Noncollision Periodic Solutions for Circular Restricted Planar Newtonian Four-Body Problems
Abstract
1. Introduction and Main Results
2. Preliminaries
- (1)
- , where l is defined in System (2) and .
- (2)
- The radii and of the planar circular orbits are
3. The Lower-Bound Estimate
4. Proof of Theorem 1
5. Proof of Theorem 2
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poincaré, H. Sur le probléme des trois corps et les équations de la dynamique. Acta Math. 1890, 13, 1–270. [Google Scholar]
- Chenciner, A.; Montgomery, R. A remarkable periodic solution of the three body problem in the case of equal masses. Ann. Math. 2000, 152, 881–901. [Google Scholar] [CrossRef]
- Ferrario, D.; Terracini, S. On the existence of collisionless equivariant minimizers for the classical n-body problem. Invent. Math. 2004, 155, 305–362. [Google Scholar] [CrossRef]
- Fusco, G.; Gronchi, G.F.; Negrini, P. Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem. Invent. Math. 2011, 185, 282–332. [Google Scholar] [CrossRef]
- Gordon, W. A minimizing property of Keplerian orbits. Am. J. Math. 1977, 99, 961–971. [Google Scholar] [CrossRef]
- Marchal, C. How the method of minimization of action avoids singularities. Celest. Mech. Dyn. Astron. 2002, 83, 325–353. [Google Scholar] [CrossRef]
- Simó, C. New families of solutions in N-body problems. In Proceedings of the European Congress of Mathematics, Barcelona, Spain, 10–14 July 2000; Progress in Mathematics. Casacuberta, C., Miró-Roig, R.M., Verdera, J., Xambó-Descamps, S., Eds.; Birkhäuser: Basel, Switzerland, 2001; Volume 201, pp. 101–115. [Google Scholar]
- Terracini, S.; Venturelli, A. Symmetric trajectories for the 2N-body problem with equal masses. Arch. Ration. Mech. Anal. 2007, 184, 465–493. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Zhou, Q. A minimizing property of Lagrangian solutions. Acta Math. Sin. 2001, 17, 497–500. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Zhou, Q. Variational methods for the choreography solution to the three-body problem. Sci. China Ser. A 2002, 45, 594–597. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Zhou, Q. Nonplanar and noncollision periodic solutions for N-body problems. Discret. Cont. Dyn. 2004, 10, 679–685. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Zhou, Q.; Liu, L.R. New periodic solutions for 3-body problems. Celest. Mech. Dyn. Astron. 2004, 88, 365–378. [Google Scholar] [CrossRef]
- Zhao, X.X.; Zhang, S.Q. Nonplanar periodic solutions for spatial restricted 3-body and 4-body problems. Bound. Value Probl. 2015, 85, 1–10. [Google Scholar] [CrossRef]
- Ouyang, T.C.; Xie, Z.F. Star pentagon and many stable choreographic solutions of the Newtonian 4-body problem. Phys. D Nonlinear Phenom. 2015, 307, 61–76. [Google Scholar] [CrossRef]
- Alhowaity, S.; Diacu, F.; Pérez-Chavela, E. Relative equilibria in curved restricted 4-body problems. Canad. Math. Bull. 2018, 61, 673–687. [Google Scholar] [CrossRef]
- Sánchez-Cerritos, J.M.; Pérez-Chavela, E. Hyperbolic regularization of the restricted three body problem on curved spaces. Anal. Math. Phys. 2022, 12, 1–26. [Google Scholar] [CrossRef]
- Bengochea, A.; Burgos-Garca, J.; Pérez-Chavela, E. Symmetric periodic orbits near binary collision in a restricted four-body problem for the figure-eight choreography. Celest. Mech. Dyn. Astron. 2024, 136, 42. [Google Scholar] [CrossRef]
