The Allen–Cahn-Based Approach to Cross-Scale Modeling Bacterial Growth Controlled by Quorum Sensing
Abstract
1. Introduction
2. The Mathematical Problem Statement
2.1. Traveling Wave Dynamics: Propagation Speed in the Allen–Cahn Model
- Bistability condition: The potential must possess two stable equilibria;
- Sign condition: in and in ;
- Integral condition: For (equivalent to ), the wave speed satisfies , corresponding to the propagation of the wave in the right direction.
2.2. The Evolutionary Model of Nutrient-Dependent Bacterial Population Dynamics
- (i)
- preserves global diffusivity;
- (ii)
- allows one to avoid numerical instability due to extreme values;
- (iii)
- The introduced formula aims to formalize the effect of the agar microstructure. Biologically, regions with represent areas of hindered mobility due to physical obstructions (e.g., cell debris or dense extracellular matrix), while corresponds to zones of facilitated diffusion where the local environment permits faster bacterial movement. This could reflect variations in agar porosity, hydration levels, or other microenvironmental factors that create heterogeneous diffusion landscapes without requiring specific chemotactic behavior.
2.3. Coupled Quorum Sensing and Quorum Quenching Model
2.4. The Generalized Hybrid Model: Bidirectional Coupling of Quorum Sensing and Bacterial Growth
- –
- the spatio-temporal distribution of biomass concentration B in a.u./m3;
- –
- the spatio-temporal distribution of nutrient substrate concentration N in a.u./m3;
- –
- the spatio-temporal distribution of the signaling molecule AHL concentration u in mol/L;
- –
- the spatio-temporal distribution of the lactonase enzyme concentration L in mol/L.
3. Numerical and Programming Frameworks for Solving Reaction-Diffusion Systems
3.1. Computational Scheme
3.2. Program Implementation and Convergence Analysis of the System
4. Results of Computational Experiments and Discussion
4.1. Computer-Assisted Modeling of the Evolution of Bacterial Colony Morphology
4.2. Modeling Bacterial Colony Growth Regulated by Quorum Sensing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nadell, C.D.; Drescher, K.; Foster, K.R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 2016, 14, 589–600. [Google Scholar] [CrossRef]
- Rutherford, S.T.; Bassler, B.L. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2012, 2, a012427. [Google Scholar] [CrossRef]
- Whiteley, M.; Diggle, S.P.; Greenberg, E.P. Progress in and promise of bacterial quorum sensing research. Nature 2017, 551, 313–320. [Google Scholar] [CrossRef]
- Schuster, M.; Sexton, D.J.; Diggle, S.P.; Greenberg, E.P. Acyl-homoserine lactone quorum sensing: From evolution to application. Annu. Rev. Microbiol. 2013, 67, 43–63. [Google Scholar] [CrossRef]
- Perez-Velazquez, J.; Golgeli, M.; Garcia-Contreras, R. Mathematical modelling of bacterial quorum sensing: A review. Bull. Math. Biol. 2016, 78, 1585–1639. [Google Scholar] [CrossRef]
- Kannan, R.E.; Saini, S. Mathematical modelling of quorum sensing in bacteria. INAE Lett. 2018, 3, 175–187. [Google Scholar] [CrossRef]
- John, P.W.; King, J.R.; Koerber, A.J.; Williams, P.; Croft, J.M.; Sockett, R.E. Mathematical modelling of quorum sensing in bacteria. IMA J. Math. Appl. Med. Biol. 2001, 18, 263–292. [Google Scholar]
- Müller, J.; Kuttler, C.; Hense, B.A.; Rothballer, M.; Hartmann, A. Cell–cell communication by quorum sensing and dimension-reduction. J. Math. Biol. 2006, 53, 672–702. [Google Scholar] [CrossRef] [PubMed]
- Buddrus-Schiemann, K.; Rieger, M.; Mühlbauer, M.; Barbarossa, M.V.; Kuttler, C.; Hense, B.A.; Rothballer, M.; Uhl, J.; Fonseca, J.R.; Schmitt-Kopplin, P.; et al. Analysis of N-acylhomoserine lactone dynamics in continuous cultures of Pseudomonas putida IsoF by use of ELISA and UHPLC/qTOF-MS-derived measurements and mathematical models. Anal. Bioanal. Chem. 2014, 406, 6373–6383. [Google Scholar] [CrossRef]
- Kuttler, C.; Maslovskaya, A. Computer-assisted modelling of quorum sensing in bacterial population exposed to antibiotics. Front. Appl. Math Stat. 2022, 8, 951783. [Google Scholar] [CrossRef]
- Ghosh, P.; Mondal, J.; Ben-Jacob, E.; Levine, H. Mechanically-driven phase separation in a growing bacterial colony. Proc. Natl. Acad. Sci. USA 2015, 112, E2166–E2173. [Google Scholar] [CrossRef]
