Protein Prenylation in Plants: Mechanisms and Functional Implications
Abstract
:1. Introduction
2. Mechanisms of Protein Prenylation in Plants
3. Functional Implications of Protein Prenylation in Plants
3.1. Protein Prenyltransferase
Gene | Function/Phenotype | Hormone-Related Regulation |
---|---|---|
ERA1 (FTase-β) | 1 Predominantly expressed in meristematic regions, guard cells, and floral tissues; 2 Mutant (era1): enlarged meristem, increased flower organs, and reduced branches under short days; 3 Regulate the development of meristematic tissues and the closure of stomata; 4 With GGB functional redundancy (double mutant era1/ggb phenotype similar to plp mutant); | 1 Negative regulation of ABA signaling (era1 mutant is sensitive to ABA); 2 Promote lateral root formation by reducing ABI3 expression; 3 No significant impact on auxin-inhibited primary root growth. |
PLP (FT/GGT I-α) | Mutant (plp): significantly larger meristems and an increased number of floral organs, particularly petals | The double mutant era1/plp was less sensitive to external ABA than era1 plants themselves |
GGB (GGT I-β) | 1 The single mutation shows an insignificant phenotypic difference, but exhibits a similar PLP defect to the era1 double mutation; 2 Overexpression of GGB can partially rescue the era1 phenotype. | 1 Enhance auxin-induced lateral root formation; 2 Negative regulation of ABA signal (sensitive only in stomatal response, does not affect seed germination). |
ICMT/ICME | 1 ICMTox and ICMEox plants, similar to ggb mutants, showed no developmental defects; 2 ICMT: inhibits ABA signal (overexpression leads to ABA insensitivity); 3 ICME: promotes ABA signal (overexpression leads to ABA hypersensitivity); 4 ICME is induced by ABA, forming a positive feedback regulation. | Related to ABA signal directly, but has no significant correlation with auxin signal (NAA does not change ICME expression). |
3.2. Prenylated Proteins
Stress/ Growth | Gene | Plant a | Partial Gene ID (Genebank, NCBI, Tair) | Definition | Function | Modification b |
---|---|---|---|---|---|---|
Plant growth and development | APETALA1 | Arabidopsis | Z16421 | MADS box transcription factor | Floral meristem identity, sepal and petal identity development | F [38] |
AtIPT3 | Arabidopsis | AT3G63110 | Pentenyltransferase, cytokinin synthase | Cytokinin biosynthesis | F [45] | |
AtNAP1;1 | Arabidopsis | At4g26110 | Nucleosome assembly protein 1 | Cell proliferation and expansion | F [46] | |
AUX2–11 (IAA4) | Arabidopsis | L15450 | AUX/IAA family of transcriptional repressors | Auxin signaling | GG [47] | |
ROP1 | Arabidopsis | AT3G51300 | Rho GTPases | Tip growth of pollen tubes | GG [48] | |
Plant growth and development; abiotic stress; biotic stress | RABs | Arabidopsis | U46925 etc. | Rab GTPases | Vesicular transport, and ethylene signaling, plant development and environmental stress adaptation | GG [25,49,50,51,52,53] |
abiotic stress | J2; J3 | Arabidopsis | AT5G22060; AT3G44110 | HSP40 proteins DnaJ homologues | Heat stress; small RNA-mediated gene regulation | F [54,55] |
DnaJ1 | Atriplex nummularia | P43644; AJ299254 | DnaJ-like heat shock chaperones | Response to high temperature, NaCl stress, and ABA signaling | F [36] | |
DnaJ1 | Tobacco; tomato etc. | AJ299254; XP_004231500 etc. | DnaJ-like heat shock chaperones | Drought response and ABA signaling | P [56,57,58] | |
CYP85A2 | Arabidopsis | AT3G30180 | Cytochrome P450 enzyme | Brassinolide accumulation, ABA response, and drought tolerance | F [59] | |
PhCaM53 | Petunia x hybrida | M80831 | Calmodulin-like proteins | Calcium signal transduction | F, GG [60] | |
OsCaM61 | Oryza sativa | U37936 | P [61] | |||
