Mass and Nutrient Content of Beans and Husks of Coffea racemosa and Coffea zanguebariae Grown in Mozambique
Abstract
1. Introduction
2. Results
2.1. Soil Characterization
2.2. Bean-to-Husk Ratio Variability
2.3. Nutrient Content in Bean and Husk
2.4. Cluster Analysis of Accessions
3. Discussion
4. Materials and Methods
4.1. Brief Characterization of Plant Material and Experimental Area
4.2. Fruit Collection and Nutrient Content in the Bean and Husks
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davis, A.P.; Gargiulo, R.; Almeida, I.N.; Caravela, M.I.; Denison, C.; Moat, J. Hot coffee: The identity, climate profiles, agronomy, and beverage characteristics of Coffea racemosa and C. zanguebariae. Front. Sustain. Food Syst. 2021, 5, 740137. [Google Scholar] [CrossRef]
- ICO. International Coffee Organization—Monthly Coffee Market Report. 2025. Available online: https://www.ico.org/documents/cy2024-25/cmr-0325-e.pdf (accessed on 12 April 2024).
- Kufa, T.; Burkhardt, M.J. Plant composition and growth of wild Coffea arabica: Implications for management and conservation of natural forest resources. Int. J. Biodivers. Conserv. 2011, 3, 131–141. [Google Scholar]
- Guyot, R.; Gonzalez, L.; Bezandry, R. Wild Coffea species: A modern genomic approach to unravel variations for future cultivated coffee improvement. Proceedings 2024, 109, 23. [Google Scholar] [CrossRef]
- Lyrio, M.V.V.; Alberto, N.J.; Debona, D.G.; Frinhani, R.Q.; Ramalho, J.C.; Pereira, L.L.; de Castro, U.V.R.; Partelli, F.L.; Romão, W. Comprehensive chemical profiling of wild Coffea racemosa, C. zanguebariae, C. arabica, and C. canephora: A metabolomic approach using LC-MSn and multivariate analysis. Food Chem. 2025, 481, 144062. [Google Scholar] [CrossRef]
- Bridson, D.M. Coffea. In Flora Zambesiaca; Pope, G.V., Ed.; Royal Botanic Gardens: London, UK, 2003; pp. 452–463. [Google Scholar]
- Guerreiro Filho, O. Coffea racemosa Lour. A review. Café Cacao 1992, 36, 171–186. [Google Scholar]
- Navarini, L.; Scaglione, D.; Del Terra, L.; Scalabrin, S.; Mavuque, L.; Turello, L.; Nguenha, R.; Luongo, G. Mozambican Coffea accessions from Ibo and Quirimba Islands: Identification and geographical distribution. AoB Plants 2024, 16, plae004. [Google Scholar] [CrossRef]
- Castro, R.D.; Marraccini, P. Cytology, biochemistry and molecular changes during coffee fruit development. Braz. J. Plant Physiol. 2006, 18, 175–199. [Google Scholar] [CrossRef]
- Partelli, F.L.; Espindula, M.C.; Marré, W.B.; Vieira, H.D. Dry matter and macronutrient accumulation in fruits of Conilon coffee with different ripening cycles. Rev. Bras. Ciênc. Solo 2014, 38, 214–222. [Google Scholar] [CrossRef]
- Campos, R.C.; Pinto, V.R.A.; Melo, L.F.; da Rocha, S.J.S.S.; Coimbra, J.S. New sustainable perspectives for “coffee wastewater” and other by-products: A critical review. Future Foods 2021, 4, 100058. [Google Scholar] [CrossRef]
- Bragança, S.M.; Martinez, H.E.P.; Leite, H.G.; Santos, L.P.; Sediyama, C.S.; Alvarez, V.V.H.; Lani, J.A. B, Cu, Fe, Mn & Zn accumulation by Conilon coffee plant. Rev. Ceres 2007, 54, 398–404. [Google Scholar]
