Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,216)

Search Parameters:
Keywords = modification mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1256 KiB  
Review
Unveiling the Molecular Mechanism of Azospirillum in Plant Growth Promotion
by Bikash Ranjan Giri, Sourav Chattaraj, Subhashree Rath, Mousumi Madhusmita Pattnaik, Debasis Mitra and Hrudayanath Thatoi
Bacteria 2025, 4(3), 36; https://doi.org/10.3390/bacteria4030036 - 18 Jul 2025
Abstract
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, [...] Read more.
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, including nitrogen fixation, the production of phytohormones (auxins, cytokinins, indole acetic acid (IAA), and gibberellins), plant growth regulators, siderophore production, phosphate solubilization, and the synthesis of various bioactive molecules, such as flavonoids, hydrogen cyanide (HCN), and catalase. Thus, Azospirillum is involved in plant growth and development. The genus Azospirillum also enhances membrane activity by modifying the composition of membrane phospholipids and fatty acids, thereby ensuring membrane fluidity under water deficiency. It promotes the development of adventitious root systems, increases mineral and water uptake, mitigates environmental stressors (both biotic and abiotic), and exhibits antipathogenic activity. Biological nitrogen fixation (BNF) is the primary mechanism of Azospirillum, which is governed by structural nif genes present in all diazotrophic species. Globally, Azospirillum spp. are widely used as inoculants for commercial crop production. It is considered a non-pathogenic bacterium that can be utilized as a biofertilizer for a variety of crops, particularly cereals and grasses such as rice and wheat, which are economically significant for agriculture. Furthermore, Azospirillum spp. influence gene expression pathways in plants, enhancing their resistance to biotic and abiotic stressors. Advances in genomics and transcriptomics have provided new insights into plant-microbe interactions. This review explored the molecular mechanisms underlying the role of Azospirillum spp. in plant growth. Additionally, BNF phytohormone synthesis, root architecture modification for nutrient uptake and stress tolerance, and immobilization for enhanced crop production are also important. A deeper understanding of the molecular basis of Azospirillum in biofertilizer and biostimulant development, as well as genetically engineered and immobilized strains for improved phosphate solubilization and nitrogen fixation, will contribute to sustainable agricultural practices and help to meet global food security demands. Full article
16 pages, 6100 KiB  
Article
Investigation of the Friction and Wear Behavior of Cr-Mo-V Steel with Different Surface Treatment Processes
by Wei Zhang, Jian Zhang, Shizhong Wei, Liuliang Chen, Wei Zhang, Zhenhuan Sun, Chong Chen, Feng Mao, Xiaodong Wang, Caihong Dou and Cheng Zhang
Lubricants 2025, 13(7), 313; https://doi.org/10.3390/lubricants13070313 - 18 Jul 2025
Abstract
Hot work die steel is an alloy steel with good high-temperature performance, which is widely used in mechanical manufacturing, aerospace, and other fields. During the working process of hot working mold steel, it is subjected to high temperature, wear, and other effects, which [...] Read more.
Hot work die steel is an alloy steel with good high-temperature performance, which is widely used in mechanical manufacturing, aerospace, and other fields. During the working process of hot working mold steel, it is subjected to high temperature, wear, and other effects, which can lead to a decrease in the surface hardness of the mold, accelerate surface damage, shorten the service life, and reduce the quality of the workpiece. In order to improve the wear resistance of the mold, this paper conducts two surface treatments, chrome plating and nitriding, on the surface of hot work mold steel, and compares the high-temperature wear behavior of the materials after the two surface treatments. The results indicate that the hot work die steel obtained higher surface hardness and wear resistance after nitriding surface modification. After nitriding treatment, the surface of hot work die steel contains ε phase (Fe2–3N), which improves its surface hardness and wear resistance, thus exhibiting better surface hardness and wear resistance than the chrome-plated sample. In this study, the high-temperature wear behavior of hot work die steel after two kinds of surface strengthening treatments was deeply discussed, and the high-temperature wear mechanism of steel after surface strengthening was revealed. It provides a theoretical basis and experimental basis for the surface modification of hot working die steel, and also provides new ideas and methods for improving the service life and workpiece quality of hot working die steel in industrial production. In this study, the advantages and disadvantages of high-temperature wear resistance of hot working die steel after chromium plating and nitriding were systematically compared for the first time, which provided a scientific basis for the selection of surface strengthening technology of hot working die steel and had important academic value and practical application significance. Full article
(This article belongs to the Special Issue Wear-Resistant Coatings and Film Materials)
Show Figures

