The Sugar Transporter Gene Family in Colored Calla Lily: Identification, Expression Patterns, and Roles in Soft Rot Disease
Abstract
1. Introduction
2. Results
2.1. Identification of ZeSTP Gene Family Members in Z. elliottiana
2.2. Phylogenetic Analysis of the ZeSTP Family in Z. elliottiana
2.3. Analysis of Sequence Structural Characteristics of the ZeSTP Gene Family in Z. elliottiana
2.4. Chromosomal Localization Analysis of the ZeSTP Gene Family in Z. elliottiana
2.5. Intraspecific Collinearity Analysis of STP Genes in Z. elliottiana and Interspecific Collinearity Analysis with O. sativa
2.6. Expression Analysis of ZeSTP Genes in Z. elliottiana After Inoculation with P. carotovora subsp. carotovora
2.7. Sugar Transport Properties of ZeSTP7, ZeSTP15, and ZeSTP17
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Treatments
4.2. Identification and Physicochemical Property Analysis of Sugar Transporter Protein-Encoding Genes in Calla Lily
4.3. Construction of the Phylogenetic Tree and Structural Analysis of the ZeSTP Gene Family
4.4. Conserved Motif and Domain Analysis of ZeSTP Proteins
4.5. Chromosomal Localization Analysis of the ZeSTP Gene Family
4.6. Intraspecific and Interspecific Collinearity Analysis
4.7. Quantitative Analysis
4.8. Expression Analysis of ZeSTP Genes in Colored Calla Lily After P. carotovora subsp. carotovora Inoculation
4.9. Sugar Transport Activity of ZeSTP7, ZeSTP14, and ZeSTP17 in Hexose-Mutant Yeast
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Primer | Forward (5′ to 3′) | Reverse (5′ to 3′) |
---|---|---|
ZeSTP1-qRT | TGCCACCTCTGCCATCAT | GCCAGTTGGGCTTGCTAT |
ZeSTP2-qRT | CTGCTTCCTCGCCTACCA | GCGTCCCACCTGTTGTTA |
ZeSTP3-qRT | CGTTGGCATCGGTTTCGC | TCCGCCCAGGATCTTGTT |
ZeSTP4-qRT | GGGGAGGTCAGGGAAGTA | CAGTTGGAAGCCGATGTT |
ZeSTP5-qRT | CTAGTGCTATGTGCGCTCTTT | GCTCTTGCTCTGACCCTGT |
ZeSTP6-qRT | GGGGAGGTCGGGAAAGTA | AAGATGGAGCCAAGGATGA |
ZeSTP7-qRT | CATCGCACAAGCCTTCCTC | GATGGGCACGTTCTTGGTCT |
ZeSTP8-qRT | GGTCTTCCAGCAGTTCACG | GACGCAGGCTTCTAGCAAT |
ZeSTP9-qRT | GCTTCGCAAACCAGTCGG | TCTTGTTGGCAGCGTAGTTCA |
ZeSTP10-qRT | GAGATGGCAAGGCAGGTCC | CACGGGCGAGTAGAACAGG |
ZeSTP11-qRT | GCATAGTAGCGTCCAGTCG | CTTGGCGGTGTTGTAGTTC |
ZeSTP12-qRT | TAACGTCTTCGCCACCTTCG | ATTTGCCCTCGCCGCTCA |
ZeSTP13-qRT | TGGAGCCCGCTGAAAGGT | TGGCGTGTCAATGTATCG |
ZeSTP14-qRT | CCAACATCCTGAAGCGAAAG | CGGTGATAACGGCGGACA |
ZeSTP15-qRT | CGACATCCACGCCGAGTT | GGAAGAAGGGAATGAGCACC |
ZeSTP16-qRT | ACTGGCGGTGCTACTGCTGA | AGGAACACGCCGTACTTGAGG |
ZeSTP17-qRT | CATCGGGCGTATCCTTCTG | ATCTTGTTGGCTGCGTAGTTC |
ZeSTP18-qRT | GGCTACGACATCGGCATTT | TCTTGGACTGGGAGTTCTTCTT |
ZeActin-qRT | ATTTATGAGGGTTATGCTCTTCC | GGAGGAACTGCTCTTGGCTGTCT |
pDR196 | CCCAGTCACGACGTTGTAAAACG | |
pDR196-STP7 | tcccccgggctgcaggaattcATGCCGGCCGGCGGGTTC | ggtaccgggccccccctcgagGTTGGCACCGTTGTGGCC |
pDR196-STP15 | tcccccgggctgcaggaattcATGGCGGGCGGGGCGTTC | ggtaccgggccccccctcgagGACCACATAGGCGGTCTTCTTG |
pDR196-STP17 | tcccccgggctgcaggaattcATGGCCGGGGGAGCCTTC | ggtaccgggccccccctcgagTACATGGCCGTGGGCCCC |
References
- Afzal, S.; Chaudhary, N.; Singh, N.K. Role of soluble sugars in metabolism and sensing under abiotic stress. In Plant Growth Regulators; Aftab, T., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 305–334. ISBN 978-3-030-61152-1. [Google Scholar]