- Trejo-Téllez, L.I.; Gómez-Merino, F.C.; Morales-Ramos, V.; Marín-Garza, T.; Castañeda-Castro, O.; Pastelin-Solano, M.C. Concentración de macronutrimentos y micronutrimentos en granos de café (Coffea sp.) de diferentes orígenes. Agro Product. 2018, 11, 19–24. [Google Scholar]
- Alberto, N.J.; Ramalho, J.C.; Ribeiro-Barros, A.I.; Viana, A.P.; Krohling, C.A.; Moiane, S.S.; Rodrigues, W.P.; Partelli, F.L. Diversity in Coffea arabica cultivars in the Mountains of Gorongosa National Park, Mozambique, regarding bean and leaf nutrient accumulation and physical fruit traits. Agronomy 2023, 13, 1162. [Google Scholar] [CrossRef]
- Oliveira, M.; Ramos, S.; Delerue-Matos, C.; Morais, S. Espresso beverages of pure origin coffee: Mineral characterization, contribution for mineral intake and geographical discrimination. Food Chem. 2015, 177, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Brazilian Soil Classification System, 5th ed.; Embrapa: Brasilia, Brazil, 2018. [Google Scholar]
- Hareesh, S.B. Nutritional composition of green robusta coffee (Coffea canephora) beans under organic and integrated nutrition with varying shade and irrigation management practices in Western Ghats of India. Asian J. Dairy Food Res. 2024, 43, 17–24. [Google Scholar] [CrossRef]
- Vivas, E.A.; Castillo, H.S.V.; Acosta, E.G. Physicochemical and structural characterization of coffee husks for sustainable applications in biodegradable materials. J. Nat. Fibers 2025, 22, 2453489. [Google Scholar] [CrossRef]
- Hallauer, A.R. Evolution of plant breeding. Crop Breed. Appl. Biotechnol. 2011, 11, 197–206. [Google Scholar] [CrossRef]
- Schmidt, R.; Silva, C.A.; Silva, L.O.E.; Espindula, M.C.; Rodrigues, W.P.; Vieira, H.D.; Tomaz, M.A.; Partelli, F.L. Accumulation of nutrients and the relation between fruit, bean, and husk of coffee robusta cultivated in Brazilian Amazon. Plants 2023, 12, 3476. [Google Scholar] [CrossRef]
- Silveira Junior, E.G.; Perez, V.H.; de Paula, S.C.S.E.; Silveira, T.D.C.; Olivares, F.L.; Justo, O.R. Coffee husks valorization for levoglucosan production and other pyrolytic products through thermochemical conversion by fast pyrolysis. Energies 2023, 16, 2835. [Google Scholar] [CrossRef]
- Divyashri, G.; Murthy, T.P.K.; Ragavan, K.V.; Sumukh, G.M.; Sudha, L.S.; Nishka, S.; Himanshi, D.; Misryia, N.; Sharada, B.; Venkataramanaiah, R.A. Valorization of coffee bean processing waste for the sustainable extraction of biologically active pectin. Heliyon 2023, 9, e20212. [Google Scholar] [CrossRef]
- Hernández-Varela, J.D.; Medina, D.I. Revalorization of coffee residues: Advances in the development of eco-friendly biobased potential food packaging. Polymers 2023, 15, 2823. [Google Scholar] [CrossRef]
- Salvador, H.P.; Semedo, J.N.; Rakocevic, M.; Ramalho, J.C.; Partelli, F.L. Dynamics of Dry Matter Accumulation in the Berries, Beans, and Husks of Six Coffea canephora Genotypes During Fruit Maturation. Exp. Agric. 2025, 61, e26. [Google Scholar] [CrossRef]
- Munirwan, R.P.; Taib, A.M.; Taha, M.R.; Abd Rahman, N.; Munirwansyah, M. Utilization of coffee husk ash for soil stabilization: A systematic review. Phys. Chem. Earth Parts A/B/C 2022, 128, 103252. [Google Scholar] [CrossRef]
