Direct Organogenesis of Epipremnum aureum G.S. Bunting for Mass Propagation
Abstract
1. Introduction
2. Results
2.1. Effect of Different PGRs on Shoot Multiplication of Pothos (Epipremnum aureum G.S. Bunting)
2.1.1. Effect of BA and Kn on Shoot Multiplication of Pothos
| Treatment | BA (mg/L) | Kn (mg/L) | Number of Shoots Per Explant | Shoot Length (cm) | Number of Leaves Per Shoot | Shoot Quality |
|---|---|---|---|---|---|---|
| Control | 2.50 | 0 | 1.86 ± 0.12 c | 1.26 ± 0.15 c | 1.23 ± 0.14 b | + |
| 2 | 0.25 | 1.96 ± 0.05 c | 1.42 ± 0.05 bc | 1.32 ± 0.07 b | ++ | |
| 3 | 0.50 | 2.23 ± 0.20 bc | 1.47 ± 0.03 bc | 1.14 ± 0.09 b | ++ | |
| 4 | 0.75 | 2.53 ± 0.20 ab | 1.66 ± 0.10 ab | 1.39 ± 0.01 ab | ++ | |
| 5 | 1.00 | 2.86 ± 0.11 a | 1.87 ± 0.04 a | 1.59 ± 0.04 a | +++ |
2.1.2. Effect of BA and α–NAA on Shoot Multiplication of Pothos
| Treatment | BA (mg/L) | α–NAA (mg/L) | Number of Shoots Per Explant | Shoot Length (cm) | Number of Leaves Per Shoot | Shoot Quality |
|---|---|---|---|---|---|---|
| Control | 2.50 | 0 | 1.40 ± 0.17 c | 1.20 ± 0.08 b | 1.23 ± 0.10 a | + |
| 2 | 0.25 | 1.53 ± 0.19 bc | 1.28 ± 0.03 ab | 1.28 ± 0.09 a | ++ | |
| 3 | 0.50 | 1.67 ± 0.13 bc | 1.37 ± 0.11 ab | 1.33 ± 0.06 a | ++ | |
| 4 | 0.75 | 2.00 ± 0.08 ab | 1.43 ± 0.07 ab | 1.39 ± 0.08 a | ++ | |
| 5 | 1.00 | 2.47 ± 0.21 a | 1.57 ± 0.12 a | 1.45 ± 0.06 a | + |
2.1.3. Effect of Kn and α-NAA on Shoot Multiplication of Pothos
| Treatment | Kn (mg/L) | α–NAA (mg/L) | Number of Shoots Per Explant | Shoot Length (cm) | Number of Leaves Per Shoot | Shoot Quality |
|---|---|---|---|---|---|---|
| Control | 2.50 | 0 | 1.27 ± 0.11 c | 1.10 ± 0.11 b | 1.02 ± 0.15 c | + |
| 2 | 0.25 | 1.40 ± 0.08 bc | 1.20 ± 0.15 ab | 1.33 ± 0.06 ab | ++ | |
| 3 | 0.50 | 1.67 ± 0.09 b | 1.33 ± 0.08 ab | 1.46 ± 0.06 ab | ++ | |
| 4 | 0.75 | 2.20 ± 0.17 a | 1.53 ± 0.05 a | 1.57 ± 0.04 a | ++ | |
| 5 | 1.00 | 1.73 ± 0.07 b | 1.43 ± 0.04 a | 1.22 ± 0.05 bc | ++ |
2.1.4. Effect of Coconut Water on Shoot Multiplication of Pothos
2.2. Effect of Different PGRs on Rooting Efficiency of Pothos (Epipremnum aureum G.S. Bunting)
2.2.1. Effect of α-NAA on Rooting Efficiency of Pothos
2.2.2. Effect of IBA on Rooting Efficiency of Pothos
2.2.3. Effect of α-NAA and Activated Charcoal on Rooting Efficiency of Pothos
2.3. Effect of Substrate on the Survival Rate and Development of Pothos (Epipremnum aureum G.S. Bunting)
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Croat, T.B. The Distribution of Araceae, Tropical Botany; Academic Press: London, UK, 1979. [Google Scholar]
- Moodley, D.; Procheş, Ş.; Wilson, J.R.U. Assessing and managing the threat posed by Epipremnum aureum in South Africa. S. Afr. J. Bot. 2017, 109, 178–188. [Google Scholar] [CrossRef]