- Julius, B.T.; Leach, K.A.; Tran, T.M.; Mertz, R.A.; Braun, D.M. Sugar transporters in plants: New insights and discoveries. Plant Cell Physiol. 2017, 58, 1442–1460. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.E.; Lemoine, R.; Sauer, N. Sugar transporters in higher plants—A diversity of roles and complex regulation. Trends Plant Sci. 2000, 5, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-Q.; Hou, B.-H.; Lalonde, S.; Takanaga, H.; Hartung, M.L.; Qu, X.-Q.; Guo, W.-J.; Kim, J.-G.; Underwood, W.; Chaudhuri, B.; et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 2010, 468, 527–532. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, S.; Yu, F.; Tang, J.; Yu, L.; Wang, H.; Li, J. Genome-wide identification and expression profiling of sugar transporter protein (STP) family genes in cabbage (Brassica oleracea var. capitata L.) reveals their involvement in clubroot disease responses. Genes 2019, 10, 71. [Google Scholar] [CrossRef]
- Wei, X.; Liu, F.; Chen, C.; Ma, F.; Li, M. The Malus domestica sugar transporter gene family: Identifications based on genome and expression profiling related to the accumulation of fruit sugars. Front. Plant Sci. 2014, 5, 569. [Google Scholar] [CrossRef]
- Büttner, M. The Arabidopsis sugar transporter (AtSTP) family: An update. Plant Biol. 2010, 12, 35–41. [Google Scholar] [CrossRef]
- Sherson, S.M.; Hemmann, G.; Wallace, G.; Forbes, S.; Germain, V.; Stadler, R.; Bechtold, N.; Sauer, N.; Smith, S.M. Monosaccharide/proton symporter AtSTP1 plays a major role in uptake and response of Arabidopsis seeds and seedlings to sugars. Plant J. 2000, 24, 849–857. [Google Scholar] [CrossRef]
- Stadler, R.; Büttner, M.; Ache, P.; Hedrich, R.; Ivashikina, N.; Melzer, M.; Shearson, S.M.; Smith, S.M.; Sauer, N. Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis. Plant Physiol. 2003, 133, 528–537. [Google Scholar] [CrossRef]
- Otori, K.; Tanabe, N.; Tamoi, M.; Shigeoka, S. Sugar transporter protein 1 (STP1) contributes to regulation of the genes involved in shoot branching via carbon partitioning in Arabidopsis. Biosci. Biotechnol. Biochem. 2019, 83, 472–481. [Google Scholar] [CrossRef]
- Rottmann, T.; Klebl, F.; Schneider, S.; Kischka, D.; Rüscher, D.; Sauer, N.; Stadler, R. Sugar transporter STP7 specificity for L-Arabinose and d-Xylose contrasts with the typical hexose transporters STP8 and STP12. Plant Physiol. 2018, 176, 2330–2350. [Google Scholar] [CrossRef] [PubMed]
- Lemonnier, P.; Gaillard, C.; Veillet, F.; Verbeke, J.; Lemoine, R.; Coutos-Thévenot, P.; La Camera, S. Expression of arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Mol. Biol. 2014, 85, 473–484. [Google Scholar] [CrossRef]
- Schneidereit, A.; Scholz-Starke, J.; Büttner, M. Functional characterization and expression analyses of the glucose-specific AtSTP9 monosaccharide transporter in pollen of Arabidopsis. Plant Physiol. 2003, 133, 182–190. [Google Scholar] [CrossRef]
- Scholz-Starke, J.; Büttner, M.; Sauer, N. AtSTP6, a new pollen-specific H+-Monosaccharide symporter from Arabidopsis. Plant Physiol. 2003, 131, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Truernit, E.; Schmid, J.; Epple, P.; Illig, J.; Sauer, N. The sink-specific and stress-regulated Arabidopsis STP4 gene: Enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. Plant Cell 1996, 8, 2169–2182. [Google Scholar] [CrossRef] [PubMed]