ATFP3 | Arabidopsis | U64906 | CCH copper chaperone-related | Response to heavy metals | F [62] | |
Cdl19 | Arabidopsis | AF517549 | Cd-induced genes | Response to heavy metals | P [63] | |
AtRAC7 | Arabidopsis | AF079484 | Rho GTPases | Signal transduction, cytoskeleton morphogenesis, ROS production, and hormone response | F, GG [64] | |
biotic stress | HIPP1 | Wheat | AKB91757.1 | Heavy metal-associated isoprenylated plant protein | Powdery mildew resistance | P [8] |
AGG1; AGG2 | Arabidopsis | At3g63420; At3g22942 | Heterotrimeric G proteins Gγ subunit | ABA, auxin signaling, plant defense | F, GG [34] | |
ROP6 | Arabidopsis | OAP00270 | Rho GTPases | Developmental and pathogen response signaling | F. GG [65,66,67] | |
MUB1,3-6 | Arabidopsis | At3g01050 etc. | Ubiquitin-fold proteins | Unknown | F, GG [35] | |
Unknown | GmFP1; 2; 3 | Glycine max | U13179-U13181 | Glycine max farnesylated protein | Unknown | F [68] |
4. Commonality of Plant and Animal Modification Mechanisms and the Diversity of Their Functions
5. Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jung, D.; Bachmann, H.S. Regulation of protein prenylation. Biomed. Pharmacother. 2023, 164, 114915. [Google Scholar] [CrossRef] [PubMed]
- Krute, C.N.; Carroll, R.K.; Rivera, F.E.; Weiss, A.; Young, R.M.; Shilling, A.; Botlani, M.; Varma, S.; Baker, B.J.; Shaw, L.N. The disruption of prenylation leads to pleiotropic rearrangements in cellular behavior in Taphylococcus aureus. Mol. Microbiol. 2015, 95, 819–832. [Google Scholar] [CrossRef] [PubMed]
- Crowell, D.N.; Huizinga, D.H. Protein isoprenylation: The fat of the matter. Trends Plant Sci. 2009, 14, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Crowell, D.N. Functional implications of protein isoprenylation in plants. Prog. Lipid Res. 2000, 39, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Concepción, M.; Toledo-Ortiz, G.; Yalovsky, S.; Caldelari, D.; Gruissem, W. Carboxyl-methylation of prenylated calmodulin CaM53 is required for efficient plasma membrane targeting of the protein. Plant J. 2000, 24, 775–784. [Google Scholar] [CrossRef]
- Hála, M.; Žárský, V. Protein Prenylation in Plant Stress Responses. Molecules 2019, 24, 3906. [Google Scholar] [CrossRef]
- Galichet, A.; Gruissem, W. Protein farnesylation in plants—Conserved mechanisms but different targets. Curr. Opin. Plant Biol. 2003, 6, 530–535. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Li, Y.; Chen, Y.; Tang, X.; Zhao, J.; Yu, F.; Wang, H.; Xiao, J.; Liu, J.; et al. Isoprenylation modification is required for HIPP1-mediated powdery mildew resistance in wheat. Plant Cell Environ. 2023, 46, 288–305. [Google Scholar] [CrossRef]
- de Abreu-Neto, J.B.; Turchetto-Zolet, A.C.; de Oliveira, L.F.V.; Bodanese Zanettini, M.H.; Margis-Pinheiro, M. Heavy metal-associated isoprenylated plant protein (HIPP): Characterization of a family of proteins exclusive to plants. FEBS J. 2013, 280, 1604–1616. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Bailey, T.L.; Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1994, 2, 28–36. [Google Scholar] [PubMed]
- Nambara, E.; McCourt, P. Protein farnesylation in plants: A greasy tale. Curr. Opin. Plant Biol. 1999, 2, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-concepción, M.; Yalovsky, S.; Gruissem, W. Protein prenylation in plants: Old friends and new targets. Plant Mol. Biol. 1999, 39, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 2015, 148, 63–106. [Google Scholar] [CrossRef] [PubMed]
- Pazouki, L.; Niinemets, Ü. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance. Front. Plant Sci. 2016, 7, 1019. [Google Scholar] [CrossRef]
