Cornus mas: From Plant Taxonomy and Distribution Area to Highly Valorization of Phytochemicals by Microencapsulation in Biopolymeric Matrices Containing Probiotics
Abstract
1. Introduction
2. Results
2.1. Taxonomic Classification and Worldwide Distribution of Cornus mas
2.2. Phytochemical Characterization of the Extract from Cornelian Cherry
2.3. Co-Microencapsulation Efficiency and Phytochemical Profile of the Powders
2.4. In Vitro Digestion of Anthocyanins
2.5. Colorimetric Analysis
2.6. Viability of Lactic Acid Bacteria During Storage
2.7. Storage Stability of the Bioactive Compounds in the Encapsulated Powders
3. Materials and Methods
3.1. Materials
3.1.1. Chemicals and Reagents
3.1.2. Fresh Fruit Processing
3.2. Methods
3.2.1. Phytochemical Extractions
3.2.2. Microencapsulation of the Anthocyanins
3.2.3. Phytochemical Profile of the Extract and Freeze-Dried Powders
3.2.4. Viability of Lactic Acid Bacteria
3.2.5. Microencapsulation Efficiency of the Powders (%)
3.2.6. In Vitro Digestion of Anthocyanins
3.2.7. Colorimetric Analysis
3.2.8. Storage Stability
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallace, T.C. Anthocyanins in cardiovascular disease. Adv. Nutr. 2011, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pojer, E.; Mattivi, F.; Johnson, D.; Stockley, C.S. The case for anthocyanin consumption to promote human health: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 483–508. [Google Scholar] [CrossRef]
- Yousuf, B.; Gul, K.; Wani, A.A.; Singh, P. Health benefits of anthocyanins and their encapsulation for potential use in food systems: A review. Crit. Rev. Food Sci. Nutr. 2015, 56, 2223–2230. [Google Scholar] [CrossRef] [PubMed]
- Doniță, N.; Popescu, A.; Paucă-Comănescu, M.; Mihăilescu, S.; Biriș, I.A. Habitats from Romania (ro. Habitatele din România); Editura Tehnicã-Silvicã: București, Romania, 2005; pp. 1–442. ISBN 973-96001-4-X. [Google Scholar]
- Dinda, B.; Kyriakopoulos, A.M.; Dinda, S.; Zoumpourlis, V.; Thomaidis, N.S.; Velegraki, A.; Markopoulos, C.; Dinda, M. Cornus mas L. (cornelian cherry), an important European and Asian traditional food and medicine: Ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J. Ethnopharmacol. 2016, 193, 670–690. [Google Scholar] [CrossRef] [PubMed]
- Ahmadipour, S.H.; Vakili, M.; Ahmadipour, S. Phytotherapy for children’s nocturnal enuresis. J. Med. Biomed. Sci. 2018, 6, 23–29. [Google Scholar] [CrossRef]
- Szczepaniak, O.M.; Kobus-Cisowska, J.; Kusek, W.; Przeor, M. Functional properties of Cornelian cherry (Cornus mas L.): A comprehensive review. Eur. Food Res. Technol. 2019, 245, 2071–2087. [Google Scholar] [CrossRef]
- Enache, I.M.; Coman, G.; Rosca, S.; Vizireanu, C.; Mihalcea, L. Optimization conventional extraction of bioactive compounds from Cornus mas by RSM and determination of favorability factors by GIS technique. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12307. [Google Scholar] [CrossRef]
- Khezri, S.; Seyedsaleh, M.M.; Seyedsaleh, I.; Dastras, M.; Dehghan, P. Whey: Characteristics, Applications and Health Aspects. In Proceedings of the 3rd International Conference on Science and Engineering, Beijing, China, 8–10 July 2016; pp. 1–9. [Google Scholar]
- Cruz-Molina, A.V.D.L.; Ayala Zavala, J.F.; Bernal Mercado, A.T.; Cruz Valenzuela, M.R.; González-Aguilar, G.A.; Lizardi-Mendoza, J.; BrownBojorquez, F.; Silva-Espinoza, B.A. Maltodextrin encapsulation improves thermal and pH stability of green tea extract catechins. J. Food Proc. Preserv. 2021, 45, e15729. [Google Scholar] [CrossRef]
- Andersson, H.; Asp, N.G.; Bruce, Å.; Roos, S.; Wadström, T.; Wold, A.E. Health effects of probiotics and prebiotics a literature review on human studies. Scandinav. J. Nutr./Naringsforsk. 2001, 45, 58–75. [Google Scholar] [CrossRef]
- Ciocârlan, V. The Illustrated Flora of Romania-Pteridophyta and Spermatophyta (ro: Flora ilustrată a României-Pteridophyta et Spermatophyta); Editura Ceres: Bucureşti, Romania, 2009; pp. 1–1141. [Google Scholar]
- ITIS Report. (Cornus mas TSN 565094)—Integrated Taxonomic Information System—Report. 2020. Available online: https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic (accessed on 5 May 2025).
