Cold Stress Responses of Different Genotypes of Miscanthus Assessed by Relative Electrical Conductivity and LT50
Abstract
:1. Introduction
2. Results
2.1. REC Variation Under Cold Non-Acclimation
2.2. REC Variation Under Cold Acclimation
2.3. LT50 Variation Under Non-Cold-Acclimated and Cold-Acclimated Tolerance
2.4. The Correlation Between LT50 and Geographic Factors
3. Discussion
3.1. REC in Cold Tolerance
3.2. LT50 in Cold Tolerance
3.3. Geographical Factors Impact the Cold Tolerance
3.4. Cold Tolerance Acclimation Mechanism
3.5. Cold Tolerance Breeding in Miscanthus
4. Materials and Methods
4.1. Plant Materials
4.2. Rhizome-Derived Propagation and Regrowth Management
4.3. Low-Temperature Treatment
4.4. Low-Temperature Acclimation
4.5. Electrolyte Leakage Assessment
4.6. Determination of Half-Lethal Temperature
4.7. Data Analysis
5. Conclusions
- We found variability within and among species in cold tolerance. The 12 tested genotypes exhibited varying cold tolerance levels under the same treatment. In general, M. sacchariflorus was far more cold tolerant than M. lutarioriparius. These extremely cold-tolerant genotypes are excellent candidates for studying both the molecular and ecological aspects of cold tolerance.
- Relative electrical conduction is a strategy for screening the cold tolerance in Miscanthus, and 21 days of cold acclimation is a suitable method for improving the capacity of cold tolerance in Miscanthus.
- Whether it undergoes non-cold or cold acclimation, the cold tolerance of Miscanthus is significantly related to the geographical factors of its original site, which indicates that tolerance breeding should consider the resource of germplasm.
- It is important to note that while cold acclimation ability is one aspect of a plant’s overall cold tolerance, it is also influenced by other factors such as the duration and intensity of cold exposure, the plant’s growth stage, and its genetic makeup. Further research into the genetic basis of cold acclimation and its interaction with environmental factors can aid in the development of Miscanthus cultivars with enhanced cold tolerance for diverse geographic regions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.L.; Renvoize, S.A. Miscanthus Andersson. In Flora of China; Beijing Science Press: Beijing, China, 2006. [Google Scholar]
- Sun, Q.; Lin, Q.; Yi, Z.; Yang, Z.; Zhou, F. A taxonomic revision of Miscanthus s.l. (Poaceae) from China. Bot. J. Linn. Soc 2010, 164, 178–220. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.C.; Scurlock, J.M.O.; Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Lewandowski, I.; Scurlock, J.M.O.; Lindvall, E.; Christou, M. The development and current status of perennial rhizomatous grasses as energy crops in US and Europe. Biomass Bioenergy 2003, 25, 335–361. [Google Scholar] [CrossRef]
- Christian, D.G.; Haase, E. Agronomy of Miscanthus. In Miscanthus for Energy and Fibre; Jones, M.B., Walsh, M., Eds.; James and James: London, UK, 2001. [Google Scholar]