- Pu, X.; Dong, X.; Li, Q.; Chen, Z.; Liu, L. An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics. J. Integr. Plant Biol. 2021, 63, 1211–1226. [Google Scholar] [CrossRef]
- Chappell, J. Biochemistry and Molecular Biology of the Isoprenoid Biosynthetic Pathway in Plants. Annu. Rev. Plant Biol. 1995, 46, 521–547. [Google Scholar] [CrossRef]
- Yalovsky, S.; Rodr Guez-Concepción, M.; Gruissem, W. Lipid modifications of proteins—Slipping in and out of membranes. Trends Plant Sci. 1999, 4, 439–445. [Google Scholar] [CrossRef]
- Andrews, M.; Huizinga, D.H.; Crowell, D.N. The CaaX specificities of Arabidopsis protein prenyltransferases explain era1 and ggb phenotypes. BMC Plant Biol. 2010, 10, 118. [Google Scholar] [CrossRef]
- Park, H.W.; Boduluri, S.R.; Moomaw, J.F.; Casey, P.J.; Beese, L.S. Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution. Science 1997, 275, 1800–1804. [Google Scholar] [CrossRef]
- Wang, M.; Casey, P.J. Protein prenylation: Unique fats make their mark on biology. Nat. Rev. Mol. Cell Biol. 2016, 17, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Marchwicka, A.; Kamińska, D.; Monirialamdari, M.; Błażewska, K.M.; Gendaszewska-Darmach, E. Protein Prenyltransferases and Their Inhibitors: Structural and Functional Characterization. Int. J. Mol. Sci. 2022, 23, 5424. [Google Scholar] [CrossRef] [PubMed]
- Running, M.P. The role of lipid post–translational modification in plant developmental processes. Front. Plant Sci. 2014, 5, 50. [Google Scholar] [CrossRef] [PubMed]
- Wojtas, M.; Swiezewski, S.; Sarnowski, T.J.; Plochocka, D.; Chelstowska, A.; Tolmachova, T.; Swiezewska, E. Cloning and characterization of Rab Escort Protein (REP) from Arabidopsis thaliana. Cell Biol. Int. 2007, 31, 246–251. [Google Scholar] [CrossRef]
- Shi, W.; Zeng, Q.; Kunkel, B.N.; Running, M.P. Arabidopsis Rab Geranylgeranyltransferases Demonstrate Redundancy and Broad Substrate Specificity in Vitro. J. Biol. Chem. 2016, 291, 1398–1410. [Google Scholar] [CrossRef]
- Leung, K.F.; Baron, R.; Seabra, M.C. Thematic review series: Lipid Posttranslational Modifications. Geranylgeranylation of Rab GTPases. J. Lipid Res. 2006, 47, 467–475. [Google Scholar] [CrossRef]
- Zhang, F.L.; Casey, P.J. Influence of metal ions on substrate binding and catalytic activity of mammalian protein geranylgeranyltransferase type-I. Biochem. J. 1996, 320 Pt 3, 925–932. [Google Scholar] [CrossRef]
- Bracha-Drori, K.; Shichrur, K.; Lubetzky, T.C.; Yalovsky, S. Functional analysis of Arabidopsis postprenylation CaaX processing enzymes and their function in subcellular protein targeting. Plant Physiol. 2008, 148, 119–131. [Google Scholar] [CrossRef]
- Dai, Q.; Choy, E.; Chiu, V.; Romano, J.; Slivka, S.R.; Steitz, S.A.; Michaelis, S.; Philips, M.R. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem. 1998, 273, 15030–15034. [Google Scholar] [CrossRef]
- Zhang, F.L.; Casey, P.J. PROTEIN PRENYLATION: Molecular Mechanisms and Functional Consequences. Annu. Rev. Biochem. 1996, 65, 241–269. [Google Scholar] [CrossRef]
- Tao, W.; Lijuan, L.; Zeyu, L.; Lianguang, S.; Quan, W. Cloning and Characterization of Protein Prenyltransferase Alpha Subunit in Rice. Rice Sci. 2021, 28, 557–566. [Google Scholar] [CrossRef]
- Shen, M.; Pan, P.; Li, Y.; Li, D.; Yu, H.; Hou, T. Farnesyltransferase and geranylgeranyltransferase I: Structures, mechanism, inhibitors and molecular modeling. Drug Discov. Today 2015, 20, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Deem, A.K.; Bultema, R.L.; Crowell, D.N. Prenylcysteine methylesterase in Arabidopsis thaliana. Gene 2006, 380, 159–166. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, X.; Running, M.P. Dual lipid modification of Arabidopsis Ggamma-subunits is required for efficient plasma membrane targeting. Plant Physiol. 2007, 143, 1119–1131. [Google Scholar] [CrossRef]