- GBIF—Global Biodiversity Information Facility. 2020. Available online: https://www.gbif.org/species/3082263 (accessed on 5 May 2025).
- Ercisli, S.; Orhan, E.; Esitken, A.; Yildirim, N.; Agar, G. Relationships among some cornelian cherry genotypes (Cornus mas L.) based on RAPD analysis. Genet. Resour. Crop Evol. 2008, 55, 613–618. [Google Scholar] [CrossRef]
- Fan, C.; Xiang, Q.Y. Phylogenetic relationships within Cornus (Cornaceae) based on 26S rDNA sequences. Am. J. Bot. 2001, 88, 1131–1138. [Google Scholar] [CrossRef]
- Xiang, Q.Y.; Thomas, D.T.; Zhang, W.; Manchester, S.R.; Murrell, Z. Species level phylogeny of the genus Cornus (Cornaceae) based on molecular and morphological evidence. Implications for taxonomy and Tertiary intercontinental migration. Taxon 2006, 55, 9–30. [Google Scholar] [CrossRef]
- Eyde, R.H. Comprehending Cornus: Puzzles and progress in the systematics of the dogwoods. Bot. Rev. 1988, 54, 233–351. [Google Scholar] [CrossRef]
- Maghradze, D.; Abashidze, E.; Bobokashvili, Z.; Tchipashvili, R.; Maghlakelidze, E. Cornelian cherry in Georgia. Acta Hortic. 2009, 818, 65–72. [Google Scholar] [CrossRef]
- Ercişli, S. Cornelian cherry germplasm resources of Turkey. J. Fruit Ornam. Plant Res. 2004, 12, 87–92. [Google Scholar]
- Dokoupil, L.; Řeznílek, V. Production and use of the cornelian cherry—Cornus mas L. Acta Univ. Agric. Silvic. Mendel. Brun. 2012, 60, 49–58. [Google Scholar] [CrossRef]
- Klimenko, S. The cornelian cherry (Cornus mas L.): Collection, preservation, and utilization of genetic resources. J. Fruit Ornam. Plant Res. 2004, 12, 93–98. [Google Scholar]
- Seeram, N.P.; Schutzki, R.; Chandra, A.; Nair, M.G. Characterization, quantification, and bioactivities of anthocyanins in Cornus species. J. Agric. Food Chem. 2002, 50, 2519–2523. [Google Scholar] [CrossRef]
- Yilmaz, K.U.; Ercisli, S.; Zengin, Y.; Sengul, M.; Kafkas, E.Y. Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chem. 2009, 114, 408–412. [Google Scholar] [CrossRef]
- Koyuncu, T.; Tosun, I.; Pinar, Y. Drying characteristics and heat energy requirement of cornelian cherry fruits (Cornus mas L.). J. Food Eng. 2007, 78, 735–739. [Google Scholar] [CrossRef]
- Hassanpour, H.; Yousef, H.; Jafar, H.; Mohammad, A. Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Sci. Hortic. 2011, 129, 459–463. [Google Scholar] [CrossRef]
- Vareed, S.K.; Reddy, M.K.; Schutzki, R.E.; Nair, M.G. Anthocyanins in Cornus alternifolia, Cornus controversa, Cornus kousa and Cornus florida fruits with health benefits. Life Sci. 2006, 78, 777–784. [Google Scholar] [CrossRef]
- Mattera, R.; Molnar, T.; Struwe, L. Cornus × elwinortonii and Cornus × rutgersensis (cornaceae), new names for two artificially produced hybrids of big-bracted dogwoods. PhytoKeys 2015, 55, 93–111. [Google Scholar] [CrossRef]
- Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef]