- Vignault, C.; Vachaud, M.; Cakir, B.; Glissant, D.; Dédaldéchamp, F.; Büttner, M.; Atanassova, R.; Fleurat-Lessard, P.; Lemoine, R.; Delrot, S. VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. J. Exp. Bot. 2005, 56, 1409–1418. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Dang, H.; Chen, Z.; Wu, J.; Chen, Y.; Chen, S.; Luo, L. Genome-wide identification, expression, and functional analysis of the sugar transporter gene family in cassava (Manihot esculenta). Int. J. Mol. Sci. 2018, 19, 987. [Google Scholar] [CrossRef]
- Büttner, M.; Sauer, N. Monosaccharide transporters in plants: Structure, function and physiology. Biochim. Biophys. Acta (BBA)-Biomembr. 2000, 1465, 263–274. [Google Scholar] [CrossRef]
- Kong, W.; An, B.; Zhang, Y.; Yang, J.; Li, S.; Sun, T.; Li, Y. Sugar transporter proteins (STPs) in gramineae crops: Comparative analysis, phylogeny, evolution, and expression profiling. Cells 2019, 8, 560. [Google Scholar] [CrossRef]
- Doidy, J.; Grace, E.; Kühn, C.; Simon-Plas, F.; Casieri, L.; Wipf, D. Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci. 2012, 17, 413–422. [Google Scholar] [CrossRef]
- Endler, A.; Meyer, S.; Schelbert, S.; Schneider, T.; Weschke, W.; Peters, S.W.; Keller, F.; Baginsky, S.; Martinoia, E.; Schmidt, U.G. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol. 2006, 141, 196–207. [Google Scholar] [CrossRef]
- Yamada, K.; Saijo, Y.; Nakagami, H.; Takano, Y. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 2016, 354, 1427–1430. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, Z.; Cao, H.; Zhou, F.; Si, H.; Zang, J.; Xing, J.; Zhang, K.; Dong, J. Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance. J. Integr. Agric. 2023, 22, 3458–3473. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Tan, L.; Huai, B.; Ma, X.; Pan, Q.; Zheng, P.; Wen, Y.; Zhang, Q.; Zhao, Q.; et al. AtSTP8, an endoplasmic reticulum-localised monosaccharide transporter from Arabidopsis, is recruited to the extrahaustorial membrane during powdery mildew infection. New Phytol. 2021, 230, 2404–2419. [Google Scholar] [CrossRef]
- Huai, B.; Yang, Q.; Wei, X.; Pan, Q.; Kang, Z.; Liu, J. TaSTP13 contributes to wheat susceptibility to stripe rust possibly by increasing cytoplasmic hexose concentration. BMC Plant Biol. 2020, 20, 49. [Google Scholar] [CrossRef]
- Huai, B.; Yang, Q.; Qian, Y.; Qian, W.; Kang, Z.; Liu, J. ABA-induced sugar transporter TaSTP6 promotes wheat susceptibility to stripe rust. Plant Physiol. 2019, 181, 1328–1343. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Qiao, L.; Hu, L.; Wang, X.; Wang, J.; Ruan, X.; Yang, G.; Yin, G.; Wang, C.; et al. The sugar transporter family in wheat (Triticum aestivum. L): Genome-wide identification, classification, and expression profiling during stress in seedlings. PeerJ 2021, 9, e11371. [Google Scholar] [CrossRef] [PubMed]
- Chandel, A.; Thakur, M.; Rakwal, A.; Chauhan, S.; Bhargava, B. Exogenous applications of gibberellic acid modulate the growth, flowering and longevity of calla lily. Heliyon 2023, 9, e16319. [Google Scholar] [CrossRef]