- Wang, L.H.; Tang, W.Q.; Chan, J.J.; Lee, Y.J.; Chang, C.Y.; Fang, Z.Q.; Chu, C.C. First report of bacterial soft rot on Epipremnum aureum caused by Pectobacterium aroidearum in Taiwan. Plant Dis. 2023, 107, 550. [Google Scholar] [CrossRef]
- Anju, M.; Nidhi, S. Epipremnum aureum (Jade pothos): A multipurpose plant with its medicinal and pharmacological properties. J. Crit. Rev. 2015, 2, 21–25. [Google Scholar]
- Pan, S.P.; Pirker, T.; Kunert, O.; Kretschmer, N.; Hummelbrunner, S.; Latkolik, S.L.; Rappai, J.; Dirsch, V.M.; Bochkov, V.; Bauer, R. C13 megastigmane derivatives from Epipremnum pinnatum: β-Damascenone inhibits the expression of pro-inflammatory cytokines and leukocyte adhesion molecules as well as NF-κB signaling. Front. Pharmacol. 2019, 10, 1351. [Google Scholar] [CrossRef] [PubMed]
- Lastiri-Hernández, M.A.; Álvarez-Bernal, D.; Cruz-Cárdenas, G.; Silva-García, J.T.; Conde-Barajas, E.; Oregel-Zamudio, E. Potential of Epipremnum aureum and Bacopa monnieri (L.) Wettst for saline phytoremediation in Artificial Wetlands. Water 2023, 15, 194. [Google Scholar] [CrossRef]
- Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol. Rep. 2020, 26, e00450. [Google Scholar] [CrossRef] [PubMed]
- Sood, H. Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health; IntechOpen Limited: London, UK, 2020. [Google Scholar]
- Zhao, J.; Li, Z.T.; Cui, J.; Henny, R.J.; Gray, D.J.; Xie, J.; Chen, J. Efficient somatic embryogenesis and Agrobacterium-mediated transformation of pothos (Epipremnum aureum) ‘Jade’. Plant Cell Tiss. Organ. Cult. 2013, 114, 237–247. [Google Scholar] [CrossRef]
- Poothong, S.; Khen, T.; Chumphukam, O. In vitro mineral nutrition for improving growth and multiplication of stevia. Agric. Nat. Resour. 2018, 52, 477–483. [Google Scholar] [CrossRef]
- Qu, L.; Chen, J.; Henny, R.J.; Huang, Y.; Caldwell, R.D.; Robinson, C.A. Thidiazuron promotes adventitious shoot regeneration from pothos (Epipremnum aureum) leaf and petiole explants. Vitr. Cell. Dev. Biol. Plant 2002, 38, 268–271. [Google Scholar] [CrossRef]
- Chen, J.; Wei, X. Thidiazuron in Micropropagation of Aroid Plants. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Springer Singapore: Singapore, 2018; pp. 95–113. [Google Scholar]
- Zhang, Q.; Chen, J.; Henny, R. Direct somatic embryogenesis and plant regeneration from leaf, petiole, and stem explants of Golden Pothos. Plant Cell Rep. 2005, 23, 587–595. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Nie, Q.; Li, J.; Chen, J.; Henny, R.J. In vitro culture of Epipremnum aureum, Syngonium podophyllum, and Lonicera macranthodes, three important medicinal plants. Acta Hortic. 2007, 756, 155–162. [Google Scholar] [CrossRef]