- Brindza, P.; Klimenko, S.V.; Grigorieva, O.; Brindza, J.; Tóth, D. Biological and commercial characteristics of cornelian cherry (Cornus mas L.) population in the gemer region of Slovakia. Acta Hortic. 2009, 818, 85–94. [Google Scholar] [CrossRef]
- Dumitraşcu, L.; Aprodu, I.; Stănciuc, N. A preliminary study on improving the extraction of phenolic compounds from cornelian cherry fruits. Ann. Univ. Dunarea De Jos Galati. Fasc. VI—Food Technol. 2019, 43, 100–109. [Google Scholar] [CrossRef]
- Enache, I.M.; Vasile, A.M.; Enachi, E.; Barbu, V.; Stănciuc, N.; Vizireanu, C. Co-microencapsulation of anthocyanins from cornelian cherry fruits and lactic acid bacteria in biopolymeric matrices by freeze-drying: Evidences on functional properties and applications in food. Polymers 2020, 12, 906. [Google Scholar] [CrossRef] [PubMed]
- Cosmulescu, S.N.; Trandafir, I.; Cornescu, F. Antioxidant capacity, total phenols, total flavonoids and colour component of cornelian Cherry (Cornus mas L.) wild genotypes. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 47, 390. [Google Scholar] [CrossRef]
- Stankovic, M.S.; Zia-Ul-Haq, M.; Bojovic, B.M.; Topuzovic, M.D. Total phenolics, flavonoid content and antioxidant power of leaf, flower and fruits from cornelian cherry (Cornus mas L.). Bulg. J. Agric. Sci. 2014, 20, 358–363. [Google Scholar]
- Moldovan, B.; Filip, A.; Clichici, S.; Suharoschi, R.; Bolfa, P.; David, L. Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. J. Funct. Foods 2016, 26, 77–87. [Google Scholar] [CrossRef]
- Kalra, E.K. Nutraceutical-definition and introduction. AAPS PharmSci 2003, 5, 27–28. [Google Scholar] [CrossRef] [PubMed]
- Vasile, M.A.; Milea, Ș.A.; Enachi, E.; Barbu, V.; Cîrciumaru, A.; Bahrim, G.E.; Râpeanu, G.; Stănciuc, N. Functional enhancement of bioactives from black beans and lactic acid bacteria into an innovative food ingredient by comicroencapsulation. Food Bioprocess Technol. 2020, 13, 978–987. [Google Scholar] [CrossRef]
- Colín-Cruz, M.A.; Pimentel-González, D.J.; Carrillo-Navas, H.; Alvarez-Ramírez, J.; Guadarrama-Lezama, A.Y. Co-encapsulation of bioactive compounds from blackberry juice and probiotic bacteria in biopolymeric matrices. LWT 2019, 110, 94–101. [Google Scholar] [CrossRef]
- Kim, I.; Moon, J.K.; Hur, S.J.; Lee, J. Structural changes in mulberry (Morus Microphylla. Buckl) and chokeberry (Aronia melanocarpa) anthocyanins during simulated in vitro human digestion. Food Chem. 2020, 318, 126449. [Google Scholar] [CrossRef] [PubMed]
- McGhie, T.K.; Walton, M.C. The bioavailability and absorption of anthocyanins: Towards a better understanding. Mol. Nutr. Food Res. 2007, 51, 702–713. [Google Scholar] [CrossRef]
- Fang, J. Bioavailability of anthocyanins. Drug Metab. Rev. 2014, 46, 508–520. [Google Scholar] [CrossRef]
