 cases of fraud during the examined period. Out of the 59 companies analyzed, 21.4% demonstrated a low probability of fraud, while the remaining 78.6% (232 observations) showed a high probability of fraud. The results indicate that the following corporate governance factors significantly impact the mitigation of financial statement fraud (FSF): independent board directors, board diversity, audit committee accounting backgrounds, the number of audit committee meetings, family business involvement on the board, and firm characteristics. The study provides several recommendations, highlighting the importance for companies to diversify their boards of directors by incorporating different perspectives and experiences. Full article
(This article belongs to the Section Business and Entrepreneurship)
20 pages, 2327 KiB  
Article
From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector
by Attila Borovics, Éva Király, Péter Kottek, Gábor Illés and Endre Schiberna
Forests 2025, 16(8), 1251; https://doi.org/10.3390/f16081251 - 1 Aug 2025
Viewed by 290
Abstract
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage [...] Read more.
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage and product substitution ecosystem services provided by the Hungarian forest-based sector. Using a multi-scenario framework, four complementary valuation concepts are assessed: total carbon storage (biomass, soil, and harvested wood products), annual net sequestration, emissions avoided through material and energy substitution, and marketable carbon value under voluntary carbon market (VCM) and EU Carbon Removal Certification Framework (CRCF) mechanisms. Data sources include the National Forestry Database, the Hungarian Greenhouse Gas Inventory, and national estimates on substitution effects and soil carbon stocks. The total carbon stock of Hungarian forests is estimated at 1289 million tons of CO2 eq, corresponding to a theoretical climate liability value of over EUR 64 billion. Annual sequestration is valued at approximately 380 million EUR/year, while avoided emissions contribute an additional 453 million EUR/year in mitigation benefits. A comparative analysis of two mutually exclusive crediting strategies—improved forest management projects (IFMs) avoiding final harvesting versus long-term carbon storage through the use of harvested wood products—reveals that intensified harvesting for durable wood use offers higher revenue potential (up to 90 million EUR/year) than non-harvesting IFM scenarios. These findings highlight the dual role of forests as both carbon sinks and sources of climate-smart materials and call for policy frameworks that integrate substitution benefits and long-term storage opportunities in support of effective climate and bioeconomy strategies. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Graphical abstract

16 pages, 263 KiB  
Article
Hospitality in Crisis: Evaluating the Downside Risks and Market Sensitivity of Hospitality REITs
by Davinder Malhotra and Raymond Poteau
Int. J. Financial Stud. 2025, 13(3), 140; https://doi.org/10.3390/ijfs13030140 - 1 Aug 2025
Viewed by 223
Abstract
This study evaluates the risk-adjusted performance of Hospitality REITs using multi-factor asset pricing models and downside risk measures with the aim of assessing their diversification potential and crisis sensitivity. Unlike prior studies that examine REITs in aggregate, this study isolates Hospitality REITs to [...] Read more.
This study evaluates the risk-adjusted performance of Hospitality REITs using multi-factor asset pricing models and downside risk measures with the aim of assessing their diversification potential and crisis sensitivity. Unlike prior studies that examine REITs in aggregate, this study isolates Hospitality REITs to explore their unique cyclical and macroeconomic sensitivities. This study looks at the risk-adjusted performance of Hospitality Real Estate Investment Trusts (REITs) in relation to more general REIT indexes and the S&P 500 Index. The study reveals that monthly returns of Hospitality REITs increasingly move in tandem with the stock markets during financial crises, which reduces their historical function as portfolio diversifiers. Investing in Hospitality REITs exposes one to the hospitality sector; however, these investments carry notable risks and provide little protection, particularly during economic upheavals. Furthermore, the study reveals that Hospitality REITs underperform on a risk-adjusted basis relative to benchmark indexes. The monthly returns of REITs show significant volatility during the post-COVID-19 era, which causes return-to-risk ratios to be below those of benchmark indexes. Estimates from multi-factor models indicate negative alpha values across conditional models, indicating that macroeconomic variables cause unremunerated risks. This industry shows great sensitivity to market beta and size and value determinants. Hospitality REITs’ susceptibility comes from their showing the most possibility for exceptional losses across asset classes under Value at Risk (VaR) and Conditional Value at Risk (CvaR) downside risk assessments. The findings have implications for investors and portfolio managers, suggesting that Hospitality REITs may not offer consistent diversification benefits during downturns but can serve a tactical role in procyclical investment strategies. Full article
25 pages, 946 KiB  
Article
Short-Term Forecasting of the JSE All-Share Index Using Gradient Boosting Machines
by Mueletshedzi Mukhaninga, Thakhani Ravele and Caston Sigauke
Economies 2025, 13(8), 219; https://doi.org/10.3390/economies13080219 - 28 Jul 2025
Viewed by 517
Abstract
This study applies Gradient Boosting Machines (GBMs) and principal component regression (PCR) to forecast the closing price of the Johannesburg Stock Exchange (JSE) All-Share Index (ALSI), using daily data from 2009 to 2024, sourced from the Wall Street Journal. The models are evaluated [...] Read more.
This study applies Gradient Boosting Machines (GBMs) and principal component regression (PCR) to forecast the closing price of the Johannesburg Stock Exchange (JSE) All-Share Index (ALSI), using daily data from 2009 to 2024, sourced from the Wall Street Journal. The models are evaluated under three training–testing split ratios to assess short-term forecasting performance. Forecast accuracy is assessed using standard error metrics: mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute scaled error (MASE). Across all test splits, the GBM consistently achieves lower forecast errors than PCR, demonstrating superior predictive accuracy. To validate the significance of this performance difference, the Diebold–Mariano (DM) test is applied, confirming that the forecast errors from the GBM are statistically significantly lower than those of PCR at conventional significance levels. These findings highlight the GBM’s strength in capturing nonlinear relationships and complex interactions in financial time series, particularly when using features such as the USD/ZAR exchange rate, oil, platinum, and gold prices, the S&P 500 index, and calendar-based variables like month and day. Future research should consider integrating additional macroeconomic indicators and exploring alternative or hybrid forecasting models to improve robustness and generalisability across different market conditions. Full article
Show Figures