- Downes, B.P.; Saracco, S.A.; Lee, S.S.; Crowell, D.N.; Vierstra, R.D. MUBs, a family of ubiquitin-fold proteins that are plasma membrane-anchored by prenylation. J. Biol. Chem. 2006, 281, 27145–27157. [Google Scholar] [CrossRef]
- Zhu, J.K.; Bressan, R.A.; Hasegawa, P.M. Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature. Proc. Natl. Acad. Sci. USA 1993, 90, 8557–8561. [Google Scholar] [CrossRef]
- Bonetta, D.; Bayliss, P.; Sun, S.; Sage, T.; McCourt, P. Farnesylation is involved in meristem organization in Arabidopsis. Planta 2000, 211, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Yalovsky, S.; Rodríguez-Concepción, M.; Bracha, K.; Toledo-Ortiz, G.; Gruissem, W. Prenylation of the floral transcription factor APETALA1 modulates its function. Plant Cell 2000, 12, 1257–1266. [Google Scholar] [CrossRef]
- Running, M.P.; Lavy, M.; Sternberg, H.; Galichet, A.; Gruissem, W.; Hake, S.; Ori, N.; Yalovsky, S. Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc. Natl. Acad. Sci. USA 2004, 101, 7815–7820. [Google Scholar] [CrossRef]
- Johnson, C.D.; Chary, S.N.; Chernoff, E.A.; Zeng, Q.; Running, M.P.; Crowell, D.N. Protein geranylgeranyltransferase I is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis. Plant Physiol. 2005, 139, 722–733. [Google Scholar] [CrossRef]
- Huang, X.; Kurata, N.; Wei, X.; Wang, Z.X.; Wang, A.; Zhao, Q.; Zhao, Y.; Liu, K.; Lu, H.; Li, W.; et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 2012, 490, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Brady, S.M.; Sarkar, S.F.; Bonetta, D.; McCourt, P. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 2003, 34, 67–75. [Google Scholar] [CrossRef]
- Huizinga, D.H.; Omosegbon, O.; Omery, B.; Crowell, D.N. Isoprenylcysteine Methylation and Demethylation Regulate Abscisic Acid Signaling in Arabidopsis. Plant Cell 2008, 20, 2714–2728. [Google Scholar] [CrossRef] [PubMed]
- Shipton, C.A.; Parmryd, I.; Swiezewska, E.; Andersson, B.; Dallner, G. Isoprenylation of plant proteins in vivo. Isoprenylated proteins are abundant in the mitochondria and nuclei of spinach. J. Biol. Chem. 1995, 270, 566–572. [Google Scholar] [CrossRef]
- Galichet, A.; Hoyerová, K.; Kamínek, M.; Gruissem, W. Farnesylation directs AtIPT3 subcellular localization and modulates cytokinin biosynthesis in Arabidopsis. Plant Physiol. 2008, 146, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Galichet, A.; Gruissem, W. Developmentally controlled farnesylation modulates AtNAP1;1 function in cell proliferation and cell expansion during Arabidopsis leaf development. Plant Physiol. 2006, 142, 1412–1426. [Google Scholar] [CrossRef] [PubMed]
- Caldelari, D.; Sternberg, H.; Rodríguez-Concepción, M.; Gruissem, W.; Yalovsky, S. Efficient prenylation by a plant geranylgeranyltransferase-I requires a functional CaaL box motif and a proximal polybasic domain. Plant Physiol. 2001, 126, 1416–1429. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Zhu, J.K.; Yang, Z. Localization of a Rho GTPase Implies a Role in Tip Growth and Movement of the Generative Cell in Pollen Tubes. Plant Cell 1996, 8, 293–303. [Google Scholar] [CrossRef]
- Biermann, B.; Randall, S.K.; Crowell, D.N. Identification and isoprenylation of plant GTP-binding proteins. Plant Mol. Biol. 1996, 31, 1021–1028. [Google Scholar] [CrossRef]
- Goody, R.S.; Wu, Y.; Itzen, A. Prenylation of RabGTPases, Their Delivery to Membranes, and Rab Recycling. In Ras Superfamily Small G Proteins: Biology and Mechanisms 2: Transport; Wittinghofer, A., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 3–16. [Google Scholar]