- Oluwatosin, S.O.; Tai, S.L.; Fagan-Endres, M.A. Sucrose, maltodextrin and inulin efficacy as cryoprotectant, preservative and prebiotic–towards a freeze dried Lactobacillus plantarum topical probiotic. Biotechnol. Rep. 2022, 33, e00696. [Google Scholar] [CrossRef]
- Medeiros Alves-Santos, A.; Araújo Sugizaki, C.S.; Carielo Lima, C.; Veloso Naves, M.M. Prebiotic effect of dietary polyphenols: A systematic review. J. Funct. Foods 2020, 74, 104169. [Google Scholar] [CrossRef]
- Milea, Ș.A.; Vasile, M.A.; Crăciunescu, O.; Prelipcean, A.-M.; Bahrim, G.E.; Râpeanu, G.; Oancea, A.; Stănciuc, N. Co-microencapsulation of flavonoids from yellow onion skins and lactic acid bacteria lead to multifunctional ingredient for nutraceutical and pharmaceutics applications. Pharmaceutics 2020, 12, 1053. [Google Scholar] [CrossRef]
- Enache, I.M.; Vasile, M.A.; Crăciunescu, O.; Prelipcean, A.M.; Oancea, A.; Enachi, E.; Barbu, V.V.; Stănciuc, N.; Vizireanu, C. Co-microencapsulation of anthocyanins from cornelian cherry (Cornus mas L.) fruits and lactic acid bacteria into antioxidant and anti-proliferative derivative powders. Nutrients 2022, 14, 3458. [Google Scholar] [CrossRef] [PubMed]
- Oancea, A.-M.; Hasan, M.; Vasile, A.M.; Barbu, V.; Enachi, E.; Bahrim, G.; Râpeanu, G.; Silvi, S.; Stănciuc, N. Functional evaluation of microencapsulated anthocyanins from sour cherries skins extract in whey proteins isolate. LWT 2018, 95, 129–134. [Google Scholar] [CrossRef]
- ISO 8261 IDF122:2001; Milk and Milk Products—General Guidance for the Preparation of Test Samples, Initial Suspensions and Decimal Dilutions for Microbiological Examination. ISO: Geneva, Switzerland, 2001.
- Browning, W.D.; Contreras-Bulnes, R.; Brackett, M.G.; Brackett, W.W. Color differences: Polymerized composite and corresponding Vitapan Classical shade tab. J. Dent. 2009, 37, 34–39. [Google Scholar] [CrossRef] [PubMed]

| No. | Chemical Category | Phytochemical Compounds | Plant Organ |
|---|---|---|---|
| 1. | Polyphenolic structure compounds | ||
| 1.1 | Anthocyanins | cyanidin 3-0 galactoside (1), cyanidin-3-O-glucoside (2), cyanidin 3-O-rutinoside (3), cyanidin 3-O-robinobioside (4), delphinidin-3-O-galactoside (5), pelargonidin3-O-galactoside (6), pelargonidin-3-O-glucoside (7), pelargonidin3-O-rutinoziside (8), peonidin3-O-glucoside (9), pelargonidin 3-O robinobiozid (pelargonidin 3-O-rhamnosylgalactoside) (10) | fruits |
| 1.2. | Catechins | (+) catechin (11), (-) epicatechin (12), procyanidin B1 (13), procyanidin B2 (14) | fruits, leaves |