- Hung, C.Y.; Xie, J.H. A comparison of plants regenerated from a variegated Epipremnum aureum. Biol. Plantarum 2009, 53, 610–616. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Q.; Xie, J.; Hung, C.Y.; Cui, J.; Henny, R.J.; Chen, J. Plant regeneration via direct somatic embryogenesis from leaf and petiole explants of Epipremnum aureum ‘Marble Queen’ and characterization of selected variants. Acta Physiol. Plant. 2012, 34, 1461–1469. [Google Scholar] [CrossRef]
- Villafuerte, D.E.; Angeles, E.; Bayog, A.; Duka, R.; Meñoza, N.L.; Sanchez, M.A.; De Jesus, R. Root organogenesis induction in Epipremnum aureum stem cuttings with plant biostimulants and synthetic rooting hormone. bioRxiv 2021. [Google Scholar] [CrossRef]
- Abdalla, N.; El-Ramady, H.; Seliem, M.K.; El-Mahrouk, M.E.; Taha, N.; Bayoumi, Y.; Shalaby, T.A.; Dobránszki, J. An academic and technical overview on plant micropropagation challenges. Horticulturae 2022, 8, 677. [Google Scholar] [CrossRef]
- Arab, M.M.; Yadollahi, A.; Ahmadi, H.; Eftekhari, M.; Maleki, M. Mathematical modeling and optimizing of in vitro hormonal combination for G√ЧN15 vegetative rootstock proliferation using artificial neural network-genetic algorithm (ANN-GA). Front. Plant Sci. 2017, 8, 1853. [Google Scholar] [CrossRef]
- Yunita, R.; Nugraha, M.F.I.; Sari, L.; Rajamuddin, M.A.L. In vitro multiplication of Pothos tener shoots. IOP Conf. Ser. Earth Environ. Sci. 2023, 1255, 012045. [Google Scholar] [CrossRef]
- Prando, M.A.S.; Chiavazza, P.; Faggio, A.; Contessa, C. Effect of coconut water and growth regulator supplements on in vitro propagation of Corylus avellana L. Sci. Hortic. 2014, 171, 91–94. [Google Scholar] [CrossRef]
- Holmes, J.E.; Lung, S.; Collyer, D.; Punja, Z.K. Variables affecting shoot growth and plantlet recovery in tissue cultures of drug-type Cannabis sativa L. Front. Plant Sci. 2021, 12, e-732344. [Google Scholar] [CrossRef]
- Elizabeth, M.F.; Lucia, C.S. Roles for IBA-derived auxin in plant development. J. Exp. Bot. 2018, 69, 169–177. [Google Scholar] [CrossRef]
- Raspor, M.; Motyka, V.; Kaleri, A.R.; Ninković, S.; Tubić, L.; Cingel, A.; Ćosić, T. Integrating the roles for cytokinin and auxin in de novo shoot organogenesis: From hormone uptake to signalling outputs. Int. J. Mol. Sci. 2021, 22, 8554. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Kataria, V.; Shekhawat, N.S. In vitro propagation, ex vitro rooting and leaf micromorphology of Bauhinia racemosa Lam.: A leguminous tree with medicinal values. Physiol. Mol. Biol. Plants 2017, 23, 969–977. [Google Scholar] [CrossRef]
- Yan, Y.H.; Li, J.L.; Zhang, X.Q.; Yang, W.Y.; Wan, Y.; Ma, Y.M.; Zhu, Y.Q.; Peng, Y.; Huang, L.K. Effect of naphthalene acetic acid on adventitious root development and associated physiological changes in stem cutting of Hemarthria compressa. PLoS ONE 2014, 9, e90700. [Google Scholar] [CrossRef]
- Kentelky, E.; Jucan, D.; Cantor, M.; Szekely-Varga, Z. Efficacy of different concentrations of NAA on selected ornamental woody shrubs cuttings. Horticulturae 2021, 7, 464. [Google Scholar] [CrossRef]