- Naidu, S.L.; Moose, S.P.; AI-Shoaibi, A.K.; Raines, C.A.; Long, S.P. Cold tolerance of C4 photosynthesis in Miscanthus × giganteus: Adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol. 2003, 132, 1688–1697. [Google Scholar] [CrossRef]
- Clifton-Brown, J.C.; Stampfl, P.F.; Jones, M.B. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob. Change Biol. 2004, 10, 509–518. [Google Scholar] [CrossRef]
- Heaton, E.A.; Voigt, T.; Long, S.P. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen temperature and water. Biomass Bioenergy 2004, 27, 21–30. [Google Scholar] [CrossRef]
- Heaton, E.A.; Dohleman, F.G.; Long, S.P. Meeting US biofuel goals with less land: The potential of Miscanthus. Glob. Change Biol. 2008, 14, 2000–2014. [Google Scholar] [CrossRef]
- Somerville, C.; Youngs, H.; Taylor, C.; Davis, S.C.; Long, S.P. Feedstocks for lignocellulosic biofuels. Science 2010, 329, 790–792. [Google Scholar] [CrossRef]
- Yi, Z. Exploitation and utilization of Miscanthus as an energy plant. J. Hunan Agric. Univ. (Nat. Sci.) 2012, 38, 455–463. [Google Scholar]
- Głowacka, K.; Kaczmarek, Z.; Jeżowski, S. Androgenesis in the bioenergy plant Misacanthus sinensis: From calli induction to plant regeneration. Crop Sci. 2012, 52, 2659–2673. [Google Scholar] [CrossRef]
- Yan, J.; Zhu, C.; Liu, W.; Luo, F.; Mi, J.; Ren, Y.; Li, J.; Sang, T. High photosynthetic rate and water use efficiency of Miscanthus lutarioriparius characterize an energy crop in the semiarid temperate region. Globe Change Bioenergy 2015, 7, 207–218. [Google Scholar] [CrossRef]
- Greef, J.M.; Deuter, M. Syntaxonomy of Miscanthus × giganteus Greef et Deu. Angew. Bot. 1993, 67, 87–90. [Google Scholar]
- Linde-Laursen, I.B. Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Hereditas 1993, 119, 297–300. [Google Scholar] [CrossRef]
- Lewandowski, I. Propagation method as an important factor in the growth and development of Miscanthus × giganteus. Ind. Crops Prod. 1998, 8, 229–245. [Google Scholar] [CrossRef]
- Christian, D.G.; Riche, A.B.; Yates, N.E. Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind. Crops Prod. 2008, 28, 320–327. [Google Scholar] [CrossRef]
- Heaton, E.A.; Dohleman, F.G.; Miguez, A.F.; Juvik, J.A.; Lozovaya, V.; Widholm, J.; Zabotina, O.A.; Mcisaac, G.F.; David, M.B.; Voigt, T.B.; et al. Miscanthus: A promising biomass crop. In Advances in Botanical Research; Kader, J.C., Delseny, M., Eds.; Academic Press: London, UK, 2010. [Google Scholar]
- Nishiwaki, A.; Mizuguti, A.; Kuwabara, S.; Toma, Y.; Ishigaki, G.; Miyashita, T.; Stewart, J.R. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am. J. Exp. Bot. 2011, 98, 154–159. [Google Scholar] [CrossRef]
- Arundale, R.A.; Dohleman, F.G.; Heaton, E.A.; Mcgrath, J.M.; Voigt, T.B.; Long, S.P. Yields of Miscanthus × giganteus and Panicum vigatum decline with stand age in the Midwestern USA. Glob. Change Biol. Bioenergy 2014, 6, 1–13. [Google Scholar] [CrossRef]
- Boersma, N.N.; Heaton, E.A. Does propagation method affect yield and survival? The potential of Miscanthus × giganteus in Iowa, USA. Ind. Crop Prod. 2014, 57, 43–51. [Google Scholar] [CrossRef]