| 1.3. | Flavonoids | kampferol-3-O-galactoside (15), kaempferol 3-O glucoside (16), kaempferol 3-O-glucuronide (17), isorhamnetin 7-O-ramnozide (18), myricetin (19), 3-O-methyl ester naringenin (20), quercetin (21), quercetin 3-O-xyloside (22), quercetin 3-O-ramnoside (23), quercetin 3-O-glucoside (24), quercetin 3-O-galactoside (25), quercetin 3-0-, trans-aromadendrin (26), quercetin 3-O-robinobioside (27), quercetin 3-O-rutinoside (rutin) (28), quercetin 3-O-glucuronide (29), quercetin 3-O-galactozil 7-O-ramnoside (30), trans aromadendrin (31), 7-acetoxy-5,2′,4′,6′-β-pentahydroxy-3-methoxychalcone (32), 7-O-aromadendrin glucoside (33), 7,3′dihydroxy-5,4′dimethoxyflufonone (34) | flowers, leaves, fruits |
| 1.4. | Phenolic acids and tannins | quinic acid (35), chlorogenic acid (36), ellagic acid (37), ferulic acid (38), gallic acid (39), salicylic acid (40), shikimic acid (41), vanillic acid (42), p-coumaric acid (43), 3-O-cafenoylquinic acid (44), 5-O cafenoyl quinic acid (45) | flowers, fruits |
| 2. | Terpenoids | ||
| 2.1. | Monoterpenoids | a-terpeneol (46), borneol (47), camphor (48), carvone (49), carvacrol (50), limonen (51), verbenone (52), β-tujon (53), 1,8-cineole (54) | flowers |
| 2.2. | Triterpenoids | ursolic acid (55) | leaves |
| 2.3. | Iridoids | loganic acid (56), cornusid (57), loganin (58), sverosid (59), secologanin (60) | fruits |
| 3. | Carotenoids | (all-E)-neoxanthin (61), β-carotene-5,6-monooxide (62), β-carotene (63), β-cryptoxanthin (64), lutein (65), lutein-5,6-epoxide (66), luteoxanthin (67), (9Z,9′Z)-lutein (68), (9′Z)-neoxanthine (69), (13Z,13′Z)-lutein (70) | fruits |
| 4. | Vitamins | ascorbic acid (71), α-tocopherol (72), biotin (73), riboflavine (74) | fruits |
| 5. | Carbohydrates | glucose (75), sucrose (76), fructose (77) | fruits |
| 6. | Acids | ||
| 6.1. | Fatty acids | linoleic acid (78), oleic acid (79), a-linolenic acid (80), palmitoleic acid (81), palmitic acid (82), 2,4-heptadienoic acid (83) | fruits, leaves |
| 6.2. | Organic acids | citric acid (84), fumaric acid (85), isocitric acid (86), maleic acid (87), malonic acid (88), oxalic acid (89), succinic acid (90), tartaric acid (91) | fruits, leaves |
| 7. | Hydrocarbons | decane (92), undecane (93), dodecane (94), pentadecane (95), hexadecane (96), heptadecane (97), heneicosane (98), tricosane (99), pentacosane (100), heptacosane (101) | flowers |
| Crt. No. | Identified Compound | Results | Unit of Measurement |
|---|---|---|---|
| A. | Proteins and amino acids | ||
| 1. | Protein | 3.40 | g/kg |
| 2. | Aspartic acid | 0.30 | g/kg |
| 3. | Glutamic acid | 0.30 | g/kg |
| 4. | Arginine | 0.30 | g/kg |
| 5. | Lysine | 0.30 | g/kg |
| 6. | Glycine | 0.20 | g/kg |
| 7. | Phenylalanine | 0.20 | g/kg |
| 8. | Leucine | 0.20 | g/kg |
| 9. | Isoleucine | 0.20 | g/kg |
| 10. | Valine | 0.20 | g/kg |
| 11. | Alanine | 0.10 | g/kg |
| 12. | Histidine | 0.10 | g/kg |
| 13. | Proline | 0.10 | g/kg |
| 14. | Serine | 0.10 | g/kg |
| 15. | Threonine | 0.10 | g/kg |
| 16. | Tyrosine | 0.10 | g/kg |
| B. | Fatty acids | ||
| 17. | Linoleic acid | 76.70 | 100 g D.M. |
| 18. | Palmitic acid | 39.60 | 100 g D.M. |
| 19. | Linolenic acid | 27.50 | 100 g D.M. |