- Álvarez-Ramírez, M.; Vidal, C. Dynamical aspects of an equilateral restricted four-body problem. Math. Probl. Eng. 2009, 1, 181360. [Google Scholar] [CrossRef]
- Bengochea, A.; Hernández-Gardun˜o, A.; Pérez-Chavela, E. New families of periodic orbits in the 4-body problem emanating from a kite configuration. Appl. Math. Comput. 2021, 398, 125961. [Google Scholar] [CrossRef]
- Alrebdi, H.I.; Alsaif-Norah, A.M.; Suraj, M.S.; Zotos-Euaggelos, E. Investigating the properties of equilibrium points of the collinear restricted 4-body problem. Planet. Space Sci. 2023, 237, 105756. [Google Scholar] [CrossRef]
- Batista-Negri, R.; Prado-Antonio, F.B.A. Circular Restricted n-Body Problem. J. Guid. Control. Dyn. Publ. Am. Inst. Aeronaut. Astronaut. Devoted Technol. Dyn. Control 2022, 45, 1357–1364. [Google Scholar] [CrossRef]
- Burgos-García, J. Families of periodic orbits in the planar Hill’s four-body problem. New Astron. 2016, 361, 1–21. [Google Scholar] [CrossRef]
- Chakraborty, A.; Narayan, A. A new version of restricted four body problem. New Astron. 2019, 70, 43–50. [Google Scholar] [CrossRef]
- Javed-Idrisi, M.; Shahbaz-Ullah, M.; Mulu, G.; Tenna, W.; Andualem Derebe, A. The circular restricted eight-body problem. Arch. Appl. Mech. 2023, 93, 2191–2207. [Google Scholar] [CrossRef]
- Lei, H.L.; Xu, B. Analytical study on the motions around equilibrium points of restricted four-body problem. Commun. Nonlinear Sci. Numer. Simul. 2015, 29, 441–458. [Google Scholar] [CrossRef]
- Moulton, F.R. On a class of particular solutions of the problem of four bodies. Trans. Am. Math. Soc. 1900, 1, 17–29. [Google Scholar] [CrossRef]
- Murad, P.A. Pulsating Binary Pulsars with a new Class of Stars In a Restricted 4-Body Problem. Acta Astronaut. 2023, 2046, 020062. [Google Scholar]
- Palacios, M.; Arribas, M.; Abad, A.; Elipe, A. Symmetric periodic orbits in the Moulton–Copenhagen problem. Celest. Mech. Dyn. Astron. 2019, 131, 16. [Google Scholar] [CrossRef]
- Tsironis, C.S. Dynamic Characteristics of Periodic Motions in a Restricted N-Body Problem. J. Phys. Appl. 2014, 1, 5. [Google Scholar] [CrossRef]
- Struwe, M. Variational Methods; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Mawhin, J.; Willem, M. Critical Point Theory and Hamiltonian Systems; Applied Mathematical Sciences, 74; Springer: New York, NY, USA, 1989. [Google Scholar]
- Palais, R. The principle of symmetric criticality. Commun. Math. Phys. 1979, 69, 19–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Ding, L.; Zhang, S. Noncollision Periodic Solutions for Circular Restricted Planar Newtonian Four-Body Problems. Mathematics 2025, 13, 3015. https://doi.org/10.3390/math13183015
Zhao X, Ding L, Zhang S. Noncollision Periodic Solutions for Circular Restricted Planar Newtonian Four-Body Problems. Mathematics. 2025; 13(18):3015. https://doi.org/10.3390/math13183015
Chicago/Turabian StyleZhao, Xiaoxiao, Liang Ding, and Shiqing Zhang. 2025. "Noncollision Periodic Solutions for Circular Restricted Planar Newtonian Four-Body Problems" Mathematics 13, no. 18: 3015. https://doi.org/10.3390/math13183015
APA StyleZhao, X., Ding, L., & Zhang, S. (2025). Noncollision Periodic Solutions for Circular Restricted Planar Newtonian Four-Body Problems. Mathematics, 13(18), 3015. https://doi.org/10.3390/math13183015