- Xu, P. Analytical solution for a hybrid Logistic-Monod cell growth model in batch and continuous stirred tank reactor culture. Biotechnol. Bioeng. 2019, 117, 873–878. [Google Scholar] [CrossRef]
- Zentou, H.; Zurina, Z.A.; Yunus, R.; Biak, A.D.R.; Zouanti, M.; Hassani, A. Modelling of molasses fermentation for bioethanol production: A comparative investigation of Monod and Andrews models accuracy assessment. Biomolecules 2019, 9, 308. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; Mochizuki, A.; Matsushita, M.; Umeda, T.; Shigesada, N. Modeling spatio-temporal patterns generated by Bacillus subtilis. J. Theor. Biol. 1997, 188, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Horger, T.; Kuttler, C.; Wohlmuth, B.; Zhigun, A. Analysis of a bacterial model with nutrient-dependent degenerate diffusion. Math. Methods Appl. Sci. 2015, 38, 3851–3865. [Google Scholar] [CrossRef]
- Maslovskaya, A.; Kuttler, C.; Shevkun, I.; Chebotarev, A.; Kovtanyuk, A. Quorum sensing model for nutrient-dependent evolution of cultured bacteria: Theoretical framework and Silico Study. Nonlinear Dyn. 2025, 113, 7519–7534. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bassler, B.L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 2019, 17, 371–382. [Google Scholar] [CrossRef]
- West, S.A.; Griffin, A.S.; Gardner, A.; Diggle, S.P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 2006, 4, 597–607. [Google Scholar] [CrossRef]
- Srinivasan, S.; Vladescu, I.D.; Koehler, S.A.; Wang, X.; Mani, M.; Rubinstein, S.M. Matrix production and sporulation in Bacillus subtilis biofilms localize to propagating wave fronts. Biophys. J. 2018, 114, 1490–1498. [Google Scholar] [CrossRef]
- Okubo, A.; Levin, S.A. Diffusion and Ecological Problems: Modern Perspectives; Springer Science & Business Media: New York, NY, USA, 2002; Volume 14. [Google Scholar]
- Lahiri, A.; Tiwary, C.; Chattopadhyay, K.; Choudhury, A. Eutectic colony formation in systems with interfacial energy anisotropy: A phase field study. Comput. Mater. Sci. 2017, 130, 109–120. [Google Scholar] [CrossRef]
- Shuai, Y.; Maslovskaya, A. Computer-assisted approach to study of bacterial communication for Landau-based model of population growth. In Proceedings of the 2023 Applied Mathematics, Computational Science and Mechanics: Current Problems (AMCSM), Voronezh, Russia, 1–3 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–7. [Google Scholar]
- Díaz-Viera, M.; Moctezuma-Berthier, A. Dynamic porosity and permeability modification due to microbial growth using a coupled flow and transport model in porous media. In Mathematical and Numerical Modeling in Porous Media: Applications in Geosciences; Dıaz-Viera, A., Sahay, P.N., Coronado, M., Ortiz-Tapia, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 6, pp. 79–96. [Google Scholar]
- Hornung, R.; Grünberger, A.; Westerwalbesloh, C.; Kohlheyer, D.; Gompper, G.; Elgeti, J. Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation. J. R. Soc. Interface 2018, 15, 20170713. [Google Scholar] [CrossRef]
- Ugolini, G.S.; Wang, M.; Secchi, E.; Pioli, R.; Ackermann, M.; Stocker, R. Microfluidic approaches in microbial ecology. Lab A Chip 2024, 24, 1394–1418. [Google Scholar] [CrossRef]
- Jornet, M. Modeling of Allee effect in biofilm formation via the stochastic bistable Allen–Cahn partial differential equation. Stoch. Anal. Appl. 2020, 39, 22–32. [Google Scholar] [CrossRef]
- Tijani, Y.O.; Appadu, A.R. Unconditionally positive NSFD and classical finite difference schemes for biofilm formation on medical implant using Allen-Cahn equation. Demonstr. Math. 2022, 55, 40–60. [Google Scholar] [CrossRef]
- Fife, P.C.; McLeod, J.B. The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 1977, 65, 335–361. [Google Scholar] [CrossRef]
- Shuai, Y.; Maslovskaya, A.; Kuttler, C. Modeling of bacterial communication in the extended range of population dynamics. Math. Biol. 2023, 18, 89–104. [Google Scholar] [CrossRef]
- Wen, H.; Wang, Y.; Liu, G.; Liu, D. Asymptotic behavior of stochastic reaction-diffusion equations. Mathematics 2024, 12, 1284. [Google Scholar] [CrossRef]