Figure 1

19 pages, 1560 KiB  
Article
Knockdown of the snoRNA-Jouvence Blocks the Proliferation and Leads to the Death of Human Primary Glioblastoma Cells
by Lola Jaque-Cabrera, Julia Buggiani, Jérôme Bignon, Patricia Daira, Nathalie Bernoud-Hubac and Jean-René Martin
Non-Coding RNA 2025, 11(4), 54; https://doi.org/10.3390/ncrna11040054 - 18 Jul 2025
Abstract
Background/Objectives: Cancer research aims to understand the cellular and molecular mechanisms involved, in order to identify new therapeutic targets and provide patients with more effective therapies that generate fewer side undesirable and toxic effects. Previous studies have demonstrated the role of small [...] Read more.
Background/Objectives: Cancer research aims to understand the cellular and molecular mechanisms involved, in order to identify new therapeutic targets and provide patients with more effective therapies that generate fewer side undesirable and toxic effects. Previous studies have demonstrated the role of small nucleolar RNAs (snoRNAs) in many physiological and pathological cellular processes, including cancers. SnoRNAs are a group of non-coding RNAs involved in different post-transcriptional modifications of ribosomal RNAs. Recently, we identified a new snoRNA (jouvence), first in Drosophila, and thereafter, by homology, in humans. Methods: Here, we characterize the effect of the knockdown of jouvence by a sh-lentivirus on human primary patient-derived glioblastoma cells. Results: The sh-lentivirus anti-jouvence induces a significant decrease in cell proliferation and leads to cell death. EdU staining confirmed this decrease, while TUNEL also showed the presence of apoptotic cells. An RNA-Seq analysis revealed a decrease, in particular, in the level of BAALC, a gene known to potentiate the oncogenic ERK pathway and deregulating p21, leading to cell cycle blockage. Conclusions: Altogether, these results allow the hypothesis that the knockdown of jouvence could potentially be used as a new anti-cancer treatment (sno-Therapy), especially against glioblastoma and also, potentially, against acute myeloid leukemia (AML) due to the BAALC deregulation. Full article
(This article belongs to the Section Small Non-Coding RNA)
Show Figures

Figure 1

20 pages, 1125 KiB  
Review
Dietary Principles, Interventions and Oxidative Stress in Psoriasis Management: Current and Future Perspectives
by Oana-Georgiana Vaduva, Aristodemos-Theodoros Periferakis, Roxana Elena Doncu, Vlad Mihai Voiculescu and Calin Giurcaneanu
Medicina 2025, 61(7), 1296; https://doi.org/10.3390/medicina61071296 - 18 Jul 2025
Abstract
Psoriasis is a chronic inflammatory autoimmune disease that causes significant deterioration of the quality of life, and due to its multifactorial causes, it is often difficult to manage. Apart from genetic and environmental components, an important part of its pathophysiology comprises an oxidative [...] Read more.
Psoriasis is a chronic inflammatory autoimmune disease that causes significant deterioration of the quality of life, and due to its multifactorial causes, it is often difficult to manage. Apart from genetic and environmental components, an important part of its pathophysiology comprises an oxidative stress induction that the standard antioxidative mechanisms of the human body cannot compensate for. Moreover, in many psoriatic patients, there is a documented imbalance between antioxidant and pro-oxidative factors. Usually, psoriasis is evaluated using the Psoriasis Area and Severity Index (PASI) score. It has been demonstrated that dietary choices can lead to significant modification of PASI scores. Hypocaloric diets that are rich in antioxidants are highly effective in this regard, especially when focusing on vegetables and restricting consumption of animal-derived protein. Specific dietary regimens, namely the Mediterranean diet and potentially the ketogenic diet, are very beneficial, in the former case owing in large part to the omega-three fatty acids it provides and its ability to alter gut microbiome, a factor which seems to play a notable role in the pathogenesis of the disease. Another option is the topical application of vitamin D and its analogues, combined with corticosteroids, which can ameliorate the manifestations of psoriasis at the level of the skin. Finally, oral vitamin D supplementation has a positive impact on psoriatic arthritis and can mitigate the risk of associated comorbidities. Full article
(This article belongs to the Special Issue Recent Advances in Autoimmune Rheumatic Diseases: 2nd Edition)
Show Figures