- Král, E.; Rukov, J.L.; Mendes, A.C. Coffee cherry on the top: Disserting valorization of coffee pulp and husk. Food Eng. Rev. 2024, 16, 146–162. [Google Scholar] [CrossRef]
- Chi, T.D.; Linh, D.T.T.; Le Minh, T. Removal of nickel, copper, and zinc ions from aqueous solution using coffee bean husk (CFH). Vietnam J. Sci. Technol. 2020, 58, 68–74. [Google Scholar] [CrossRef]
- Vomo, L.A.; Deffo, G.; Fotsop, C.G.; Djemmoe, L.G.; Tchieda, V.K.; Eya’ane, F.M.; Njanja, E. Synthesis of zinc oxide nanoparticles based on coffee husks embedded on mesoporous silica for the sensing of acetaminophen. ChemElectroChem 2024, 11, e202400088. [Google Scholar] [CrossRef]
- Van Nguyen, D.; Duong, C.T.T.; Vu, C.N.M.; Nguyen, H.M.; Pham, T.T.; Tran-Thuy, T.M.; Nguyen, L.Q. Data on chemical composition of coffee husks and lignin microparticles as their extracted product. Data Brief 2023, 51, 109781. [Google Scholar] [CrossRef]
- Dzung, N.A.; Dzung, T.T.; Khanh, V.T.P. Evaluation of coffee husk compost for improving soil fertility and sustainable coffee production in rural central highland of Vietnam. Resour. Environ. 2013, 3, 77–82. [Google Scholar]
- Olechno, E.; Puścion-Jakubik, A.; Socha, K.; Zujko, M.E. Coffee brews: Are they a source of macroelements in human nutrition? Foods 2021, 10, 1328. [Google Scholar] [CrossRef]
- Poltronieri, Y.; Martinez, H.E.; Cecon, P.R. Effect of zinc and its form of supply on production and quality of coffee beans. J. Sci. Food Agric. 2011, 91, 2431–2436. [Google Scholar] [CrossRef]
- Ramirez-Builes, V.H.; Küsters, J.; Thiele, E.; Leal-Varon, L.A. Boron nutrition in coffee improves drought stress resistance and, together with calcium, improves long-term productivity and seed composition. Agronomy 2024, 14, 474. [Google Scholar] [CrossRef]
- Clemente, J.M.; Martinez, H.E.P.; Pedrosa, A.W.; Poltronieri Neves, Y.; Cecon, P.R.; Jifon, J.L. Boron, copper, and zinc affect the productivity, cup quality, and chemical compounds in coffee beans. J. Food Qual. 2018, 2018, 7960231. [Google Scholar] [CrossRef]
- Silva, F.C.D. Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 2nd ed.; Embrapa Informação Tecnológica: Brasília, DF, Brazil, 2009. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 4 August 2025).






| Chemical Properties | Results | |||||
|---|---|---|---|---|---|---|
| Unity | Ibo Irland | Chidenguele | Zavala | Panda | ||
| M.O. | Organic Matter (Oxy-Red.) | mg dm−3 | 2.5 | 0.9 | 2.6 | 1.2 |
| pH (H2O) | (Water—Proportion 1:2.5) | unit | 7.4 | 6.4 | 6.9 | 6.6 |
| P | (Phosphorus) | mg dm−3 | 857.7 | 48.2 | 98.8 | 34.7 |
| K | (Potassium) | mg dm−3 | 113 | 60 | 58 | 109 |
| Ca | (Calcium) | cmolc dm−3 | 14.5 | 2.1 | 6.2 | 2.2 |
| Mg | (Magnesium) | cmolc dm−3 | 1.3 | 0.5 | 1.3 | 0.8 |
| Al | (Aluminum) | cmolc dm−3 | 0 | 0 | 0 | 0 |
| H + Al | (Potential soil acidity) | cmolc dm−3 | 0 | 0.3 | 0.5 | 0.9 |
| S.B. | (Sum of bases) | cmolc dm−3 | 16.1 | 2.8 | 7.7 | 3.3 |
| C.T.C. | (Cation exchange capacity at pH = 7) | cmolc dm−3 | 16.1 | 3 | 8.1 | 4.2 |
| V | (Base saturation) | % | 100 | 90.2 | 93.9 | 78.5 |
| K C.T.C | (K at Cation exchange capacity) | % | 1.8 | 5 | 1.8 | 6.7 |
