Modeling of 2D Acoustic Radiation Patterns as a Control Problem
Abstract
1. Introduction
2. Problem Formulation
3. Numerical Results
4. Concluding Remarks
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jirik, R.; Peterlik, I.; Ruiter, N.; Fousek, J.; Dapp, R.; Zapf, M.; Jan, J. Sound-speed image reconstruction in sparse-aperture 3D ultrasound transmission tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Burov, V.A.; Voloshinov, V.B.; Dmitriev, K.V.; Polikarpova, N.V. Acoustic waves in metamaterials, crystals, and anomalously refracting structures. Adv. Phys. Sci. 2011, 54, 1165–1170. [Google Scholar]
- Duric, N.; Littrup, P.; Poulo, L.; Babkin, A.; Pevzner, R.; Holsapple, E.; Rama, O.; Glide, C. Detection of breast cancer with ultrasound tomography: First results with the computed ultrasound risk evaluation (CURE) prototype. Med. Phys. 2007, 34, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Wiskin, J.; Borup, D.; Andre, M.; Johnson, S.; Greenleaf, J.; Parisky, Y.; Klock, J. Three dimensional nonlinear inverse scattering: Quantitative transmission algorithms, refraction corrected reflection, scanner design, and clinical results. Proc. Meet. Acoust. 2013, 19, 075001. [Google Scholar]
- Wiskin, J.; Borup, D.; Iuanow, E.; Klock, J.; Lenox, M. 3-D nonlinear acoustic inverse scattering: Algorithm and quantitative results. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1161–1174. [Google Scholar] [CrossRef]
- Wiskin, J.; Malik, B.; Natesan, R.; Borup, D.; Pirshafiey, N.; Lenox, M.; Klock, J. Full Wave 3D Inverse Scattering Transmission Ultrasound Tomography: Breast and Whole Body Imaging. In Proceedings of the IUS—IEEE International Ultrasonics Symposium, Glasgow, UK, 6–9 October 2019; pp. 951–958. [Google Scholar] [CrossRef]
- Filatova, V.; Danilin, A.; Nosikova, V.; Pestov, L. Supercomputer Simulations of the Medical Ultrasound Tomography Problem. Commun. Comput. Inf. Sci. 2019, 1063, 297–308. [Google Scholar]
- Klibanov, M.V. Travel time tomography with formally determined incomplete data in 3D. Inverse Probl. Imaging 2019, 13, 1367–1393. [Google Scholar] [CrossRef]
- Klibanov, M.V. On the travel time tomography problem in 3D. J. Inverse Ill-Posed Probl. 2019, 27, 591–607. [Google Scholar] [CrossRef]
- Burov, V.A.; Zotov, D.I.; Rumyantseva, O.D. Reconstruction of the sound velocity and absorption spatial distributions in soft biological tissue phantoms from experimental ultrasound tomography data. Acoust. Phys. 2015, 61, 231–248. [Google Scholar] [CrossRef]
- Duric, N.; Littrup, P.; Li, C.; Roy, O.; Schmidt, S.; Janer, R.; Cheng, X.; Goll, J.; Rama, O.; Bey-Knight, L.; et al. Breast ultrasound tomography: Bridging the gap to clinical practice. Proc. SPIE 2012, 8320, 832000. [Google Scholar]
- Wiskin, J.; Malik, B.; Natesan, R.; Lenox, M. Quantitative assessment of breast density using transmission ultrasound tomography. Med. Phys. 2019, 46, 2610–2620. [Google Scholar] [CrossRef]
- Beilina, L.; Klibanov, M.V. Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D. J. Inverse Ill-Posed Probl. 2010, 18, 85–132. [Google Scholar] [CrossRef]
- He, S.; Kabanikhin, S.I. An optimization approach to a three-dimensional acoustic inverse problem in the time domain. J. Math. Phys. 1995, 36, 4028–4043. [Google Scholar] [CrossRef]