- Grindrod, P. Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations, 2nd ed.; Offset from the Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Dervaux, J.; Magniez, J.C.; Libchaber, A. On growth and form of Bacillus subtilis biofilms. Interface Focus 2014, 4, 20130051. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, R. Modeling and numerical simulations of dendritic crystal growth. Phys. D Nonlinear Phenom. 1993, 63, 410–423. [Google Scholar] [CrossRef]
- Chou, K.T.; Dong-yeon, D.L.; Chiou, J.g.; Galera-Laporta, L.; Ly, S.; Garcia-Ojalvo, J.; Süel, G.M. A segmentation clock patterns cellular differentiation in a bacterial biofilm. Cell 2022, 185, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Calvo, A.; Bhattacharjee, T.; Bay, R.K.; Luu, H.N.; Hancock, A.M.; Wingreen, N.S.; Datta, S.S. Morphological instability and roughening of growing 3D bacterial colonies. Proc. Natl. Acad. Sci. USA 2022, 119, e2208019119. [Google Scholar] [CrossRef]
- García-Betancur, J.C.; Goni-Moreno, A.; Horger, T.; Schott, M.; Sharan, M.; Eikmeier, J.; Wohlmuth, B.; Zernecke, A.; Ohlsen, K.; Kuttler, C.; et al. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus. Elife 2017, 6, e28023. [Google Scholar] [CrossRef]
- Miller, M.B.; Bassler, B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001, 55, 165–199. [Google Scholar] [CrossRef] [PubMed]
- Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef] [PubMed]
- Parga, A.; Manoil, D.; Brundin, M.; Otero, A.; Belibasakis, G.N. Gram-negative quorum sensing signalling enhances biofilm formation and virulence traits in gram-positive pathogen Enterococcus faecalis. J. Oral Microbiol. 2023, 15, 2208901. [Google Scholar] [CrossRef]
- Zimmermann, S.; Wagner, C.; Müller, W.; Brenner-Weiss, G.; Hug, F.; Prior, B.; Obst, U.; Hänsch, G.M. Induction of neutrophil chemotaxis by the quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Infect. Immun. 2006, 74, 5687–5692. [Google Scholar] [CrossRef] [PubMed]
Parameter | Description | Value/Dimension |
---|---|---|
Nutrient diffusion coefficient | m2/h | |
Bacterial diffusion coefficient | m2/h | |
Inherent growth rate | 30 m3/(a.u.· h) | |
b | Environmental carrying capacity | 1 a.u./m3 |
Rated threshold | 1 a.u./m3 | |
e | Correlation coefficient for the threshold point | 10 m3/a.u. |
Enhancement coefficient of quorum sensing | 0.1 ∼ 0.6 a.u./m3 | |
Sensitivity of bacterial growth to quorum sensing | 0.2 a.u./m3 | |
Threshold of AHL on bacterial growth | mol/L | |
h | Nutrient consumption rate proportional coefficient | 1.4 |
k | Bacterial basal metabolic rate | 1 m3/(a.u.·h) |
Diffusion rate of AHL | m2/h | |
Diffusion rate of lactonase | m2/h | |
Abiotic degradation rate of AHL | 0.05 1/h | |
Abiotic degradation rate of AHL by lactonase | L/(mol·h) | |
Abiotic degradation rate of lactonase | 0.005 1/h | |
Low production rate of AHL | 1.058 mol/ (L·h) | |
Increased production rate of AHL | 1.058 mol/(L·h) | |
Production rate of lactonase | 8 mol/(L·h) | |
AHL threshold between low and increased activity | mol/L | |
G | Coupling coefficient | 1 m3/a.u. |
Power parameters | 2.5 | |
q | Characteristic radius of the colony’s starting location | m |
Initial nutrient concentration | 1 a.u./m3 | |
Initial bacterial density | 1 a.u./m3 | |
Threshold shift for lactonase production | mol/L | |
Initial value of the AHL concentration | 0 mol/L | |
Initial lactonase concentration | 0 mol/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslovskaya, A.; Shuai, Y.; Kuttler, C. The Allen–Cahn-Based Approach to Cross-Scale Modeling Bacterial Growth Controlled by Quorum Sensing. Mathematics 2025, 13, 3013. https://doi.org/10.3390/math13183013
Maslovskaya A, Shuai Y, Kuttler C. The Allen–Cahn-Based Approach to Cross-Scale Modeling Bacterial Growth Controlled by Quorum Sensing. Mathematics. 2025; 13(18):3013. https://doi.org/10.3390/math13183013
Chicago/Turabian StyleMaslovskaya, Anna, Yixuan Shuai, and Christina Kuttler. 2025. "The Allen–Cahn-Based Approach to Cross-Scale Modeling Bacterial Growth Controlled by Quorum Sensing" Mathematics 13, no. 18: 3013. https://doi.org/10.3390/math13183013
APA StyleMaslovskaya, A., Shuai, Y., & Kuttler, C. (2025). The Allen–Cahn-Based Approach to Cross-Scale Modeling Bacterial Growth Controlled by Quorum Sensing. Mathematics, 13(18), 3013. https://doi.org/10.3390/math13183013