- Niyokuri, A.N.; Nyalala, S. Calla lily soft rot causal agents, symptoms, virulence and management: A review. Int. J. Hortic. Sci. 2023, 29, 60–68. [Google Scholar] [CrossRef]
- He, P.; Cui, W.; He, P.; Munir, S.; Li, X.; Wu, Y.; Li, Y.; Asad, S.; He, P.; He, Y. Bacillus amyloliquefaciens subsp. plantarum KC-1 inhibits Zantedeschia hybrida soft rot and promote plant growth. Biol. Control 2021, 154, 104500. [Google Scholar] [CrossRef]
- Wright, P.J.; Triggs, C.M. Factors affecting bacterial soft rot of Zantedeschia tubers. N. Z. J. Crop Hortic. Sci. 2009, 37, 345–350. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, T.; Wang, D.; Gou, R.; Jiang, Y.; Zhang, G.; Zheng, Y.; Gao, D.; Chen, L.; Zhang, X.; et al. Chromosome level genome assembly of colored calla lily (Zantedeschia elliottiana). Sci. Data 2023, 10, 605. [Google Scholar] [CrossRef]
- Elemento, O.; Gascuel, O.; Lefranc, M.-P. Reconstructing the duplication history of tandemly repeated genes. Mol. Biol. Evol. 2002, 19, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Huang, W.; Zhang, L.; Li, D.-Z.; Qi, J.; Ma, H. Phylogenomic profiles of whole-genome duplications in poaceae and landscape of differential duplicate retention and losses among major poaceae lineages. Nat. Commun. 2024, 15, 3305. [Google Scholar] [CrossRef]
- Ma, P.-F.; Liu, Y.-L.; Jin, G.-H.; Liu, J.-X.; Wu, H.; He, J.; Guo, Z.-H.; Li, D.-Z. The pharus latifolius genome bridges the gap of early grass evolution. Plant Cell 2021, 33, 846–864. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, Y.; Yang, T.; Gou, R.; Jiang, Y.; Zeng, Z.; Zhang, G.; Wei, Z. Genome-wide identification of class III peroxidases in colored calla lily and enhanced resistance to soft rot bacteria. Physiol. Mol. Plant Pathol. 2024, 130, 102236. [Google Scholar] [CrossRef]
- Lynch, M.; Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 2000, 290, 1151–1155. [Google Scholar] [CrossRef]
- Guo, L.; Lu, S.; Liu, T.; Nai, G.; Ren, J.; Gou, H.; Chen, B.; Mao, J. Genome-wide identification and abiotic stress response analysis of PP2C gene family in woodland and pineapple strawberries. Int. J. Mol. Sci. 2023, 24, 4049. [Google Scholar] [CrossRef]
- Liao, X.; Zhu, W.; Zhou, J.; Li, H.; Xu, X.; Zhang, B.; Gao, X. Repetitive DNA sequence detection and its role in the human genome. Commun. Biol. 2023, 6, 954. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; An, B.; Zhong, H.; Yang, J.; Kong, W.; Li, Y. A novel insight into functional divergence of the MST gene family in rice based on comprehensive expression patterns. Genes 2019, 10, 239. [Google Scholar] [CrossRef]
- Moore, J.W.; Herrera-Foessel, S.; Lan, C.; Schnippenkoetter, W.; Ayliffe, M.; Huerta-Espino, J.; Lillemo, M.; Viccars, L.; Milne, R.; Periyannan, S.; et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 2015, 47, 1494–1498. [Google Scholar] [CrossRef]
- Monnereau, B.; Gaillard, C.; Maslard, C.; Noceto, P.-A.; Lebeurre, V.; Cantereau, A.; Coutos-Thévenot, P.; La Camera, S. Ectopic expression of the grape hexose transporter VvHT5 restores STP13-deficiency in Arabidopsis and promotes fungal resistance to Botrytis cinerea. Plant Pathol. 2025, 74, 493–506. [Google Scholar] [CrossRef]