- Dierking, R.M.; Allen, D.J.; Brouder, S.M.; Volenec, J.J. Yield, biomass composition, and N use efficiency during establishment of four Miscanthus × giganteus genotypes as influenced by N management. Biomass Bioenergy 2016, 91, 98–107. [Google Scholar] [CrossRef]
- Clifton-Brown, J.C.; Lewandowski, I. Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol. 2000, 148, 287–294. [Google Scholar] [CrossRef]
- Clifton-Brown, J.C.; Lewandowski, I.; Andersson, B.; Basch, G.; Christian, D.G.; Kjeldsen, J.B. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron. J. 2001, 93, 1013–1019. [Google Scholar] [CrossRef]
- Głowacka, K.; Adhikari, S.; Peng, J.H.; Gifford, J.M.; Juvik, J.A.; Long, S.P.; Sacks, E.J. Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C4 grass Miscanthus × giganteus. J. Exp. Bot. 2014, 65, 5267–5278. [Google Scholar] [CrossRef]
- Głowacka, K.; Clark, L.V.; Adhikari, S.; Peng, J.; Stewart, J.R.; Nishiwaki, A.; Yamada, T.; Jørgensen, U.; Hodkinson, T.R.; Gifford, J.; et al. Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones. GCB Bioenergy 2015, 7, 386–404. [Google Scholar] [CrossRef]
- Friesen, P.C.; Peixoto, M.M.; Lee, D.K.; Sage, R.F. Sub-zero cold tolerance of Spartina pectinata (prairie cordgrass) and Miscanthus × giganteus: Candidate bioenergy crops for cool temperature climates. J. Exp. Bot. 2015, 66, 4403–4413. [Google Scholar] [CrossRef]
- Peixoto, M.M.; Friesen, P.C.; Sage, R.F. Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes. J. Exp. Bot. 2015, 66, 4415–4425. [Google Scholar] [CrossRef]
- Fonteyne, S.; Muylle, H.; Swaef, D.T.; Reheul, D.; Roldn-Ruiz, I.; Lootens, P. How low can you go?—Rhizome and shoot frost tolerance in Miscanthus germplasm. Ind. Crops Prod. 2016, 89, 323–331. [Google Scholar] [CrossRef]
- Dong, H.; Green, S.V.; Nishiwaki, A.; Yamada, T.; Stewart, J.R.; Deuter, M.; Sacks, E.J. Winter hardiness of Miscanthus (I): Overwintering ability and yield of new Miscanthus × giganteus genotypes in Illinois and Arkansas. GCB Bioenergy 2019, 11, 691–705. [Google Scholar] [CrossRef]
- Farrell, A.D.; Clifton-Brown, J.C.; Lewandowski, I.; Jones, M.B. Genotypic variation in cold tolerance influences the yield of Miscanthus. Ann. Appl. Biol. 2006, 149, 337–345. [Google Scholar] [CrossRef]
- Zub, H.W.; Arnoult, S.; Younous, J.; Lejeune-Hénaut, I.; Brancourt-Hulmel, M. The frost tolerance of Miscanthus at the juvenile stage: Differences between clones are influenced by leaf-stage and acclimation. Eur. Soc. Agron. 2012, 36, 32–40. [Google Scholar] [CrossRef]
- Dwiyanti, M.S.; Rudolph, A.; Swaminathan, K.; Nishiwaki, A.; Shimono, Y.; Kuwabara, S.; Matuura, H.; Nadir, M.; Moose, S.; Stewart, J.R.; et al. Genetic analysis of putative triploid Miscanthus hybrids and tetraploid M. sacchariflorus collected from sympatric population of Kushima, Japan. BioEnergy Res. 2013, 6, 486–493. [Google Scholar] [CrossRef]
- Clark, L.V.; Stewart, J.R.; Nishiwaki, A.; Toma, Y.; Kjeldsen, J.B.; Jørgensen, U.; Zhao, H.; Peng, J.; Yoo, J.H.; Heo, K.; et al. Genetic structure of Miscanthus sinensis and M. sacchariflorus in Japan indicates a gradient of biodirectional but asymmetric introgression. J. Exp. Biol. 2015, 66, 4213–4225. [Google Scholar]