- Beilina, L.; Hosseinzadegan, S. An adaptive finite element method in reconstruction of coefficients in Maxwell’s equations from limited observations. Appl. Math. 2016, 61, 253–286. [Google Scholar] [CrossRef]
- Beilina, L. Adaptive Finite Element Method for a coefficient inverse problem for the Maxwell’s system. Appl. Anal. 2011, 90, 1461–1479. [Google Scholar] [CrossRef]
- Beilina, L.; Klibanov, M.V. A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem. Inverse Probl. 2010, 26, 045012. [Google Scholar] [CrossRef][Green Version]
- Xin, J.; Beilina, L.; Klibanov, M. Globally convergent numerical methods for some coefficient inverse problems. Comput. Sci. Eng. 2010, 12, 64–76. [Google Scholar]
- Beilina, L.; Klibanov, M.V. Globally strongly convex cost functional for a coefficient inverse problem. Nonlinear Anal. Real World Appl. 2015, 22, 272–288. [Google Scholar] [CrossRef]
- Klibanov, M.V. Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Probl. 2013, 21, 477–560. [Google Scholar] [CrossRef]
- Shishlenin, M.A.; Novikov, N.S.; Klyuchinskiy, D.V. On the recovering of acoustic attenuation in 2D acoustic tomography. J. Phys. Conf. Ser. 2021, 2099, 012046. [Google Scholar] [CrossRef]
- Cheng, D.K. Field and Wave Electromagnetics, 2nd ed.; Pearson: Boston, MA, USA, 1998. [Google Scholar]
- Isaev, A.E.; Nikolaenko, A.S.; Chernikov, I.V. Suppression of reverberation distortions of a receiver signal using the water tank transfer function. Acoust. Phys. 2017, 63, 175–184. [Google Scholar] [CrossRef]
- Klyuchinskiy, D.; Novikov, N.; Shishlenin, M. Recovering Density and Speed of Sound Coefficients in the 2D Hyperbolic System of Acoustic Equations of the First Order by a Finite Number of Observations. Mathematics 2021, 9, 199. [Google Scholar] [CrossRef]
- Kabanikhin, S.I.; Klyuchinskiy, D.V.; Novikov, N.S.; Shishlenin, M.A. Numerics of acoustical 2D tomography based on the conservation laws. J. Inverse Ill-Posed Probl. 2020, 28, 287–297. [Google Scholar] [CrossRef]
- Bastin, G.; Coron, J.-M. Stability and Boundary Stabilization of 1-D Hyperbolic Systems. In Progress in Nonlinear Differential Equations and Their Applications; Birkhauser: Boston, MA, USA, 2016. [Google Scholar]
- Blokhin, A.M.; Trakhinin, Y.L. Well-Posedness of Linear Hyperbolic Problems: Theory and Applications; Nova Publishers: Hauppauge, NY, USA, 2006. [Google Scholar]
- Romanov, V.G.; Kabanikhin, S.I. Inverse Problems for Maxwell’s Equations; VSP: Utrecht, The Netherlands, 1994. [Google Scholar]
- Butler, J.L.; Sherman, C.H. Transducers and Arrays for Underwater Sound; Springer: Berlin, Germany, 2016. [Google Scholar]
- Seo, H.-S.; Kim, Y.-H. Directional radiation pattern in structural–acoustic coupled system. J. Acoust. Soc. Am. 2005, 118, 92–103. [Google Scholar] [CrossRef]
- Friedrich, W.; Kaarmann, H.; Lerch, R. Finite element modeling of acoustic radiation from piezoelectric phased array antennas. IEEE Symp. Ultrason. 1990, 2, 763–767. [Google Scholar]
- Gori, P.; Iula, A.; Pappalardo, M.; Lamberti, N.; Montero de Espinosa, F. Influence of the inter-element coupling on ultrasound array radiation patterns. J. Comput. Acoust. 2001, 9, 773–788. [Google Scholar] [CrossRef]
- Caronti, A.; Carotenuto, R.; Caliano, G.; Pappalardo, M. Finite element study of cross coupling in 1-D capacitive micromachined ultrasonic transducer arrays. In Proceedings of the Ultrasonics Symposium 2002, Munich, Germany, 8–11 October 2002; Volume 2, pp. 1059–1062. [Google Scholar]