- Skoppek, C.I.; Punt, W.; Heinrichs, M.; Ordon, F.; Wehner, G.; Boch, J.; Streubel, J. The barley HvSTP13GR mutant triggers resistance against biotrophic fungi. Mol. Plant Pathol. 2022, 23, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Miller, A.J.; Qiu, B.; Huang, Y.; Zhang, K.; Fan, G.; Liu, X. The role of sugar transporters in the battle for carbon between plants and pathogens. Plant Biotechnol. J. 2024, 22, 2844–2858. [Google Scholar] [CrossRef]
- Voegele, R.T.; Mendgen, K.W. Nutrient uptake in rust fungi: How Sweet is parasitic life? Euphytica 2011, 179, 41–55. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, Y.; Zhang, Y.; Chai, C.; Wei, G.; Wei, X.; Xu, H.; Wang, M.; Ouwerkerk, P.B.F.; Zhu, Z. Molecular cloning, functional characterization and expression analysis of a novel monosaccharide transporter gene OsMST6 from rice (Oryza sativa L.). Planta 2008, 228, 525–535. [Google Scholar] [CrossRef]
- Luo, S.; Zheng, S.; Li, Z.; Cao, J.; Wang, B.; Xu, Y.; Chong, K. Monosaccharide transporter OsMST6 is activated by transcription factor OsERF120 to enhance chilling tolerance in rice seedlings. J. Exp. Bot. 2024, 75, 4038–4051. [Google Scholar] [CrossRef] [PubMed]
- Perfileva, A.I.; Strekalovskaya, E.I.; Klushina, N.V.; Gorbenko, I.V.; Krutovsky, K.V. The causative agent of soft rot in plants, the phytopathogenic bacterium Pectobacterium carotovorum subsp. carotovorum: A brief description and an overview of methods to control it. Agronomy 2025, 15, 1578. [Google Scholar] [CrossRef]
- Shu, F.; Han, J.; Ndayambaje, J.P.; Jia, Q.; Sarsaiya, S.; Jain, A.; Huang, M.; Liu, M.; Chen, J. Transcriptomic analysis of Pinellia ternata (Thunb.) Breit T2 plus line provides insights in host responses resist Pectobacterium carotovorum infection. Bioengineered 2021, 12, 1173–1188. [Google Scholar] [CrossRef]
- Djami-Tchatchou, A.T.; Matsaunyane, L.B.T.; Ntushelo, K. Gene Expression Responses of tomato inoculated with Pectobacterium carotovorum subsp. carotovorum. MicrobiologyOpen 2019, 8, e911. [Google Scholar] [CrossRef]
- Djami-Tchatchou, A.T.; Matsaunyane, L.B.T.; Kalu, C.M.; Ntushelo, K. Gene expression and evidence of coregulation of the production of some metabolites of chilli pepper inoculated with Pectobacterium carotovorum ssp. carotovorum. Funct. Plant Biol. 2019, 46, 1114–1122. [Google Scholar] [CrossRef]
- Lee, J.-H.; Hong, J.-B.; Hong, S.-B.; Choi, M.-S.; Jeong, K.-Y.; Park, H.-J.; Hwang, D.-J.; Lee, S.-D.; Ra, D.-S.; Heu, S.-G. Disease-resistant transgenic Arabidopsis carrying the expI gene from Pectobacterium carotovorum subsp. carotovorum SL940. Plant Pathol. J. 2008, 24, 183–190. [Google Scholar] [CrossRef]
- Chen, C.; Yuan, F.; Li, X.; Ma, R.; Xie, H. Jasmonic scid and ethylene signaling pathways participate in the defense response of Chinese cabbage to Pectobacterium carotovorum infection. J. Integr. Agric. 2021, 20, 1314–1326. [Google Scholar] [CrossRef]
- Gupta, M.; Dubey, S.; Jain, D.; Chandran, D. The Medicago truncatula sugar transport protein 13 and its Lr67res-like variant confer powdery mildew resistance in legumes via defense modulation. Plant Cell Physiol. 2021, 62, 650–667. [Google Scholar] [CrossRef]