- Bolte, S.; Schiene, K.; Dietz, K.J. Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. Plant Mol. Biol. 2000, 42, 923–936. [Google Scholar] [CrossRef]
- Moshkov, I.E.; Mur, L.A.; Novikova, G.V.; Smith, A.R.; Hall, M.A. Ethylene regulates monomeric GTP-binding protein gene expression and activity in Arabidopsis. Plant Physiol. 2003, 131, 1705–1717. [Google Scholar] [CrossRef] [PubMed]
- Sohn, E.J.; Kim, E.S.; Zhao, M.; Kim, S.J.; Kim, H.; Kim, Y.-W.; Lee, Y.J.; Hillmer, S.; Sohn, U.; Jiang, L.; et al. Rha1, an Arabidopsis Rab5 Homolog, Plays a Critical Role in the Vacuolar Trafficking of Soluble Cargo Proteins. Plant Cell 2003, 15, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.R.; Wang, T.Y.; Weng, C.P.; Duong, N.K.T.; Wu, S.J. AtJ3, a specific HSP40 protein, mediates protein farnesylation-dependent response to heat stress in Arabidopsis. Planta 2019, 250, 1449–1460. [Google Scholar] [CrossRef]
- Sjögren, L.; Floris, M.; Barghetti, A.; Völlmy, F.; Linding, R.; Brodersen, P. Farnesylated heat shock protein 40 is a component of membrane-bound RISC in Arabidopsis. J. Biol. Chem. 2018, 293, 16608–16622. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, X.; Li, J.; Su, X.; Liu, J. Overexpression of a tobacco J-domain protein enhances drought tolerance in transgenic Arabidopsis. Plant Physiol. Biochem. 2014, 83, 100–106. [Google Scholar] [CrossRef]
- Zhu, J.K.; Shi, J.; Bressan, R.A.; Hasegawa, P.M. Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone DnaJ. Plant Cell 1993, 5, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, Y.; Wu, K.; Ding, Y.; Tang, M.; Zhang, X.; Pan, Y.; Wu, L.; Su, C.; Hong, Z.; et al. The DnaJ1 heat shock protein interacts with the flavanone 3-hydroxylase-like protein F3HL to synergistically enhance drought tolerance by scavenging reactive oxygen species in tomato. Plant J. 2025, 121, e70097. [Google Scholar] [CrossRef]
- Northey, J.G.; Liang, S.; Jamshed, M.; Deb, S.; Foo, E.; Reid, J.B.; McCourt, P.; Samuel, M.A. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat. Plants 2016, 2, 16114. [Google Scholar] [CrossRef]
- Rodríguez-Concepción, M.; Yalovsky, S.; Zik, M.; Fromm, H.; Gruissem, W. The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. EMBO J. 1999, 18, 1996–2007. [Google Scholar] [CrossRef]
- Dong, A.; Xin, H.; Yu, Y.; Sun, C.; Cao, K.; Shen, W.-H. The subcellular localization of an unusual rice calmodulin isoform, OsCaM61, depends on its prenylation status. Plant Mol. Biol. 2002, 48, 203–210. [Google Scholar] [CrossRef]
- Dykema, P.E.; Sipes, P.R.; Marie, A.; Biermann, B.J.; Crowell, D.N.; Randall, S.K. A new class of proteins capable of binding transition metals. Plant Mol. Biol. 1999, 41, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Yamaguchi, Y.; Koizumi, N.; Sano, H. Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis. Plant J. 2002, 32, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Lavy, M.; Bracha-Drori, K.; Sternberg, H.; Yalovsky, S. A Cell-Specific, Prenylation-Independent Mechanism Regulates Targeting of Type II RACs. Plant Cell 2002, 14, 2431–2450. [Google Scholar] [CrossRef]
- Poraty-Gavra, L.; Zimmermann, P.; Haigis, S.; Bednarek, P.; Hazak, O.; Stelmakh, O.R.; Sadot, E.; Schulze-Lefert, P.; Gruissem, W.; Yalovsky, S. The Arabidopsis Rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways. Plant Physiol. 2013, 161, 1172–1188. [Google Scholar] [CrossRef] [PubMed]
- Sorek, N.; Poraty, L.; Sternberg, H.; Buriakovsky, E.; Bar, E.; Lewinsohn, E.; Yalovsky, S. Corrected and Republished from: Activation Status-Coupled Transient S-Acylation Determines Membrane Partitioning of a Plant Rho-Related GTPase. Mol. Cell Biol. 2017, 37, e00333-17. [Google Scholar] [CrossRef]