| 20. | Oleic acid | 18.30 | 100 g D.M. |
| 21. | Pentadecanoic acid | 5.10 | 100 g D.M. |
| 22. | Stearic acid | 4.40 | 100 g D.M. |
| 23. | Vaccenic acid | 3.70 | 100 g D.M. |
| 24. | Myristic acid | 3.50 | 100 g D.M. |
| 25. | Lauric acid | 1.80 | 100 g D.M. |
| 26. | Palmitoleic acid | 1.40 | 100 g D.M. |
| C. | Macro- and microelements | ||
| 27. | Potassium | 7.04–20.32 | g/kg |
| 28. | Nitrogen | 3.15–6.44 | g/kg |
| 29. | Calcium | 0.47–2.59 | g/kg |
| 30. | Phosphorus | 0.42–1.36 | g/kg |
| 31. | Sulfur | 0.39–1.64 | g/kg |
| 32. | Magnesium | 0.29–1.89 | g/kg |
| 33. | Iron | 6.00–171.00 | mg/kg |
| 34. | Pigments | 3.43–37.25 | mg/kg |
| 35. | Zinc | 3.30–41.00 | mg/kg |
| 36. | Copper | 1.20–8.10 | mg/kg |
| D. | Dry matter | 58.50–83.00 | % |
| Identified Compound | Extraction Method | Solvent Extraction | Results | Unit of Measurement | Reference |
|---|---|---|---|---|---|
| Total anthocyanin content | ultrasound | Ethanol 60%, ethanol 80% | 189.70–261.84 | mg C3G/100 g D.M | [31] |
| ultrasound | Hot water | 1.23 ± 0.10 | mg C3G/g DW | [32] | |
| Total polyphenolic content | ultrasound | Ethanol 60%, ethanol 80% | 1700.64–4854.61 | mg GAE/100 g D.M. | [31] |
| ultrasound | 20 mL methanol + 2% HCl | 163.69 ± 0.04 (S1) to 359.28 ± 9.57 (H2) | mg GAE/100 g FW 1 | [33] | |
| Total flavonoid content | Soxhlet method | Water Petroleum ether Methanol Acetone Ethyl actate | 3.53 ± 0.39 6.91 ± 0.09 7.18 ± 0.10 8.05 ± 0.76 41.49 ± 0.57 | mg Rutin/g extract | [34] |
| ultrasounds | 20 mL methanol + 2% HCl | 12.14 ± 0.01 (S1) to 64.48 ± 0.81 (H3) | mg QE 2/100 g FW | [33] | |
| Total antioxidant activity | maceration/stirring | 100 mL acetone | 677.88 ± 19.25 (ABTS 3 assay) 628.75 ± 17.41 (FRAP 4 assay) | µmol Trolox equivalents/100 g FW | [35] |
| ultrasound | 20 mL methanol + 2% HCl | 1.24 ± 0.01 (H1) to 2.71 ± 0.05 (H3) | mmolTrolox/100 g FW | [33] |
| Analyzed Parameter | WPI-MD | WPI-MD-LC |
|---|---|---|
| Anthocyanin microencapsulation efficiency (%) | 82.16 ± 0.78 b | 88.95 ± 0.42 a |
| Lacticaseibacillus casei 431® microencapsulation efficiency (%) | N.A. | 80 |
| Total anthocyanin content (mg C3G/g D.M.) | 11.16 ± 0.53 b | 12.86 ± 0.86 a |
| Total polyphenolic content (mg GAE/g D.M.) | 11.17 ± 0.11 b | 12.95 ± 0.38 a |
| Total flavonoid content (mg CE/g D.M.) | 4.97 ± 0.17 b | 5.43 ± 0.09 a |
| Total antioxidant activity (mMol TE/g D.M.) | 62.53 ± 1.17 a | 63.40 ± 0.88 a |
| Lactobacillus casei 431® (CFU/g D.M.) | N.A. | 3.80 × 109 |
| Time (min) | WPI-MD | WPI-MD-LC |
|---|---|---|
| Simulated gastric juice (SGJ) | ||
| T0 (mg C3G/g D.M.) | 7.96 ± 0.48 a,B | 9.03 ± 0.37 b,A |
| T30 (mg C3G/g D.M.) | 8.25 ± 0.74 a,A | 9.14 ± 0.89 b,A |
| T60 (mg C3G/g D.M.) | 8.42 ± 0.53 a,A | 9.62 ± 0.66 ab,A |
| T90 (mg C3G/g D.M.) | 8.46 ± 0.37 a,B | 10.87 ± 0.43 a,A |