- Isaev, A.E.; Matveev, A.N. Calibration of hydrophones in a field with continuous radiation in a reverberating pool. Acoust. Phys. 2009, 55, 762. [Google Scholar] [CrossRef]
- Lin, C.; Qing, A.; Feng, Q. Synthesis of Unequally Spaced Antenna Arrays by Using Differential Evolution. IEEE Trans. Antennas Propag. 2010, 58, 2553–2561. [Google Scholar]
- Bradford, J.H. GPR prestack amplitude recovery for radiation patterns using a full wave-equation, reverse-time migration algorithm. In SEG Technical Program Expanded Abstracts; SEG: Houston, TX, USA, 2012; pp. 1–5. [Google Scholar]
- Dobrokhotov, S.Y.; Sekerzh-Zenkovich, S.Y. A class of exact algebraic localized solutions of the multidimensional wave equation. Math. Notes 2010, 88, 894–897. [Google Scholar] [CrossRef]
- Dobrokhotov, S.Y.; Sekerzh-Zenkovich, S.Y.; Tirozzi, B.; Volkov, B. Explicit asymptotics for tsunami waves in framework of the piston model. Russ. J. Earth. Sci. 2006, 8, ES4003. [Google Scholar] [CrossRef]
- Dobrokhotov, S.Y.; Nazaikinskii, V.E.; Shafarevich, A.I. Maslov’s canonical operator in arbitrary coordinates on the Lagrangian manifold. Dokl. Math. 2016, 93, 99–102. [Google Scholar] [CrossRef]
- Sekerzh-Zenkovich, S.Y. Analytical Study of the Tsunami Potential Model with a Simple Piston-Like Source. 2. Asymptotic Formula for the Height of Tsunami in the Far Field. Russ. J. Math. Phys. 2013, 20, 342–346. [Google Scholar]
- Dobrokhotov, S.Y.; Nazaikinskii, V.E. Asymptotic localized solutions of the shallow water equations over a nonuniform bottom. AIP Conf. Proc. 2018, 2048, 040026. [Google Scholar]
- Brutti, A.; Omologo, M.; Svaizer, P. An environment aware ML estimation of acoustic radiation pattern with distributed microphone pairs. Signal Process. 2013, 93, 784–796. [Google Scholar] [CrossRef]
- Khodier, M. Optimisation of antenna arrays using the cuckoo search algorithm. IET Microw. Antennas Propag. 2013, 7, 458–464. [Google Scholar]
- Quan, L.; Zhong, X.; Liu, X.; Gong, X.; Johnson, P.A. Effective impedance boundary optimization and its contribution to dipole radiation and radiation pattern control. Nat. Commun. 2014, 5, 3188. [Google Scholar] [CrossRef]
- Young, A.; Maaskant, R.; Ivashina, M. Radiation Pattern Modeling with Characteristic Basis Function Patterns. FERMAT J. 2014, 2, 1–12. [Google Scholar]
- Shabtai, N.R.; Vorländer, M. Acoustic centering of sources with high-order radiation patterns. J. Acoust. Soc. Am. 2015, 137, 1947–1961. [Google Scholar] [CrossRef]
- Guney, K.; Durmus, A. Pattern Nulling of Linear Antenna Arrays Using Backtracking Search Optimization Algorithm. Int. J. Antennas Propag. 2015, 2015, 713080. [Google Scholar] [CrossRef]
- Jankowski-Mihulowicz, P.; Lichon, W.; Weglarski, M. Numerical Model of Directional Radiation Pattern Based on Primary Antenna Parameters. Int. J. Electron. Telecommun. 2015, 61, 191–197. [Google Scholar] [CrossRef]
- Stytsenko, E.; Scott, N.L.; Meijer, M. Acoustic coupling in linear arrays. In Proceedings of the OCEANS 2016, Shanghai, China, 10–13 April 2016; pp. 1–7. [Google Scholar]
- Shabtai, N.R.; Behler, G.; Vorländer, M.; Weinzierl, S. Generation and analysis of an acoustic radiation pattern database for forty-one musical instruments. J. Acoust. Soc. Am. 2017, 141, 1246–1256. [Google Scholar] [CrossRef]