Figure 1

12 pages, 1066 KiB  
Article
Prediction of the Maximum and Minimum Prices of Stocks in the Stock Market Using a Hybrid Model Based on Stacking
by Sebastian Tuesta, Nahum Flores and David Mauricio
Algorithms 2025, 18(8), 471; https://doi.org/10.3390/a18080471 - 28 Jul 2025
Viewed by 325
Abstract
Predicting stock prices on stock markets is challenging due to the nonlinear and nonstationary nature of financial markets. This study presents a hybrid model based on integrated machine learning (ML) techniques—neural networks, support vector regression (SVR), and decision trees—that uses the stacking method [...] Read more.
Predicting stock prices on stock markets is challenging due to the nonlinear and nonstationary nature of financial markets. This study presents a hybrid model based on integrated machine learning (ML) techniques—neural networks, support vector regression (SVR), and decision trees—that uses the stacking method to estimate the next day’s maximum and minimum stock prices. The model’s performance was evaluated using three data sets: Brazil’s São Paulo Stock Exchange (iBovespa)—Companhia Energética do Rio Grande do Norte (CSRN) and CPFL Energia (CPFE)—and one from the New York Stock Exchange (NYSE), the Dow Jones Industrial Average (DJI). The datasets covered the following time periods: CSRN and CPFE from 1 January 2008 to 30 September 2013, and DJI from 3 December 2018 to 31 August 2024. For the CSRN ensemble, the hybrid model achieved a mean absolute percentage error (MAPE) of 0.197% for maximum price and 0.224% for minimum price, outperforming results from the literature. For the CPFE set, the model showed a MAPE of 0.834% for the maximum price and 0.937% for the minimum price, demonstrating comparable accuracy. The model obtained a MAPE of 0.439% for the DJI set for maximum price and 0.474% for minimum price, evidencing its applicability across different market contexts. These results suggest that the proposed hybrid approach offers a robust alternative for stock price prediction by overcoming the limitations of using a single ML technique. Full article
Show Figures