- Arvind, A.; Husen, A. Environmental, Physiological and Chemical Controls of Adventitious Rooting in Cuttings; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Pan, M.; Staden, J.; Debergh, P. The effect of activated charcoal and auxins on root formation by hypocotyl segments of Daucus carota. S. Afr. J. Bot. 2002, 68, 349–356. [Google Scholar] [CrossRef]
- Poniewozik, M.; Parzymies, M.; Szot, P. Effect of activated charcoal and ascorbic acid on in vitro morphogenesis and o-dihydroxyphenols content in Paphiopedilum insignae. Hort. Sci. 2022, 49, 48–51. [Google Scholar] [CrossRef]
- Dong, F.; Meng-yu, L.; Wang, J.; Shi, X.; Liang, X.; Liu, Y.; Yang, F.; Zhao, H.; Chai, J.; Zhou, J. Transcriptome analysis of activated charcoal-induced growth promotion of wheat seedlings in tissue culture. BMC Genet. 2020, 21, 69. [Google Scholar] [CrossRef] [PubMed]
- Barbez, E.; Dünser, K.; Gaidora, A.; Lendl, T.; Busch, W. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2017, 114, e-201613499. [Google Scholar] [CrossRef]
- Alarcon, M.; Salguero, J.; Lloret, P. Auxin modulated initiation of lateral roots is linked to pericycle cell length in maize. Front. Plant Sci. 2019, 10, 11. [Google Scholar] [CrossRef]
- Edelmann, H.G. Plant root development: Is the classical theory for auxin-regulated root growth. Protoplasma 2022, 259, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Kalasnikova, E.A.; Khuat, Q.V.; Kirakosyan, R.N. Effect of plant growth regulators on in vitro plant regeneration of purple amomum (Amomum longiligulare T.L. Wu.). Russ. J. Plant Physiol. 2022, 69, 168. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Dinh, S.T.; Ninh, T.T.; Nong, H.T.; Dang, T.T.T.; Khuat, Q.V.; Dang, A.T.P.; Ly, M.T.; Kirakosyan, R.N.; Kalashnikova, E.A. In vitro propagation of the Dendrobium anosmum Lindl. collected in Vietnam. Agronomy 2022, 12, 324. [Google Scholar] [CrossRef]









| Treatment | Medium | Coconut Water (mg/L) | Number of Shoots Per Explant | Shoot Length (cm) | Number of Leaves Per Shoot | Shoot Quality |
|---|---|---|---|---|---|---|
| Control | 2.50 mg/L BA + 1.00 mg/L Kn | 0 | 1.93 ± 0.10 a | 1.82 ± 0.16 b | 1.17 ± 0.06 b | + |
| 2 | 10 | 2.06 ± 0.30 a | 3.01 ± 0.07 a | 1.24 ± 0.08 ab | ++ | |
| 3 | 20 | 2.13 ± 0.09 a | 3.24 ± 0.21 a | 1.30 ± 0.10 ab | ++ | |
| 4 | 50 | 2.26 ± 0.27 a | 3.35 ± 0.17 a | 1.35 ± 0.04 ab | ++ | |
| 5 | 100 | 2.33 ± 0.18 a | 3.49 ± 0.14 a | 1.40 ± 0.08 a | ++ |
| Treatment | α–NAA (mg/L) | Rooting Percentage (%) | Number of Roots Per Explant | Root Length (cm) | Root Quality |
|---|---|---|---|---|---|
| Control | 0 | 40.00 ± 3.46 c | 0.40 ± 0.06 c | 1.05 ± 0.06 b | + |
| 2 | 0.25 | 60.00 ± 2.65 b | 0.63 ± 0.05 bc | 1.09 ± 0.02 b | ++ |
| 3 | 0.50 | 60.00 ± 2.00 b | 0.80 ± 0.08 b | 1.14 ± 0.08 b | ++ |