- Lee, S. Review: The Use of Equivalent Source Method in Computational Acoustics. J. Comput. Acoust. 2017, 25, 1630001. [Google Scholar] [CrossRef]
- Robinson, S.P.; Hayman, G.; Harris, P.M.; Beamiss, G.A. Signal-modelling methods applied to the free-field calibration of hydrophones and projectors in laboratory test tanks. Sci. Technol. 2018, 29, 085001. [Google Scholar] [CrossRef]
- Singh, U.; Salgotra, R. Synthesis of linear antenna array using flower pollination algorithm. Neural Comput. Appl. 2018, 29, 435–448. [Google Scholar] [CrossRef]
- Bybi, A.; Mouhat, O.; Garoum, M.; Drissi, H.; Grondel, S. One-dimensional equivalent circuit for ultrasonic transducer arrays. Appl. Acoust. 2019, 156, 246–257. [Google Scholar] [CrossRef]
- Canclini, A.; Antonacci, F.; Tubaro, S.; Sarti, A. A Methodology for the Robust Estimation of the Radiation Pattern of Acoustic Sources. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 211–224. [Google Scholar] [CrossRef]
- Virovlyansky, A.L.; Deryabin, M.S. On the use of the equivalent source method for free-field calibration of an acoustic radiator in a reverberant tank. J. Sound Vib. 2019, 455, 69–81. [Google Scholar] [CrossRef]
- Virovlyansky, A.L.; Kazarova, A.Y.; Lyubavin, L.Y. Reconstructing the directivity pattern of a sound source in free space by measuring its field in a tank. Acoust. Phys. 2020, 66, 501–507. [Google Scholar] [CrossRef]
- Kabanikhin, S.I.; Klyuchinskiy, D.V.; Novikov, N.S.; Shishlenin, M.A. On the problem of modeling the acoustic radiation pattern of source for the 2D first-order system of hyperbolic equations. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1715, p. 012038. [Google Scholar]
- Bellassoued, M.; Cristofol, M.; Soccorsi, E. Inverse boundary value problem for the dynamical heterogeneous Maxwell’s system. Inverse Probl. 2012, 28, 095009. [Google Scholar] [CrossRef]
- Godunov, S.K.; Zabrodin, A.V.; Ivanov, M.Y.; Kraikov, A.N.; Prokopov, G.P. Numerical Solution for Multidimensional Problems of Gas Mechanics; Nauka: Moscow, Russia, 1976. [Google Scholar]
- Isakov, V.; Yamamoto, M. Stability in a wave source problem by Dirichlet data on subboundary. J. Inverse Ill-Posed Probl. 2003, 11, 399–409. [Google Scholar] [CrossRef]
- Imanuvilov, O.Y.; Yamamoto, M. Global uniqueness and stability in determining coefficients of wave equations. Commun. Partial. Differ. Equ. 2001, 26, 1409–1425. [Google Scholar] [CrossRef]
- Bruckner, G.; Yamamoto, M. Determination of point wave sources by pointwise observations: Stability and reconstruction. Inverse Probl. 2000, 16, 723–748. [Google Scholar] [CrossRef]
- Yamamoto, M.; Zhang, X. Global uniqueness and stability for an inverse wave source problem for less regular data. J. Math. Anal. Appl. 2001, 263, 479–500. [Google Scholar] [CrossRef]
- Delillo, T.; Isakov, V.; Valdivia, N.; Wang, L. The detection of the source of acoustical noise in two dimensions. SIAM J. Appl. Math. 2001, 61, 2104–2121. [Google Scholar] [CrossRef]
- DeLillo, T.; Isakov, V.; Valdivia, N.; Wang, L. The detection of surface vibrations from interior acoustical pressure. Inverse Problem. 2003, 19, 507–524. [Google Scholar] [CrossRef]
- Alberti, G.S.; Santacesaria, M. Infinite-Dimensional Inverse Problems with Finite Measurements. Arch. Ration. Mech. Anal. 2022, 243, 1–31. [Google Scholar] [CrossRef]