Figure 1

29 pages, 1812 KiB  
Review
A Review on the Design Strategies of Copper-Based Catalysts for Enhanced Activity and Stability in Methanol Reforming to Hydrogen
by Shuang Pang, Xueying Dou, Wei Zhao, Suli Bai, Bo Wan, Tiaoxia Wang and Jing-He Yang
Nanomaterials 2025, 15(14), 1118; https://doi.org/10.3390/nano15141118 - 18 Jul 2025
Abstract
Methanol Steam Reforming (MSR) is one of the most promising technologies in the hydrogen economy, and copper-based catalysts have become the core materials in this field due to their high activity and low cost. In this paper, we systematically review the design strategies [...] Read more.
Methanol Steam Reforming (MSR) is one of the most promising technologies in the hydrogen economy, and copper-based catalysts have become the core materials in this field due to their high activity and low cost. In this paper, we systematically review the design strategies of copper-based catalysts in MSR reactions in recent years, including structure control, component optimization, support effect, and surface modification. We focus on the mechanisms of active site exposure, improvement of anti-sintering ability, and the enhancement of anti-carbon deposition performance. Finally, we summarize the challenges of current research and propose the future development direction. This review aims to provide a reference for subsequent related research through the experience of this paper. Full article
(This article belongs to the Special Issue Structural Regulation and Performance Assessment of Nanocatalysts)
Show Figures

Figure 1

43 pages, 1241 KiB  
Review
A Comprehensive Review of Agricultural Residue-Derived Bioadsorbents for Emerging Contaminant Removal
by Janaína Oliveira Gonçalves, André Rodríguez Leones, Bruna Silva de Farias, Mariele Dalmolin da Silva, Débora Pez Jaeschke, Sibele Santos Fernandes, Anelise Christ Ribeiro, Tito Roberto Santanna Cadaval and Luiz Antonio de Almeida Pinto
Water 2025, 17(14), 2141; https://doi.org/10.3390/w17142141 - 18 Jul 2025
Abstract
The increasing presence of ECs in aquatic environments has drawn significant attention to the need for innovative, accessible, and sustainable solutions in wastewater treatment. This review provides a comprehensive overview of the use of agricultural residues—often discarded and undervalued—as raw materials for the [...] Read more.
The increasing presence of ECs in aquatic environments has drawn significant attention to the need for innovative, accessible, and sustainable solutions in wastewater treatment. This review provides a comprehensive overview of the use of agricultural residues—often discarded and undervalued—as raw materials for the development of efficient bioadsorbents. Based on a wide range of recent studies, this work presents various types of materials, such as rice husks, sugarcane bagasse, and açaí seeds, that can be transformed through thermal and chemical treatments into advanced bioadsorbents capable of removing pharmaceuticals, pesticides, dyes, and in some cases, even addressing highly persistent pollutants such as PFASs. The main objectives of this review are to (1) assess agricultural-residue-derived bioadsorbents for the removal of ECs; (2) examine physical and chemical modification techniques that enhance adsorption performance; (3) evaluate their scalability and applicability in real-world treatment systems. The review also highlights key adsorption mechanisms—such as π–π interactions, hydrogen bonding, and ion exchange—alongside the influence of parameters like pH and ionic strength. The review also explores the kinetic, isothermal, and thermodynamic aspects of the adsorption processes, highlighting both the efficiency and reusability potential of these materials. This work uniquely integrates microwave-assisted pyrolysis, magnetic functionalization, and hybrid systems, offering a roadmap for sustainable water remediation. Finally, comparative performance analyses, applications using real wastewater, regeneration strategies, and the integration of these bioadsorbents into continuous treatment systems are presented, reinforcing their promising role in advancing sustainable water remediation technologies. Full article
Show Figures