| 4 | 1.00 | 80.00 ± 8.72 a | 1.60 ± 0.15 a | 1.35 ± 0.03 a | ++ |
| 5 | 2.00 | 66.67 ± 2.96 ab | 0.83 ± 0.06 b | 1.18 ± 0.05 b | ++ |
| Treatment | IBA (mg/L) | Rooting Percentage (%) | Number of Roots Per Explant | Root Length (cm) | Root Quality |
|---|---|---|---|---|---|
| Control | 0 | 33.33 ± 3.53 c | 0.40 ± 0.08 d | 1.28 ± 0.14 a | + |
| 2 | 0.25 | 46.67 ± 3.38 b | 0.60 ± 0.03 c | 0.84 ± 0.06 b | + |
| 3 | 0.50 | 60.00 ± 3.06 a | 1.00 ± 0.05 a | 1.00 ± 0.06 ab | + |
| 4 | 1.00 | 53.33 ± 1.20 ab | 0.80 ± 0.08 b | 0.88 ± 0.07 b | + |
| 5 | 2.00 | 53.33 ± 2.19 ab | 0.60 ± 0.04c | 1.02 ± 0.11 ab | ++ |
| Treatment | α-NAA (mg/L) | Activated Charcoal (g/L) | Rooting Percentage (%) | Number of Roots Per Explant | Root Length (cm) | Root Quality |
|---|---|---|---|---|---|---|
| Control 1 | 0 | 0 | 80.00 ± 6.03 b | 1.60 ± 0.23 ab | 1.19 ± 0.09 c | ++ |
| Control 2 | 0.25 | 0.5 | 86.67 ± 2.91 ab | 1.13 ± 0.20 b | 2.12 ± 0.12 ab | + |
| 3 | 0.50 | 93.33 ± 1.20 a | 1.93 ± 0.05 a | 2.37 ± 0.19 a | + | |
| 4 | 1.00 | 80.00 ± 1.15 b | 1.67 ± 0.23 ab | 1.87 ± 0.03 b | ++ | |
| 5 | 2.00 | 86.67 ± 2.85 ab | 1.53 ± 0.17 ab | 1.14 ± 0.06 cd | ++ | |
| 6 | 0 | 86.67 ± 2.03 ab | 1.33 ± 0.06 b | 0.85 ± 0.06 d | ++ |
| Treatment | Substrate | Survival Rate (%) | Plantlet Height (cm) | Number of Leaves Per Plantlet | Plantlet Quality |
|---|---|---|---|---|---|
| Control | Soil | 50.00 ± 3.21 b | 4.22 ± 0.19 b | 2.00 ± 0.09 b | + |
| 2 | Soil + sand (ratio 1:1) | 58.33 ± 4.06 b | 4.69 ± 0.29 ab | 2.33 ± 0.16 b | + |
| 3 | Soil + sand (ratio 7:3) | 58.33 ± 2.73 b | 4.94 ± 0.39 ab | 3.00 ± 0.25 a | + |
| 4 | Soil + coconut fiber (ratio 1:1) | 75.00 ± 2.31 a | 5.27 ± 0.14 a | 3.39 ± 0.09 a | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.T.; Khuat, Q.V.; Ninh, T.T.; Dang, A.T.P.; Nguyen, L.T.; Kalasnıkova, E.A.; Batukaev, A.A.; Kirakosyan, R.N. Direct Organogenesis of Epipremnum aureum G.S. Bunting for Mass Propagation. Plants 2025, 14, 3299. https://doi.org/10.3390/plants14213299
Nguyen HT, Khuat QV, Ninh TT, Dang ATP, Nguyen LT, Kalasnıkova EA, Batukaev AA, Kirakosyan RN. Direct Organogenesis of Epipremnum aureum G.S. Bunting for Mass Propagation. Plants. 2025; 14(21):3299. https://doi.org/10.3390/plants14213299
Chicago/Turabian StyleNguyen, Hai T., Quyet V. Khuat, Thao T. Ninh, Anh T. P. Dang, Le T. Nguyen, Elena A. Kalasnıkova, Abdulmalik A. Batukaev, and Rima N. Kirakosyan. 2025. "Direct Organogenesis of Epipremnum aureum G.S. Bunting for Mass Propagation" Plants 14, no. 21: 3299. https://doi.org/10.3390/plants14213299
APA StyleNguyen, H. T., Khuat, Q. V., Ninh, T. T., Dang, A. T. P., Nguyen, L. T., Kalasnıkova, E. A., Batukaev, A. A., & Kirakosyan, R. N. (2025). Direct Organogenesis of Epipremnum aureum G.S. Bunting for Mass Propagation. Plants, 14(21), 3299. https://doi.org/10.3390/plants14213299