- Clark, L.V.; Jin, X.; Petersen, K.K.; Anzoua, K.G.; Bagmet, L.; Chebukin, P.; Deuter, M.; Dzyubenko, E.; Dzyubenko, N.; Heo, K.; et al. Population structure of Miscanthus sacchariflorus reveals two major polyploidization events, tetraploid-mediated unidirectional introgression from diploid M. sinensis, and diversity centred around the Yellow Sea. Ann. Bot. 2019, 124, 731–748. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, M.M. Developing an Artificial Freezing Experiment to Test Cold Tolerance of Miscanthus Hybrids. Ph.D Thesis, University of Toronto, Toronto, ON, Canada, 2015. [Google Scholar]
- Pignon, C.P.; Spitz, I.; Sacks, E.J.; Jørgensen, U.; Kørup, K.; Long, S.P. Siberian Miscanthus sacchariflorus accessions surpass the exceptional chilling tolerance of the most widely cultivated clone of Miscanthus × giganteus. GCB Bioenergy 2019, 11, 883–894. [Google Scholar] [CrossRef]
- Xiao, L.; Yi, Z. Distribution and climate model of Four type species of Miscanthus in China. Acta Agrestia Sin. 2017, 25, 685–690. [Google Scholar]
- Fu, T.; Lu, Y.; Xiao, L.; Xue, S.; Yi, Z.; Li, M.; Hou, W. Phylogenetic analysis of the genus Miscanthus and its relative genera (Poaceae) in China. Ind. Crops Prod. 2023, 192, 116113. [Google Scholar] [CrossRef]
- Deng, R.; Fan, J.; Wang, Y.; Jin, J.; Liu, T. Semilethal temperature of Pitaya under low temperature stress and evaluation on their cold resistance. Plant Physiol. J. 2014, 50, 1742–1748. [Google Scholar]
- Lu, Y.; Hu, Y.; Li, P. Consistency of electrical and physiological properties of tea leaves on indicating critical cold temperature. Biosyst. Eng. 2017, 159, 89–96. [Google Scholar] [CrossRef]
- Cui, H. Conductivity method combined with Logistic equation for cold resistance of winter wheat. Technol. Ind. Across Straits 2017, 2, 171–172. [Google Scholar]
- Wang, Y.; Hu, Y.; Chen, B.; Zhu, Y.; Mohammed, M.; Dawuda, S. Physiological mechanisms of resistance to cold stress associatedwith 10 elite apple rootstocks. J. Integr. Agric. 2018, 17, 857–866. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, J.; Yang, Y.; Lu, X.; Liu, C.; Zhang, B.; Yang, F. Measurement of cold tolerance of garlic germplasm resources based on electrical conductivity method combining with Logistic equation. J. Guangxi Agric. 2019, 34, 18–20. [Google Scholar]
- Armstrong, J.J.; Takebayashi, N.; Wolf, D.E. Cold tolerance in the genus Arabidopsis. Am. J. Bot. 2020, 107, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Shu, Q. Genome-Wide Association Analysis and Development of Molecular Markers for Cold Resistance Trait in Potato. Ph.D Thesis, Guizhou Normal University, Guiyang, China, 2021. [Google Scholar]
- Wang, Z.; Wu, D.; Hui, M.; Wang, Y.; Han, X.; Yao, F.; Cao, X.; Li, Y.; Li, H.; Wang, H. Screening of cold hardiness-related indexes and establishment of a comprehensive evaluation method for grapevines (V. vinifera). Front. Plant Sci. 2022, 13, 1014330. [Google Scholar] [CrossRef] [PubMed]