Figure 1

19 pages, 2093 KiB  
Review
PHF20L1: An Epigenetic Regulator in Cancer and Beyond
by Yishan Wang, Qin Hu, Haixia Zhao, Lulu Zeng, Zhongwei Zhao, Xia Li, Qiaoyou Weng, Yang Yang, Minjiang Chen, Jiansong Ji and Rongfang Qiu
Biomolecules 2025, 15(7), 1048; https://doi.org/10.3390/biom15071048 - 18 Jul 2025
Abstract
Plant homeodomain (PHD) finger protein 20-like 1 (PHF20L1) is a novel epigenetic “reader” that specifically recognises histone post-translational modifications (PTMs) via its Tudor and PHD finger domains, thereby regulating chromatin remodelling, DNA damage repair, and oncogene transcriptional activation. This review comprehensively summarises the [...] Read more.
Plant homeodomain (PHD) finger protein 20-like 1 (PHF20L1) is a novel epigenetic “reader” that specifically recognises histone post-translational modifications (PTMs) via its Tudor and PHD finger domains, thereby regulating chromatin remodelling, DNA damage repair, and oncogene transcriptional activation. This review comprehensively summarises the role of PHF20L1 in various cancers, including breast, ovarian, and colorectal cancers, as well as retinoblastomas, and elucidates its molecular mechanisms of action in cancer pathogenesis. Accumulating evidence indicates that PHF20L1 is upregulated in these malignancies and drives tumour progression by promoting proliferation, metastasis, and immune evasion. Furthermore, PHF20L1 orchestrates tumour-related gene expression by interacting with key epigenetic complexes. Given its unique structural features, we propose novel strategies for developing small-molecule inhibitors and combinatorial therapies, providing a theoretical basis for targeted epigenetic regulation for precision treatment. Future research should further investigate the molecular regulatory networks of PHF20L1 in different cancers and other human diseases and focus on developing specific small-molecule inhibitors to enable precision-targeted therapies. Full article
(This article belongs to the Special Issue Tumor Genomics and Liquid Biopsy in Cancer Biology)
Show Figures

Figure 1

32 pages, 1689 KiB  
Review
Photocatalytic Degradation of Microplastics in Aquatic Environments: Materials, Mechanisms, Practical Challenges, and Future Perspectives
by Yelriza Yeszhan, Kalampyr Bexeitova, Samgat Yermekbayev, Zhexenbek Toktarbay, Jechan Lee, Ronny Berndtsson and Seitkhan Azat
Water 2025, 17(14), 2139; https://doi.org/10.3390/w17142139 - 18 Jul 2025
Abstract
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on [...] Read more.
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on the synergistic effects of various photocatalytic materials including TiO2, ZnO, WO3, graphene oxide, and metal–organic frameworks for producing heterojunctions and involving multidimensional nanostructures. Such mechanisms can include the generation of reactive oxygen species and polymer chain scission, which can lead to microplastic breakdown and mineralization. The advancements of material modifications in the (nano)structure of photocatalysts, doping, and heterojunction formation methods to promote UV and visible light-driven photocatalytic activity is discussed in this paper. Reactor designs, operational parameters, and scalability for practical applications are also reviewed. Photocatalytic systems have shown a lot of development but are hampered by shortcomings which include a lack of complete mineralization and production of intermediary secondary products; variability in performance due to the fluctuation in the intensity of solar light, limited UV light, and environmental conditions such as weather and the diurnal cycle. Future research involving multifunctional, environmentally benign photocatalytic techniques—e.g., doped composites or composite-based catalysts that involve adsorption, photocatalysis, and magnetic retrieval—are proposed to focus on the mechanism of utilizing light effectively and the environmental safety, which are necessary for successful operational and industrial-scale remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 1425 KiB  
Review
Epigenetics and Gut Microbiota in the Pathogenesis and Treatment of Bipolar Disorder (BD)
by Shabnam Nohesara, Hamid Mostafavi Abdolmaleky, Ahmad Pirani and Sam Thiagalingam
Cells 2025, 14(14), 1104; https://doi.org/10.3390/cells14141104 - 18 Jul 2025
Abstract
Bipolar disorder (BD) is a multifactorial mental disease with a prevalence of 1–5% in adults, caused by complex interactions between genetic and environmental factors. Environmental factors contribute to gene expression alterations through epigenetic mechanisms without changing the underlying DNA sequences. Interactions between the [...] Read more.
Bipolar disorder (BD) is a multifactorial mental disease with a prevalence of 1–5% in adults, caused by complex interactions between genetic and environmental factors. Environmental factors contribute to gene expression alterations through epigenetic mechanisms without changing the underlying DNA sequences. Interactions between the gut microbiota (GM) and diverse external factors, such as nutritional composition, may induce epigenetic alterations and increase susceptibility to BD. While epigenetic mechanisms are involved in both the pathogenesis of BD and drug treatment responses, epigenetic marks could be employed as predictors and indicators of drug response. This review highlights recent studies on the potential role of epigenetic aberrations in the development and progression of BD. Next, we focus on drug response-related alterations in the epigenetic landscape, including DNA methylation, histone modifications, and non-coding RNAs. Afterward, we delve into the potential roles of GM-induced epigenetic changes in the pathogenesis of BD and GM-based therapeutic strategies aimed at improving BD outcomes through epigenetic modifications. We also discuss how BD drugs may exert beneficial effects through modulation of the GM and the epigenome. Finally, we consider future research strategies that could address existing challenges. Full article
(This article belongs to the Special Issue Biological Mechanisms in the Treatment of Neuropsychiatric Diseases)
Show Figures