- Sorek, N.; Yalovsky, S. Protein–Lipid Modifications and Targeting of ROP/RAC and Heterotrimeric G Proteins. In Integrated G Proteins Signaling in Plants; Yalovsky, S., Baluška, F., Jones, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 71–90. [Google Scholar]
- Biermann, B.J.; Morehead, T.A.; Tate, S.E.; Price, J.R.; Randall, S.K.; Crowell, D.N. Novel isoprenylated proteins identified by an expression library screen. J. Biol. Chem. 1994, 269, 25251–25254. [Google Scholar] [CrossRef]
- Vernoud, V.; Horton, A.C.; Yang, Z.; Nielsen, E. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol. 2003, 131, 1191–1208. [Google Scholar] [CrossRef]
- Preuss, M.L.; Schmitz, A.J.; Thole, J.M.; Bonner, H.K.; Otegui, M.S.; Nielsen, E. A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J. Cell Biol. 2006, 172, 991–998. [Google Scholar] [CrossRef]
- Šamaj, J.; Müller, J.; Beck, M.; Böhm, N.; Menzel, D. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci. 2006, 11, 594–600. [Google Scholar] [CrossRef]
- Grebe, M.; Xu, J.; Möbius, W.; Ueda, T.; Nakano, A.; Geuze, H.J.; Rook, M.B.; Scheres, B. Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr. Biol. 2003, 13, 1378–1387. [Google Scholar] [CrossRef]
- Sorek, N.; Gutman, O.; Bar, E.; Abu-Abied, M.; Feng, X.; Running, M.P.; Lewinsohn, E.; Ori, N.; Sadot, E.; Henis, Y.I.; et al. Differential effects of prenylation and s-acylation on type I and II ROPS membrane interaction and function. Plant Physiol. 2011, 155, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Barghetti, A.; Sjögren, L.; Floris, M.; Paredes, E.B.; Wenkel, S.; Brodersen, P. Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance. Genes. Dev. 2017, 31, 2282–2295. [Google Scholar] [CrossRef] [PubMed]
- Iki, T.; Yoshikawa, M.; Meshi, T.; Ishikawa, M. Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J. 2012, 31, 267–278. [Google Scholar] [CrossRef]
- Greb, T.; Clarenz, O.; Schafer, E.; Muller, D.; Herrero, R.; Schmitz, G.; Theres, K. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes. Dev. 2003, 17, 1175–1187. [Google Scholar] [CrossRef]
- Li, S.; Liu, L.; Zhuang, X.; Yu, Y.; Liu, X.; Cui, X.; Ji, L.; Pan, Z.; Cao, X.; Mo, B.; et al. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 2013, 153, 562–574. [Google Scholar] [CrossRef]
- Li, S.; Le, B.; Ma, X.; Li, S.; You, C.; Yu, Y.; Zhang, B.; Liu, L.; Gao, L.; Shi, T.; et al. Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. eLife 2016, 5, e22750. [Google Scholar] [CrossRef]
- Wang, J.; Bao, J.; Zhou, B.; Li, M.; Li, X.; Jin, J. The osa-miR164 target OsCUC1 functions redundantly with OsCUC3 in controlling rice meristem/organ boundary specification. New Phytol. 2021, 229, 1566–1581. [Google Scholar] [CrossRef]
- Zhou, Y.; Honda, M.; Zhu, H.; Zhang, Z.; Guo, X.; Li, T.; Li, Z.; Peng, X.; Nakajima, K.; Duan, L.; et al. Spatiotemporal sequestration of miR165/166 by Arabidopsis Argonaute10 promotes shoot apical meristem maintenance. Cell Rep. 2015, 10, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.; Greb, T.; Peaucelle, A.; Blein, T.; Laufs, P.; Theres, K. Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. Plant J. 2008, 55, 65–76. [Google Scholar] [CrossRef]
- Zhang, T.; You, J.; Zhang, Y.; Yao, W.; Chen, W.; Duan, Q.; Xiao, W.; Ye, L.; Zhou, Y.; Sang, X.; et al. LF1 regulates the lateral organs polarity development in rice. New Phytol. 2021, 231, 1265–1277. [Google Scholar] [CrossRef]
- Zhang, C.; Fan, L.; Le, B.H.; Ye, P.; Mo, B.; Chen, X. Regulation of ARGONAUTE10 Expression Enables Temporal and Spatial Precision in Axillary Meristem Initiation in Arabidopsis. Dev. Cell 2020, 55, 603–616.e605. [Google Scholar] [CrossRef] [PubMed]