- Nurzadam, M.; Lian, Q.; Jiang, J.; Ye, C. Cold Resistance Evaluation of Six Xanthoceras sorbifolium Germplasms by Conductivity Method and Logistic Equation. Mod. Agric. Sci. Technol. 2024, 10, 80–83. [Google Scholar]
- Du, X.; Yi, Z. Influences of Low-temperature on Cold-resistance Physiological Index of Five Varieties of Triarrhena lutarioriparia L. Hunan Agric. Sci. 2013, 21, 13–15. [Google Scholar]
- Du, X.; Xiao, L.; Jiang, J.; Yi, Z. Study on the cold resistance of Miscanthus Andersson in China. Acta Agrestia Sin. 2014, 22, 803–807. [Google Scholar]
- Hannah, M.A.; Wiese, D.; Freund, S.; Fiehn, A.; Heyer, A.G.; Hincha, D.K. Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol. 2006, 142, 98–112. [Google Scholar] [CrossRef]
- Lyons, J.M. Chilling Injury in Plants. Annu. Rev. Plant Physiol. 1973, 24, 445–466. [Google Scholar] [CrossRef]
- Murata, N.; Los, D.A. Membrane Fluidity and Temperature Perception Get access. Plant Physiol. 1997, 115, 875–879. [Google Scholar] [CrossRef]
- Jiang, Y.; Wei, J.; Lin, C.; Wang, G.; Wang, B.; Xu, Q.; Zhao, W.; Tang, Z.; Li, Y. Evaluation on the cold resistance ability and the semi-lethal temperatures of six Korla fragrant pear varieties. Jiangsu J. Agric. Sci. 2017, 33, 1358–1363. [Google Scholar]
- Wang, W.; Li, X.; Gu, W. Conductance Method Determination to the Cold Tolerance of Six Occidental Pear-Pyrus Communis. North. Hortic. 2008, 2, 1–3. [Google Scholar]
- Yang, A.; Wang, M.; Fu, Z.; Fu, Z.; Bi, Q.; Sun, Y.; Wang, L.; Du, H. Cold resistance determination of different cultivars Morus alba with synergistic electrical conductivity method and Logistic equation. Hunan For. Sci. Technol. 2018, 45, 28–31. [Google Scholar]
- Adhikari, L.; Baral, R.; Paudel, D.; Min, D.; Makaju, S.O.; Poudel, H.P.; Acharya, J.P.; Missaoui, A.M. Cold stress in plants: Strategies to improve cold tolerance in forage species. Plant Stress 2022, 4, 100081. [Google Scholar] [CrossRef]
- Zhou, H.; Cai, Z. Measurement of Cold Tolerance by Electrical Conductivity Method in Associated with the Logistic Equation on Golden Prunus Mume. North. Hortic. 2011, 18, 39–41. [Google Scholar]
- Deng, Q.; Ding, X.; Li, J. Research on the cold hardiness ability of Camellia oleifera in Henan province. Non-Wood For. Res. 2018, 36, 12–16. [Google Scholar]
- Deuter, M. Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe. In European Miscanthus Improvement-Final Report September 2000; Lewandowski, I., Clifton-Brown, J.C., Eds.; Institute of Crop Production and Grassland Research, University of Hohenheim: Stuttgart, Germany, 2000; pp. 28–52. [Google Scholar]
- Zhang, X.; Tan, G. Experimental Techniques in Plant Physiology; Liaoning Science and Technology Press: Shenyang, China, 1989. [Google Scholar]
- Wang, W.; Li, H. Study on the cold resistance and the semi-lethal temperatures for seven pear cultivars. J. Fruit Sci. 2015, 32, 860–865. [Google Scholar]
No. | Genotype | Relative Electrical Conductivity (%) | ||||
---|---|---|---|---|---|---|
0 °C | −4 °C | −8 °C | −12 °C | −16 °C | ||
1 | B0213L | 8.7 ± 0.95 d | 20.86 ± 13.53 d | 47.27 ± 9.53 c | 68.12 ± 3.17 b | 88.6 ± 0.91 a |