| T120 (mg C3G/g D.M.) | 8.74 ± 0.47 a,B | 10.90 ± 0.21 a,A |
| Simulated intestinal juice (SIJ) | ||
| T0 (mg C3G/g D.M.) | 12.41 ± 0.18 c,A | 12.86 ± 0.89 c,A |
| T30 (mg C3G/g D.M.) | 13.22 ± 0.56 bc,A | 12.98 ± 0.17 c,A |
| T60 (mg C3G/g D.M.) | 13.69 ± 0.56 abc,A | 13.73 ± 0.61 bc,A |
| T90 (mg C3G/g D.M.) | 14.51 ± 0.63 ab,A | 15.63 ± 0.87 ab,A |
| T120 (mg C3G/g D.M.) | 15.09 ± 0.96 a,A | 16.15 ± 0.78 a,A |
| Variants | L* | a* | b* | c* | h* |
|---|---|---|---|---|---|
| WPI-MD | 46.29 ± 0.15 a | 19.20 ± 0.13 b | 6.57 ± 0.01 b | 20.29 ± 0.12 b | 0.33 ± 0.00 a |
| WPI-MD-LC | 44.09 ± 0.25 b | 25.01 ± 0.65 a | 6.89 ± 0.11 a | 25.94 ± 0.66 a | 0.27 ± 0.00 b |
| Variants | Storage Time (Days) | TAA (mMol/g D.M) | TPC (mg GAE/g D.M.) | TFC (mg CE/g D.M.) | TAC (mg C3G/g D.M.) |
|---|---|---|---|---|---|
| WPI-MD | 7 | 59.33 ± 0.29 a,A | 10.10 ± 0.05 a,B | 4.97 ± 0.39 a,A | 10.88 ± 0.39 a,A |
| 14 | 55.92 ± 0.92 b,A | 9.64 ± 0.14 b,B | 4.95 ± 0.29 a,A | 10.83 ± 0.65 a,B | |
| 21 | 49.51 ± 1.36 c,A | 9.16 ± 0.11 c,B | 4.94 ± 0.06 a,A | 10.64 ± 0.06 a,B | |
| 28 | 31.81 ± 0.41 d,A | 8.28 ± 0.04 d,B | 4.86 ± 0.25 a,A | 10.15 ± 0.12 a,B | |
| WPI-MD-LC | 7 | 59.49 ± 0.25 a,A | 12.70 ± 0.08 a,A | 5.08 ± 0.13 a,A | 12.23 ± 0.80 a,A |
| 14 | 56.14 ± 0.26 b,A | 12.62 ± 0.21 a,A | 5.13 ± 0.08 a,A | 12.21 ± 0.21 a,A | |
| 21 | 49.07 ± 0.15 c,A | 12.56 ± 0.11 a,A | 5.11 ± 0.13 a,A | 12.18 ± 0.93 a,A | |
| 28 | 32.69 ± 0.80 d,A | 12.49 ± 0.03 a,A | 4.96 ± 0.15 a,A | 12.13 ± 0.55 a,A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enache, I.-M.; Stănciuc, N.; Vasile, A.M.; Dinică, R.M.; Țupu, E.; Vizireanu, C. Cornus mas: From Plant Taxonomy and Distribution Area to Highly Valorization of Phytochemicals by Microencapsulation in Biopolymeric Matrices Containing Probiotics. Plants 2025, 14, 3298. https://doi.org/10.3390/plants14213298
Enache I-M, Stănciuc N, Vasile AM, Dinică RM, Țupu E, Vizireanu C. Cornus mas: From Plant Taxonomy and Distribution Area to Highly Valorization of Phytochemicals by Microencapsulation in Biopolymeric Matrices Containing Probiotics. Plants. 2025; 14(21):3298. https://doi.org/10.3390/plants14213298
Chicago/Turabian StyleEnache, Iuliana-Maria, Nicoleta Stănciuc, Aida Mihaela Vasile, Rodica Mihaela Dinică, Eliza Țupu, and Camelia Vizireanu. 2025. "Cornus mas: From Plant Taxonomy and Distribution Area to Highly Valorization of Phytochemicals by Microencapsulation in Biopolymeric Matrices Containing Probiotics" Plants 14, no. 21: 3298. https://doi.org/10.3390/plants14213298
APA StyleEnache, I.-M., Stănciuc, N., Vasile, A. M., Dinică, R. M., Țupu, E., & Vizireanu, C. (2025). Cornus mas: From Plant Taxonomy and Distribution Area to Highly Valorization of Phytochemicals by Microencapsulation in Biopolymeric Matrices Containing Probiotics. Plants, 14(21), 3298. https://doi.org/10.3390/plants14213298