- Emery, J.F.; Floyd, S.K.; Alvarez, J.; Eshed, Y.; Hawker, N.P.; Izhaki, A.; Baum, S.F.; Bowman, J.L. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 2003, 13, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.R.; Wang, L.C.; Lin, Y.R.; Weng, C.P.; Yeh, C.H.; Wu, S.J. The Arabidopsis heat-intolerant 5 (hit5)/enhanced response to aba 1 (era1) mutant reveals the crucial role of protein farnesylation in plant responses to heat stress. New Phytol. 2017, 213, 1181–1193. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, C.; Yang, H.; Jiao, Y. Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proc. Natl. Acad. Sci. USA 2014, 111, 6840–6845. [Google Scholar] [CrossRef]
- Saini, P.; Yadav, R.K. C-terminal domain of APETALA1 is essential for its functional divergence from CAULIFLOWER in Arabidopsis. J. Plant Biochem. Biotechnol. 2020, 29, 824–831. [Google Scholar] [CrossRef]
- Allen, G.J.; Murata, Y.; Chu, S.P.; Nafisi, M.; Schroeder, J.I. Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2. Plant Cell 2002, 14, 1649–1662. [Google Scholar] [CrossRef]
- Pei, Z.-M.; Ghassemian, M.; Kwak, C.M.; McCourt, P.; Schroeder, J.I. Role of Farnesyltransferase in ABA Regulation of Guard Cell Anion Channels and Plant Water Loss. Science 1998, 282, 287–290. [Google Scholar] [CrossRef]
- Lemichez, E.; Wu, Y.; Sanchez, J.P.; Mettouchi, A.; Mathur, J.; Chua, N.H. Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes. Dev. 2001, 15, 1808–1816. [Google Scholar] [CrossRef]
- Bement, W.M.; Goryachev, A.B.; Miller, A.L.; von Dassow, G. Patterning of the cell cortex by Rho GTPases. Nat. Rev. Mol. Cell Biol. 2024, 25, 290–308. [Google Scholar] [CrossRef]
- Kakimoto, T. Perception and signal transduction of cytokinins. Annu. Rev. Plant Biol. 2003, 54, 605–627. [Google Scholar] [CrossRef]
- Ebine, K.; Fujimoto, M.; Okatani, Y.; Nishiyama, T.; Goh, T.; Ito, E.; Dainobu, T.; Nishitani, A.; Uemura, T.; Sato, M.H.; et al. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat. Cell Biol. 2011, 13, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Melchior, F. SUMO--nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 2000, 16, 591–626. [Google Scholar] [CrossRef] [PubMed]
- Petroski, M.D.; Deshaies, R.J. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 2005, 6, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Ohsumi, Y. Molecular dissection of autophagy: Two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2001, 2, 211–216. [Google Scholar] [CrossRef]
- Palsuledesai, C.C.; Distefano, M.D. Protein Prenylation: Enzymes, Therapeutics, and Biotechnology Applications. ACS Chem. Biol. 2015, 10, 51–62. [Google Scholar] [CrossRef]
- Kuchay, S.; Wang, H.; Marzio, A.; Jain, K.; Homer, H.; Fehrenbacher, N.; Philips, M.R.; Zheng, N.; Pagano, M. GGTase3 is a newly identified geranylgeranyltransferase targeting a ubiquitin ligase. Nat. Struct. Mol. Biol. 2019, 26, 628–636. [Google Scholar] [CrossRef]
- Desnoyers, L.; Anant, J.S.; Seabra, M.C. Geranylgeranylation of Rab proteins. Biochem. Soc. Trans. 1996, 24, 699–703. [Google Scholar] [CrossRef]
- Waldherr, M.; Ragnini, A.; Schweyer, R.J.; Boguski, M.S. MRS6--yeast homologue of the choroideraemia gene. Nat. Genet. 1993, 3, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gale, M., Jr.; Keller, B.C.; Huang, H.; Brown, M.S.; Goldstein, J.L.; Ye, J. Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol. Cell 2005, 18, 425–434. [Google Scholar] [CrossRef]
- McTaggart, S.J. Isoprenylated proteins. Cell Mol. Life Sci. 2006, 63, 255–267. [Google Scholar] [CrossRef]
- Pereira-Leal, J.B.; Hume, A.N.; Seabra, M.C. Prenylation of Rab GTPases: Molecular mechanisms and involvement in genetic disease. FEBS Lett. 2001, 498, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Saito, C.; Ueda, T. Chapter 4: Functions of RAB and SNARE proteins in plant life. Int. Rev. Cell Mol. Biol. 2009, 274, 183–233. [Google Scholar] [CrossRef] [PubMed]