2 | B0632 | 9.2 ± 0.4 e | 24.81 ± 7.09 d | 52.94 ± 4.17 c | 81.15 ± 3.33 b | 89.63 ± 2.32 a |
3 | B0110 | 9.79 ± 3.13 c | 21.61 ± 14.16 c | 57.95 ± 18.54 b | 86.18 ± 5.68 a | 79.6 ± 11.08 ab |
4 | B0111 | 10.02 ± 1.44 b | 12.61 ± 2.28 b | 33.04 ± 29.8 b | 81.31 ± 10.76 a | 80.17 ± 4.81 a |
5 | B0403L | 7.38 ± 0.06 e | 32.56 ± 4.37 d | 54.26 ± 3.56 c | 73.41 ± 5.47 b | 87.11 ± 2.68 a |
6 | C0204 | 7.72 ± 1.61 c | 28.87 ± 11.07 b | 69.05 ± 15.46 a | 72.45 ± 1.1 a | 80.45 ± 1.45 a |
7 | B0603 | 11.13 ± 3.68 c | 18.06 ± 4.01 c | 57.88 ± 5 b | 81.59 ± 7.58 a | 81.74 ± 2.24 a |
8 | C0140 | 7.73 ± 1.4 e | 14.04 ± 1.09 d | 57.31 ± 4.82 c | 78.4 ± 3.49 b | 88.42 ± 2.01 a |
9 | B0413L | 9.92 ± 1.01 c | 10.5 ± 0.32 c | 75.94 ± 6.06 b | 80.59 ± 1.45 b | 88 ± 3.88 a |
10 | C0211 | 12.46 ± 0.92 c | 18.66 ± 5.54 c | 62.09 ± 14.54 b | 83.24 ± 8.53 a | 84.84 ± 0.21 a |
11 | A0630 | 16.37 ± 3.78 b | 29.34 ± 15.63 b | 71.72 ± 10 a | 83.28 ± 2.71 a | 85.87 ± 0.96 a |
12 | A0104 | 8.18 ± 0.66 c | 11.56 ± 0.51 c | 56.6 ± 14.87 b | 84.86 ± 5.5 a | 86.64 ± 2.73 a |
No. | Genotype | Relative Electrical Conductivity (%) | ||||
---|---|---|---|---|---|---|
0 °C | −4 °C | −8 °C | −12 °C | −16 °C | ||
1 | B0213L | 8.61 ± 0.98 c | 14.6 ± 3.66 c | 48.37 ± 12.83 b | 76.94 ± 2.74 a | 82.99 ± 6.76 a |
2 | B0632 | 9.97 ± 1.14 d | 20.99 ± 3.05 d | 57.48 ± 4.27 c | 73.77 ± 13.89 b | 87.15 ± 3.19 a |
3 | B0110 | 11.01 ± 2.7 c | 14.84 ± 1.78 c | 49.41 ± 13.5 b | 81.48 ± 8.91 a | 89.51 ± 6.22 a |
4 | B0111 | 11.62 ± 2.69 c | 18.48 ± 3.57 c | 41.38 ± 8.63 b | 69.49 ± 2.1 a | 73.31 ± 0.42 a |
5 | B0403L | 9.86 ± 1.56 c | 15.22 ± 2.46 bc | 41.74 ± 31.72 b | 79.96 ± 2.58 a | 86.32 ± 8.23 a |
6 | C0204 | 8.8 ± 1.82 c | 14.41 ± 0.75 c | 50.87 ± 4.67 b | 77.32 ± 8.38 a | 84.64 ± 5.41 a |
7 | B0603 | 9.96 ± 0.63 c | 17.31 ± 2.01 c | 36.08 ± 9.44 b | 87.83 ± 0.25 a | 87.83 ± 2.02 a |
8 | C0140 | 10.29 ± 1.64 c | 13.42 ± 1.52 c | 49.39 ± 12.5 b | 81.4 ± 5.4 a | 87.6 ± 3.15 a |
9 | B0413L | 11.93 ± 1.9 c | 16.32 ± 4.64 c | 58.63 ± 9.61 b | 79.62 ± 3.66 a | 82.01 ± 8.24 a |
10 | C0211 | 13.36 ± 0.53 d | 18.16 ± 0.85 c | 40.31 ± 2.75 b | 85.04 ± 2.75 a | 88.19 ± 2.12 a |
11 | A0630 | 14.79 ± 2.57 c | 18.41 ± 2.26 c | 55.79 ± 35.2 b | 90.14 ± 10.17 a | 89.69 ± 10.07 a |
12 | A0104 | 7.93 ± 1.72 c | 17.48 ± 1.14 c | 47.92 ± 19.81 b | 76.93 ± 5.67 a | 88.89 ± 5.93 a |
Treatment | No. | Genotype | Regression Equation | R2 | LT50 |
---|---|---|---|---|---|
Non-cold acclimation | 1 | B0213L | y = 100/(1 + 10.763 e0.272x) | 0.9986 ** | −8.72 |
2 | B0632 | y = 100/(1 + 9.252 e0.287x) | 0.9959 ** | −7.77 | |
3 | B0110 | y = 100/(1 + 7.817 e0.257x) | 0.9427 ** | −8.00 | |
4 | B0111 | y = 100/(1 + 12.331 e0.265x) | 0.9510 ** | −9.49 | |
5 | B0403L | y = 100/(1 + 8.647 e0.266x) | 0.9850 ** | −8.12 | |
6 | C0204 | y = 100/(1 + 7.183 e0.242x) | 0.9409 ** | −8.16 | |
7 | B0603 | y = 100/(1 + 8.067 e0.254x) | 0.9616 ** | −8.22 | |
8 | C0140 | y = 100/(1 + 12.941 e0.303x) | 0.9828 ** | −8.45 | |
9 | B0413L | y = 100/(1 + 10.478 e0.299x) | 0.9239 ** | −7.86 | |
10 | C0211 | y = 100/(1 + 7.422 e0.26x) | 0.9626 ** | −7.70 | |