- Luzzatto, T.; Yishay, M.; Lipsky, A.; Ion, A.; Belausov, E.; Yedidia, I. Efficient, long-lasting resistance against the soft rot bacterium Pectobacterium carotovorum in calla lily provided by the plant activator methyl jasmonate. Plant Pathol. 2007, 56, 692–701. [Google Scholar] [CrossRef]
- Yishay, M.; Burdman, S.; Valverde, A.; Luzzatto, T.; Ophir, R.; Yedidia, I. Differential pathogenicity and genetic diversity among Pectobacterium carotovorum ssp. carotovorum isolates from monocot and dicot hosts support early genomic divergence within this taxon. Environ. Microbiol. 2008, 10, 2746–2759. [Google Scholar] [CrossRef] [PubMed]
- Mount, D.W. Using the basic local alignment search tool (BLAST). Cold Spring Harb. Protoc. 2007, 2007, pdb.top17. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Wieczorke, R.; Krampe, S.; Weierstall, T.; Freidel, K.; Hollenberg, C.P.; Boles, E. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 1999, 464, 123–128. [Google Scholar] [CrossRef]
Gene Name | Gene ID | CDS (bp) | Amino Acid | MW (kDa) | pI | TMD |
---|---|---|---|---|---|---|
ZeSTP1 | Zh01G023300 | 396 | 131 | 15.1 | 10.86 | 2 |
ZeSTP2 | Zh02G215400 | 330 | 109 | 12 | 5.5 | 2 |
ZeSTP3 | Zh04G018400 | 1539 | 512 | 55.9 | 8.96 | 12 |
ZeSTP4 | Zh04G074400 | 318 | 105 | 11.5 | 5.1 | 2 |
ZeSTP5 | Zh04G094400 | 591 | 196 | 21 | 10.37 | 2 |
ZeSTP6 | Zh06G150400 | 258 | 85 | 9.1 | 8.71 | 2 |
ZeSTP7 | Zh07G168800 | 1599 | 532 | 58.1 | 9.35 | 12 |
ZeSTP8 | Zh07G169400 | 1527 | 508 | 55.9 | 6.34 | 12 |
ZeSTP9 | Zh07G201000 | 1533 | 510 | 55.5 | 8.98 | 12 |
ZeSTP10 | Zh08G065200 | 1560 | 519 | 56.3 | 9.03 | 12 |
ZeSTP11 | Zh09G034900 | 399 | 132 | 14.1 | 9.69 | 1 |
ZeSTP12 | Zh09G113600 | 1566 | 521 | 56.1 | 9.21 | 12 |
ZeSTP13 | Zh09G113700 | 2463 | 820 | 91.9 | 9.24 | 8 |
ZeSTP14 | Zh09G158700 | 1554 | 517 | 56.6 | 9.4 | 12 |
ZeSTP15 | Zh09G158800 | 1554 | 517 | 56.5 | 9.05 | 12 |
ZeSTP16 | Zh11G017400 | 1572 | 523 | 54.7 | 9.78 | 12 |
ZeSTP17 | Zh12G088700 | 1557 | 518 | 56.5 | 8.96 | 12 |
ZeSTP18 | Zh13G066500 | 1185 | 394 | 42.2 | 9.74 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Zeng, Z.; Lu, Y.; Wang, Y.; Zhang, M.; Wu, L.; Tian, W.; Chen, D.; Zhang, G.; Wei, Z. The Sugar Transporter Gene Family in Colored Calla Lily: Identification, Expression Patterns, and Roles in Soft Rot Disease. Plants 2025, 14, 2631. https://doi.org/10.3390/plants14172631
Huang X, Zeng Z, Lu Y, Wang Y, Zhang M, Wu L, Tian W, Chen D, Zhang G, Wei Z. The Sugar Transporter Gene Family in Colored Calla Lily: Identification, Expression Patterns, and Roles in Soft Rot Disease. Plants. 2025; 14(17):2631. https://doi.org/10.3390/plants14172631
Chicago/Turabian StyleHuang, Xiaorong, Zhen Zeng, Yushan Lu, Yi Wang, Menghan Zhang, Lele Wu, Wei Tian, Defeng Chen, Guojun Zhang, and Zunzheng Wei. 2025. "The Sugar Transporter Gene Family in Colored Calla Lily: Identification, Expression Patterns, and Roles in Soft Rot Disease" Plants 14, no. 17: 2631. https://doi.org/10.3390/plants14172631
APA StyleHuang, X., Zeng, Z., Lu, Y., Wang, Y., Zhang, M., Wu, L., Tian, W., Chen, D., Zhang, G., & Wei, Z. (2025). The Sugar Transporter Gene Family in Colored Calla Lily: Identification, Expression Patterns, and Roles in Soft Rot Disease. Plants, 14(17), 2631. https://doi.org/10.3390/plants14172631