- DeFeo-Jones, D.; Tatchell, K.; Robinson, L.C.; Sigal, I.S.; Vass, W.C.; Lowy, D.R.; Scolnick, E.M. Mammalian and yeast ras gene products: Biological function in their heterologous systems. Science 1985, 228, 179–184. [Google Scholar] [CrossRef]
- Kataoka, T.; Powers, S.; Cameron, S.; Fasano, O.; Goldfarb, M.; Broach, J.; Wigler, M. Functional homology of mammalian and yeast RAS genes. Cell 1985, 40, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Rowinsky, E.K.; Windle, J.J.; Von Hoff, D.D. Ras protein farnesyltransferase: A strategic target for anticancer therapeutic development. J. Clin. Oncol. 1999, 17, 3631–3652. [Google Scholar] [CrossRef]
- Liu, M.; Sjogren, A.K.; Karlsson, C.; Ibrahim, M.X.; Andersson, K.M.; Olofsson, F.J.; Wahlstrom, A.M.; Dalin, M.; Yu, H.; Chen, Z.; et al. Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer. Proc. Natl. Acad. Sci. USA 2010, 107, 6471–6476. [Google Scholar] [CrossRef]
- Hussein, D.; Taylor, S.S. Farnesylation of Cenp-F is required for G2/M progression and degradation after mitosis. J. Cell Sci. 2002, 115, 3403–3414. [Google Scholar] [CrossRef]
- Adam, S.A.; Butin-Israeli, V.; Cleland, M.M.; Shimi, T.; Goldman, R.D. Disruption of lamin B1 and lamin B2 processing and localization by farnesyltransferase inhibitors. Nucleus 2013, 4, 142–150. [Google Scholar] [CrossRef]
- Glynn, M.W.; Glover, T.W. Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum. Mol. Genet. 2005, 14, 2959–2969. [Google Scholar] [CrossRef]
- Walters, C.E.; Pryce, G.; Hankey, D.J.R.; Sebti, S.M.; Hamilton, A.D.; Baker, D.; Greenwood, J.; Adamson, P. Inhibition of Rho GTPases with protein prenyltransferase inhibitors prevents leukocyte recruitment to the central nervous system and attenuates clinical signs of disease in an animal model of multiple sclerosis. J. Immunol. 2002, 168, 4087–4094. [Google Scholar] [CrossRef]
- Zschiesche, W.; Barth, O.; Daniel, K.; Böhme, S.; Rausche, J.; Humbeck, K. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol. 2015, 207, 1084–1096. [Google Scholar] [CrossRef]
- Wang, Y.; Beaith, M.; Chalifoux, M.; Ying, J.; Uchacz, T.; Sarvas, C.; Griffiths, R.; Kuzma, M.; Wan, J.; Huang, Y. Shoot-specific down-regulation of protein farnesyltransferase (alpha-subunit) for yield protection against drought in canola. Mol. Plant 2009, 2, 191–200. [Google Scholar] [CrossRef]
- Peng, X.; Ding, X.; Chang, T.; Wang, Z.; Liu, R.; Zeng, X.; Cai, Y.; Zhu, Y. Overexpression of a Vesicle Trafficking Gene, OsRab7, enhances salt tolerance in rice. Sci. World J. 2014, 2014, 483526. [Google Scholar] [CrossRef]
- Aboelfotoh Hendy, A.; Xing, J.; Chen, X.; Chen, X.L. The farnesyltransferase β-subunit RAM1 regulates localization of RAS proteins and appressorium-mediated infection in Magnaporthe oryzae. Mol. Plant Pathol. 2019, 20, 1264–1278. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, C.; Wang, Q. Protein Prenylation in Plants: Mechanisms and Functional Implications. Plants 2025, 14, 1759. https://doi.org/10.3390/plants14121759
Tian C, Wang Q. Protein Prenylation in Plants: Mechanisms and Functional Implications. Plants. 2025; 14(12):1759. https://doi.org/10.3390/plants14121759
Chicago/Turabian StyleTian, Chang, and Quan Wang. 2025. "Protein Prenylation in Plants: Mechanisms and Functional Implications" Plants 14, no. 12: 1759. https://doi.org/10.3390/plants14121759
APA StyleTian, C., & Wang, Q. (2025). Protein Prenylation in Plants: Mechanisms and Functional Implications. Plants, 14(12), 1759. https://doi.org/10.3390/plants14121759