Figure 1

27 pages, 406 KiB  
Article
Value Creation Through Environmental, Social, and Governance (ESG) Disclosures
by Amina Hamdouni
J. Risk Financial Manag. 2025, 18(8), 415; https://doi.org/10.3390/jrfm18080415 - 27 Jul 2025
Viewed by 655
Abstract
This study investigates the impact of environmental, social, and governance (ESG) disclosure on value creation in a balanced panel of 100 non-financial Sharia-compliant firms listed on the Saudi Stock Exchange over the period 2014–2023. The analysis employs a combination of econometric techniques, including [...] Read more.
This study investigates the impact of environmental, social, and governance (ESG) disclosure on value creation in a balanced panel of 100 non-financial Sharia-compliant firms listed on the Saudi Stock Exchange over the period 2014–2023. The analysis employs a combination of econometric techniques, including fixed effects models with Driscoll–Kraay standard errors, Pooled Ordinary Least Squares (POLS) with Driscoll–Kraay standard errors and industry and year dummies, and two-step system generalized method of moments (GMM) estimation to address potential endogeneity and omitted variable bias. Value creation is measured using Tobin’s Q (TBQ), Return on Assets (ROA), and Return on Equity (ROE). The models also control for firm-specific variables such as firm size, leverage, asset tangibility, firm age, growth opportunities, and market capitalization. The findings reveal that ESG disclosure has a positive and statistically significant effect on firm value across all three performance measures. Furthermore, firm size significantly moderates this relationship, with larger Sharia-compliant firms experiencing greater value gains from ESG practices. These results align with agency, stakeholder, and signaling theories, emphasizing the role of ESG in enhancing transparency, reducing information asymmetry, and strengthening stakeholder trust. The study provides empirical evidence relevant to policymakers, investors, and firms striving to achieve Saudi Arabia’s Vision 2030 sustainability goals. Full article
25 pages, 2809 KiB  
Article
Volatility Spillover Effects Between Carbon Futures and Stock Markets: A DGC-t-MSV-BN Model
by Jining Wang, Tian Man and Lei Wang
Mathematics 2025, 13(15), 2412; https://doi.org/10.3390/math13152412 - 27 Jul 2025
Viewed by 260
Abstract
This paper applies the Multivariate Stochastic Volatility (MSV) model, alongside its extended DGC-t-MSV model, and integrates Bayesian methods with MCMC techniques to develop the DGC-t-MSV-BN model. This model is specifically designed to analyze the volatility spillover effects between stock and futures markets. Key [...] Read more.
This paper applies the Multivariate Stochastic Volatility (MSV) model, alongside its extended DGC-t-MSV model, and integrates Bayesian methods with MCMC techniques to develop the DGC-t-MSV-BN model. This model is specifically designed to analyze the volatility spillover effects between stock and futures markets. Key findings are as follows: (1) Significant volatility spillover effects exist from futures market to stock market. Notably, the spillover effects among the Chinese carbon futures market and both the Chinese and international stock markets are stronger than those within the Chinese carbon futures market, as well as the international gold and crude oil futures markets. (2) A notable negative volatility spillover effect is observed between Chinese carbon futures market and the international stock market. Conversely, a significant positive volatility spillover effect exists in the Chinese carbon futures market and the Chinese stock market. (3) The Chinese carbon futures market, as an emerging sector, displays high volatility and immaturity, yet it is developing at a rapid pace. Full article
(This article belongs to the Special Issue Multi-Criteria Decision Making Under Uncertainty)
Show Figures

Figure 1

54 pages, 2504 KiB  
Article
News Sentiment and Stock Market Dynamics: A Machine Learning Investigation
by Milivoje Davidovic and Jacqueline McCleary
J. Risk Financial Manag. 2025, 18(8), 412; https://doi.org/10.3390/jrfm18080412 - 26 Jul 2025
Viewed by 835
Abstract
The study relies on an extensive dataset (≈1.86 million news headlines) to investigate the heterogeneity and predictive power of explicit sentiment signals (TextBlob, VADER, and FinBERT) and implied sentiment (VIX) for stock market trends. We find that news content predominantly consists of objective [...] Read more.
The study relies on an extensive dataset (≈1.86 million news headlines) to investigate the heterogeneity and predictive power of explicit sentiment signals (TextBlob, VADER, and FinBERT) and implied sentiment (VIX) for stock market trends. We find that news content predominantly consists of objective or neutral information, with only a small portion carrying subjective or emotive weight. There is a structural market bias toward upswings (bullish market states). Market behavior appears anticipatory rather than reactive: forward-looking implied sentiment captures a substantial share (≈45–50%) of the variation in stock returns. By contrast, sentiment scores, even when disaggregated into firm- and non-firm-specific subscores, lack robust predictive power. However, weekend and holiday sentiment contains modest yet valuable market signals. Algorithm-wise, Gradient Boosting Machine (GBM) stands out in both classification (bullish vs. bearish) and regression tasks. Neither FinBERT news sentiment, historical returns, nor implied volatility offer a consistently exploitable edge over market efficiency. Thus, our findings lend empirical support to both the weak-form and semi-strong forms of the Efficient Market Hypothesis. In the realm of exploitable trading strategies, markets remain an enigma against systematic alpha. Full article
(This article belongs to the Section Financial Markets)
Show Figures