- Klyuchinskiy, D.; Novikov, N.; Shishlenin, M. A Modification of gradient descent method for solving coefficient inverse problem for acoustics equations. Computation 2020, 8, 73. [Google Scholar] [CrossRef]
- Klyuchinskiy, D.V.; Novikov, N.S.; Shishlenin, M.A. CPU-time and RAM memory optimization for solving dynamic inverse problems using gradient-based approach. J. Comput. Phys. 2021, 439, 110374. [Google Scholar] [CrossRef]
- Kabanikhin, S.I.; Scherzer, O.; Shishlenin, M.A. Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation. J. Inverse Ill-Posed Probl. 2003, 11, 87–109. [Google Scholar] [CrossRef]
- Kabanikhin, S.I.; Shishlenin, M.A. Quasi-solution in inverse coefficient problems. J. Inverse Ill-Posed Probl. 2008, 16, 705–713. [Google Scholar] [CrossRef]
- Wang, Y.; Lukyanenko, D.V.; Yagola, A.G. Regularized Inversion of Full Tensor Magnetic Gradient Data. Numer. Methods Program. (Vychislitel’Nye Metod. Program.) 2016, 17, 13–20. [Google Scholar]
- van Leer, B. On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe. SIAM J. Sci. Stat. Comput. 1984, 5, 1–20. [Google Scholar] [CrossRef]
- van Leer, B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 1979, 32, 101–136. [Google Scholar] [CrossRef]
- Khobalatte, B.; Perthame, B. Maximum principle on the entropy and second-order kinetic schemes. Math. Comput. 1994, 62, 119–131. [Google Scholar] [CrossRef]
- Perthame, B.; Qiu, Y. A variant of Van Leer’s method for multidimensional systems of conservation laws. J. Comput. Phys. 1994, 112, 370–381. [Google Scholar] [CrossRef]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 2nd ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1999. [Google Scholar]
- Nessyahu, H.; Tadmor, E. Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 1990, 87, 408–463. [Google Scholar] [CrossRef]
- Bianco, F.; Puppo, G.; Russo, G. High-order central schemes for hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 1999, 21, 294–322. [Google Scholar] [CrossRef][Green Version]
- Berthon, C. Why the MUSCL-Hancock scheme is L1-stable. Numer. Math. 2006, 104, 27–46. [Google Scholar] [CrossRef]
- Novikov, N.S.; Klyuchinskiy, D.V.; Shishlenin, M.A.; Kabanikhin, S.I. On the modeling of ultrasound wave propagation in the frame of inverse problem solution. J. Phys. Conf. Ser. 2021, 2099, 012044. [Google Scholar] [CrossRef]
- Kozelkov, A.S.; Krutyakova, O.L.; Kurulin, V.V.; Strelets, D.Y.; Shishlenin, M.A. The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations. Sib. Electron. Math. Rep. 2021, 18, 1238–1250. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shishlenin, M.; Savchenko, N.; Novikov, N.; Klyuchinskiy, D. Modeling of 2D Acoustic Radiation Patterns as a Control Problem. Mathematics 2022, 10, 1116. https://doi.org/10.3390/math10071116
Shishlenin M, Savchenko N, Novikov N, Klyuchinskiy D. Modeling of 2D Acoustic Radiation Patterns as a Control Problem. Mathematics. 2022; 10(7):1116. https://doi.org/10.3390/math10071116
Chicago/Turabian StyleShishlenin, Maxim, Nikita Savchenko, Nikita Novikov, and Dmitriy Klyuchinskiy. 2022. "Modeling of 2D Acoustic Radiation Patterns as a Control Problem" Mathematics 10, no. 7: 1116. https://doi.org/10.3390/math10071116
APA StyleShishlenin, M., Savchenko, N., Novikov, N., & Klyuchinskiy, D. (2022). Modeling of 2D Acoustic Radiation Patterns as a Control Problem. Mathematics, 10(7), 1116. https://doi.org/10.3390/math10071116