Figure 1

19 pages, 4571 KiB  
Article
Modified Asphalt Prepared by Coating Rubber Powder with Waste Cooking Oil: Performance Evaluation and Mechanism Analysis
by Jianwei Zhang, Meizhu Chen, Yuan Yan, Muyan Han and Yuechao Zhao
Coatings 2025, 15(7), 844; https://doi.org/10.3390/coatings15070844 - 18 Jul 2025
Abstract
Waste cooking oil (WCO) plays different roles in modified asphalt and significantly affects the performance of the binder. However, a systematic comparative study is still lacking in the existing research. This study investigates the effects of WCO used as a swelling agent for [...] Read more.
Waste cooking oil (WCO) plays different roles in modified asphalt and significantly affects the performance of the binder. However, a systematic comparative study is still lacking in the existing research. This study investigates the effects of WCO used as a swelling agent for rubber powder (RP) and as a compatibilizer in rubber powder-modified asphalt (RPMA) on the performance of modified asphalt. Specifically, the microstructure and functional groups of WCO-coated RP were first characterized. Then, RPMAs with different RP dosages were prepared, and the storage stability and rheological properties of RPMAs were thoroughly investigated. Finally, the flue gas emission characteristics of different RPMAs at 30% RP dosing were further analyzed, and the corresponding inhibition mechanisms were proposed. The results showed that the RP coated by WCO was fully solubilized internally, and the WCO formed a uniform and continuous coating film on the RP surface. Comparative analysis revealed that when WCO was used as a swelling agent, the prepared S-RPMA exhibited superior storage stability. At a 30% RP content, the softening point difference value of S-RPMA was only 1.8 °C, and the reduction rate of the segregation index reached 40.91%. Surprisingly, after WCO was used to coat the RP, the average concentrations of VOCs and H2S in S-RPMA30 were reduced to 146.7 mg/m3 and 10.6 ppm, respectively, representing decreases of 20.8% and 22.1% compared with the original RPMA30. These findings demonstrate that using WCO as a swelling agent enhances both the physical stability and environmental performance of RPMA, offering valuable insights for the rational application and optimization of WCO incorporation methods in asphalt modification. It also makes meaningful contributions to the fields of coating science and sustainable materials engineering. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

14 pages, 2425 KiB  
Review
Immunological Factors in Recurrent Pregnancy Loss: Mechanisms, Controversies, and Emerging Therapies
by Efthalia Moustakli, Anastasios Potiris, Athanasios Zikopoulos, Eirini Drakaki, Ioannis Arkoulis, Charikleia Skentou, Ioannis Tsakiridis, Themistoklis Dagklis, Peter Drakakis and Sofoklis Stavros
Biology 2025, 14(7), 877; https://doi.org/10.3390/biology14070877 - 17 Jul 2025
Abstract
Immunological factors have gained growing recognition as key contributors to recurrent pregnancy loss (RPL) after in vitro fertilization (IVF), representing a major challenge in reproductive medicine. RPL affects approximately 1–2% of women trying to conceive naturally and up to 10–15% of those undergoing [...] Read more.
Immunological factors have gained growing recognition as key contributors to recurrent pregnancy loss (RPL) after in vitro fertilization (IVF), representing a major challenge in reproductive medicine. RPL affects approximately 1–2% of women trying to conceive naturally and up to 10–15% of those undergoing IVF, where overall success rates remain around 30–40% per cycle. An imbalance in maternal immunological tolerance toward the semi-allogeneic fetus during pregnancy may lead to miscarriage and implantation failure. IVF-related ovarian stimulation and embryo modification offer additional immunological complications that can exacerbate existing immune dysregulation. Recent advances in reproductive immunology have significantly deepened our understanding of the immune mechanisms underlying RPL following IVF, particularly highlighting the roles of regulatory T cells (T regs), natural killer cells, cytokine dysregulation, and disruptions in maternal–fetal immune tolerance. In order to better customize therapies, this evaluation incorporates recently discovered immunological biomarkers and groups patients according to unique immune profiles. Beyond conventional treatments like intralipid therapy and intravenous immunoglobulin, it also examines new immunomodulatory medications that target certain immune pathways, such as precision immunotherapies and novel cytokine modulators. We also discuss the debates over immunological diagnostics and therapies, such as intralipid therapy, intravenous immunoglobulin, corticosteroids, and anticoagulants. The heterogeneity of patient immune profiles combined with a lack of strong evidence highlights the imperative for precision medicine to improve therapeutic consistency. Novel indicators for tailored immunotherapy and emerging treatments that target particular immune pathways have encouraging opportunities to increase pregnancy success rates. Improving management approaches requires that future research prioritize large-scale clinical trials and the development of standardized immunological assessments. This review addresses the immunological factors in RPL during IVF, emphasizing underlying mechanisms, ongoing controversies, and novel therapeutic approaches to inform researchers and clinicians. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