11 | A0630 | y = 100/(1 + 4.504 e0.234x) | 0.9618 ** | −6.43 | |
12 | A0104 | y = 100/(1 + 13.276 e0.308x) | 0.9615 ** | −8.39 | |
Cold acclimation | 1 | B0213L | y = 100/(1 + 11.637 e0.272x) | 0.9808 ** | −9.03 |
2 | B0632 | y = 100/(1 + 8.788 e0.265x) | 0.9914 ** | −8.21 | |
3 | B0110 | y = 100/(1 + 10.872 e0.292x) | 0.9815 ** | −8.16 | |
4 | B0111 | y = 100/(1 + 8.024 e0.21x) | 0.9804 ** | −9.93 | |
5 | B0403L | y = 100/(1 + 11.585 e0.28x) | 0.9814 ** | −8.74 | |
6 | C0204 | y = 100/(1 + 11.586 e0.277x) | 0.9811 ** | −8.83 | |
7 | B0603 | y = 100/(1 + 11.658 e0.297x) | 0.9585 ** | −8.26 | |
8 | C0140 | y = 100/(1 + 11.485 e0.29x) | 0.9757 ** | −8.43 | |
9 | B0413L | y = 100/(1 + 8.06 e0.251x) | 0.9600 ** | −8.32 | |
10 | C0211 | y = 100/(1 + 9.066 e0.275x) | 0.9658 ** | −8.01 | |
11 | A0630 | y = 100/(1 + 7.632 e0.288x) | 0.9563 ** | −7.05 | |
12 | A0104 | y = 100/(1 + 12.484 e0.295x) | 0.9963 ** | −8.54 |
No. | Genotype | Species | Collection Location | Latitude (°N) | Longitude (°E) | Altitude (m) |
---|---|---|---|---|---|---|
1 | B0213L | M. sacchariflorus | Jiaohe, Jilin | 43.683 | 127.183 | 390.00 |
2 | B0632 | M. sacchariflorus | Rizhao, Shandong | 35.617 | 118.813 | 110.60 |
3 | B0110 | M. sacchariflorus | Dalian, Liaoning | 39.100 | 121.719 | 970.00 |
4 | B0111 | M. sacchariflorus | Jiamusi, Heilongjiang | 46.800 | 130.317 | 117.00 |
5 | B0403L | M. sacchariflorus | Sixian, Shanxi | 36.738 | 110.950 | 980.00 |
6 | C0204 | M. sacchariflorus | Chengwu, Shandong | 35.081 | 115.994 | 26.93 |
7 | B0603 | M. sacchariflorus | Linyi, Shandong | 35.384 | 117.803 | 128.41 |
8 | C0140 | M. sacchariflorus | Jining, Shandong | 35.657 | 117.231 | 94.35 |
9 | B0413L | M. sacchariflorus | Kuancheng, Hebei | 40.593 | 118.396 | 276.00 |
10 | C0211 | M. sacchariflorus | Xianyang, Shaanxi | 34.678 | 109.024 | 384.99 |
11 | A0630 | M. lutarioriparius | Jiaxing, Zhejiang | 30.527 | 120.908 | 16.34 |
12 | A0104 | M. lutarioriparius | Shaoxing, Zhejiang | 29.488 | 121.065 | 199.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, N.; Guo, S.; Tang, Y.; Li, S.; Pham, T.; Kuang, X.; Yi, Z.; Xiao, L. Cold Stress Responses of Different Genotypes of Miscanthus Assessed by Relative Electrical Conductivity and LT50. Plants 2025, 14, 1760. https://doi.org/10.3390/plants14121760
Peng N, Guo S, Tang Y, Li S, Pham T, Kuang X, Yi Z, Xiao L. Cold Stress Responses of Different Genotypes of Miscanthus Assessed by Relative Electrical Conductivity and LT50. Plants. 2025; 14(12):1760. https://doi.org/10.3390/plants14121760
Chicago/Turabian StylePeng, Ning, Songtao Guo, Yanmei Tang, Shicheng Li, Trang Pham, Xianyan Kuang, Zili Yi, and Liang Xiao. 2025. "Cold Stress Responses of Different Genotypes of Miscanthus Assessed by Relative Electrical Conductivity and LT50" Plants 14, no. 12: 1760. https://doi.org/10.3390/plants14121760
APA StylePeng, N., Guo, S., Tang, Y., Li, S., Pham, T., Kuang, X., Yi, Z., & Xiao, L. (2025). Cold Stress Responses of Different Genotypes of Miscanthus Assessed by Relative Electrical Conductivity and LT50. Plants, 14(12), 1760. https://doi.org/10.3390/plants14121760