| Ca C.T.C | (Ca at Cation exchange capacity) | % | 90.1 | 68.8 | 76.1 | 52.6 |
| Mg C.T.C. | (Mg at Cation exchange capacity) | % | 8.1 | 16.4 | 15.9 | 19.1 |
| Al C.T.C. | (Al at Cation exchange capacity) | % | 0 | 9.8 | 6.1 | 21.5 |
| H + Al C.T.C. | (H + Al at Cation exchange capacity) | % | 0 | 9.8 | 6.1 | 21.5 |
| P (Resin) | mg dm−3 | |||||
| P-rem | (Remaining phosphorus) | mg L | 29 | 40.6 | 42.5 | 44.5 |
| Na | (Natrium) | mg dm−3 | 47.3 | 10.3 | 16.7 | 9 |
| S | (Sulfur) | mg dm−3 | 18.5 | 17.5 | 19 | 18.2 |
| B | (Boron) | mg dm−3 | 1.1 | 0.2 | 0.6 | 0.3 |
| Zn | (Zinc) | mg dm−3 | 35.1 | 2.9 | 8.5 | 16.9 |
| Mn | (Manganese) | mg dm−3 | 21.2 | 48.3 | 67 | 90.5 |
| Cu | (Cuprum) | mg dm−3 | 0.2 | 0.1 | 0.3 | 0.8 |
| Fe | (Iron) | mg dm−3 | 2.4 | 7.2 | 8.5 | 9.6 |
| Granulometric fractions (g kg−1) | ||||||
| Clay | 123 | 48 | 98 | 73 | ||
| Silt | 11 | 10 | 15 | 10 | ||
| Sand | 866 | 942 | 887 | 917 | ||
| Soil type | Sand | |||||
| Identification | Location | Location | Coordinate | Coordinate | Altitude | |
|---|---|---|---|---|---|---|
| Province | District | Species | S | E | m | |
| Cr1 | Inhambane | Murumbene | C. racemosa | 23°31′56.01504″ | 35°23′37.41576″ | 61 |
| Cr2 | Inhambane | Murumbene | C. racemosa | 23°31′56.01504″ | 35°23′37.41576″ | 61 |
| Cr3 | Inhambane | Murumbene | C. racemosa | 23°31′56.01504″ | 35°23′37.41576″ | 61 |
| Cr4 | Inhambane | Murumbene | C. racemosa | 23°31′55.18048″ | 35°20′39.58152″ | 61 |
| Cr5 | Inhambane | Maxixi | C. racemosa | 23°49′55.2148″ | 35°20′55.21128″ | 18 |
| Cr6 | Inhambane | Panda | C. racemosa | 24°3′27.6714″ | 34°44′17.44764″ | 156 |
| Cr7 | Inhambane | Panda | C. racemosa | 24°3′27.6714″ | 34°44′17.44764″ | 156 |
| Cr8 | Inhambane | Panda | C. racemosa | 24°3′27.6714″ | 34°44′17.44764″ | 156 |
| Cr10 | Inhambane | Panda | C. racemosa | 24°3′27.6714″ | 34°44′17.44764″ | 156 |
| Cr11 | Inhambane | Panda | C. racemosa | 24°3′27.6714″ | 34°44′17.44764″ | 156 |
| Cr12 | Inhambane | Inharime | C. racemosa | 24°28′30.55764″ | 35°1′18.50124″ | 48 |
| Cr13 | Inhambane | Inharime | C. racemosa | 24°28′30.55764″ | 35°1′18.50124″ | 48 |
| Cr14 | Inhambane | Inharime | C. racemosa | 24°28′30.55764″ | 35°1′18.50124″ | 48 |
| Cr15 | Inhambane | Inharime | C. racemosa | 24°28′30.55764″ | 35°1′18.50124″ | 48 |
| Cr16 | Inhambane | Inharime | C. racemosa | 24°28′36.43428″ | 35°1′17.44608″ | 48 |
| Cr17 | Inhambane | Inharime | C. racemosa | 24°28′36.43428″ | 35°1′17.44608″ | 48 |
| Cr20 | Inhambane | Zavala | C. racemosa | 24°30′23.7672″ | 34°59′57.51276″ | 30 |
| Cr21 | Inhambane | Zavala | C. racemosa | 24°30′23.7672″ | 34°59′57.51276″ | 30 |
| Cr22 | Inhambane | Zavala | C. racemosa | 24°30′23.7672″ | 34°59′57.51276″ | 30 |
| Cr23 | Inhambane | Zavala | C. racemosa | 24°30′23.7672″ | 34°59′57.51276″ | 30 |
| Cr24 | Gaza | Chidenguele | C. racemosa | 24°54′30.00276″ | 34°10′34.30524″ | 62 |
| Cr25 | Gaza | Chidenguele | C. racemosa | 24°54′30.00276″ | 34°10′34.30524″ | 62 |
| Cz01 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′38.11596″ | 40°35′26.55312″ | 14 |
| Cz02 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′38.11596″ | 40°35′26.55312″ | 14 |