Figure 1

20 pages, 3775 KiB  
Article
CIRGNN: Leveraging Cross-Chart Relationships with a Graph Neural Network for Stock Price Prediction
by Shanghui Jia, Han Gao, Jiaming Huang, Yingke Liu and Shangzhe Li
Mathematics 2025, 13(15), 2402; https://doi.org/10.3390/math13152402 - 25 Jul 2025
Viewed by 263
Abstract
Recent years have seen a rise in combining deep learning and technical analysis for stock price prediction. However, technical indicators are often prioritized over technical charts due to quantification challenges. While some studies use closing price charts for predicting stock trends, they overlook [...] Read more.
Recent years have seen a rise in combining deep learning and technical analysis for stock price prediction. However, technical indicators are often prioritized over technical charts due to quantification challenges. While some studies use closing price charts for predicting stock trends, they overlook charts from other indicators and their relationships, resulting in underutilized information for predicting stock. Therefore, we design a novel framework to address the underutilized information limitations within technical charts generated by different indicators. Specifically, different sequences of stock indicators are used to generate various technical charts, and an adaptive relationship graph learning layer is employed to learn the relationships among technical charts generated by different indicators. Finally, by applying a GNN model combined with the relationship graphs of diverse technical charts, temporal patterns of stock indicator sequences are captured, fully utilizing the information between various technical charts to achieve accurate stock price predictions. Additionally, we further tested our framework with real-world stock data, showing superior performance over advanced baselines in predicting stock prices, achieving the highest net value in trading simulations. Our research results not only complement the existing applications of non-singular technical charts in deep learning but also offer backing for investment applications in financial market decision-making. Full article
(This article belongs to the Special Issue Mathematical Modelling in Financial Economics)
Show Figures

Figure 1

29 pages, 498 KiB  
Article
Modeling the Determinants of Stock Market Investment Intention and Behavior Among Studying Adults: Evidence from University Students Using PLS-SEM
by Dostonbek Eshpulatov, Gayrat Berdiev and Andrey Artemenkov
Int. J. Financial Stud. 2025, 13(3), 138; https://doi.org/10.3390/ijfs13030138 - 25 Jul 2025
Viewed by 547
Abstract
The development of stock markets is pivotal for economic growth, particularly through the mobilization of idle resources into productive investments. Despite recent reforms to enhance Uzbekistan’s capital market, public engagement remains limited. This study examines the behavioral determinants of stock market investment intention [...] Read more.
The development of stock markets is pivotal for economic growth, particularly through the mobilization of idle resources into productive investments. Despite recent reforms to enhance Uzbekistan’s capital market, public engagement remains limited. This study examines the behavioral determinants of stock market investment intention and participation among university students, employing the Theory of Planned Behavior (TPB) and Partial Least Squares Structural Equation Modeling (PLS-SEM). The model investigates the influence of digital literacy, financial literacy, social interaction, herding behavior, overconfidence bias, risk tolerance, and financial well-being on investment intention and behavior. A survey of 369 university students was conducted to assess the proposed relationships. The results reveal that risk tolerance, overconfidence bias, and herding behavior significantly and positively affect investment intention, while digital literacy demonstrates a notable negative effect, suggesting caution in assuming technology readiness automatically translates to investment readiness. Investment intention, in turn, strongly predicts actual participation and mediates several of these effects. Conversely, financial literacy, financial well-being, and social interaction showed no significant direct or mediating influence. Additionally, differences according to gender and academic background were observed in how intention translates into behavior. The findings underscore the need for integrated financial and behavioral education to enhance market participation and contribute to policy discourse on youth financial engagement in emerging economies. Full article
Show Figures

Figure 1

Back to TopTop