| Cz03 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′38.11596″ | 40°35′26.55312″ | 14 |
| Cz04 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′38.11596″ | 40°35′26.55312″ | 14 |
| Cz05 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′38.11596″ | 40°35′26.55312″ | 14 |
| Cz06 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′38.11596″ | 40°35′26.55312″ | 14 |
| Cz07 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′38.11596″ | 40°35′26.55312″ | 14 |
| Cz08 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′21.10908″ | 40°35′27.25908″ | 9 |
| Cz10 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′21.10908″ | 40°35′27.25908″ | 9 |
| Cz11 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′21.10908″ | 40°35′27.25908″ | 9 |
| Cz12 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′52.28268″ | 40°35′36.91068″ | 14 |
| Cz13 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′52.28268″ | 40°35′36.91068″ | 14 |
| Cz14 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′52.28268″ | 40°35′36.91068″ | 14 |
| Cz15 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′52.28268″ | 40°35′36.91068″ | 14 |
| Cz16 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′52.28268″ | 40°35′36.91068″ | 14 |
| Cz17 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′52.28268″ | 40°35′36.91068″ | 14 |
| Cz20 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′15.62712″ | 40°35′4.00164″ | 12 |
| Cz21 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′27.59388″ | 40°35′9.29292″ | 12 |
| Cz22 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′28.8006″ | 40°35′8.18556″ | 12 |
| Cz23 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′15.7938″ | 40°35′23.59536″ | 11 |
| Cz24 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′15.7938″ | 40°35′23.59536″ | 11 |
| Cz25 | Cabo Delgado | Ilha de Ibo | C. zanguebariae | 12°20′15.7938″ | 40°35′23.59536″ | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberto, N.J.; Silva, L.O.E.; de Almeida, R.N.; Rodrigues, W.P.; Zandamela, A.J.; Ramalho, J.C.; Partelli, F.L. Mass and Nutrient Content of Beans and Husks of Coffea racemosa and Coffea zanguebariae Grown in Mozambique. Plants 2025, 14, 3401. https://doi.org/10.3390/plants14213401
Alberto NJ, Silva LOE, de Almeida RN, Rodrigues WP, Zandamela AJ, Ramalho JC, Partelli FL. Mass and Nutrient Content of Beans and Husks of Coffea racemosa and Coffea zanguebariae Grown in Mozambique. Plants. 2025; 14(21):3401. https://doi.org/10.3390/plants14213401
Chicago/Turabian StyleAlberto, Niquisse José, Larícia Olária Emerick Silva, Rafael Nunes de Almeida, Weverton Pereira Rodrigues, Augusto Jossias Zandamela, José Cochicho Ramalho, and Fábio Luiz Partelli. 2025. "Mass and Nutrient Content of Beans and Husks of Coffea racemosa and Coffea zanguebariae Grown in Mozambique" Plants 14, no. 21: 3401. https://doi.org/10.3390/plants14213401
APA StyleAlberto, N. J., Silva, L. O. E., de Almeida, R. N., Rodrigues, W. P., Zandamela, A. J., Ramalho, J. C., & Partelli, F. L. (2025). Mass and Nutrient Content of Beans and Husks of Coffea racemosa and Coffea zanguebariae Grown in Mozambique. Plants, 14(21), 3401. https://doi.org/10.3390/plants14213401