35 pages, 2326 KiB  
Review
Non-Coding RNAs and Immune Evasion in Human Gamma-Herpesviruses
by Tablow S. Media, Laura Cano-Aroca and Takanobu Tagawa
Viruses 2025, 17(7), 1006; https://doi.org/10.3390/v17071006 - 17 Jul 2025
Abstract
Herpesviruses are DNA viruses that evade the immune response and persist as lifelong infections. Human gamma-herpesviruses Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV) are oncogenic; they can lead to cancer. Oncogenic viruses are responsible for 10–15% of human cancer development, which can [...] Read more.
Herpesviruses are DNA viruses that evade the immune response and persist as lifelong infections. Human gamma-herpesviruses Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV) are oncogenic; they can lead to cancer. Oncogenic viruses are responsible for 10–15% of human cancer development, which can have poor prognoses. Non-coding RNAs (ncRNAs) are RNAs that regulate gene expression without encoding proteins, and are being studied for their roles in viral immune evasion, infection, and oncogenesis. ncRNAs are classified by their size, and include long non-coding RNAs, microRNAs, and circular RNAs. EBV and KSHV manipulate host ncRNAs, and encode their own ncRNAs, regulating host processes and immune responses. Viral ncRNAs regulate host functions by post-transcriptionally modifying host RNAs, and by serving as mimics of other host RNAs, promoting immune evasion. ncRNAs in gamma-herpesvirus infection are also important for tumorigenesis, as dampening immune responses via ncRNAs can upregulate pro-tumorigenic pathways. Emerging topics such as RNA modifications, target-directed miRNA degradation, competing endogenous RNA networks, and lncRNA/circRNA–miRNA interactions provide new insights into ncRNA functions. This review compares ncRNAs and the mechanisms of viral immune evasion in EBV and KSHV, while also expanding on recent developments in the roles of ncRNAs in immune evasion, viral infection, and oncogenesis. Full article
Show Figures

Figure 1

22 pages, 5198 KiB  
Article
Histone Acetyltransferase MOF-Mediated AURKB K215 Acetylation Drives Breast Cancer Cell Proliferation via c-MYC Stabilization
by Yujuan Miao, Na Zhang, Fuqing Li, Fei Wang, Yuyang Chen, Fuqiang Li, Xueli Cui, Qingzhi Zhao, Yong Cai and Jingji Jin
Cells 2025, 14(14), 1100; https://doi.org/10.3390/cells14141100 - 17 Jul 2025
Abstract
Aurora kinase B (AURKB), a serine/threonine protein kinase, is essential for accurate chromosome segregation and cytokinesis during mitosis. Dysregulation of AURKB, often characterized by its overexpression, has been implicated in various malignancies, including breast cancer. However, the mechanisms governing its dysregulation remain incompletely [...] Read more.
Aurora kinase B (AURKB), a serine/threonine protein kinase, is essential for accurate chromosome segregation and cytokinesis during mitosis. Dysregulation of AURKB, often characterized by its overexpression, has been implicated in various malignancies, including breast cancer. However, the mechanisms governing its dysregulation remain incompletely understood. Here, we identify a pivotal role for the MOF/MSL complex—which includes the histone acetyltransferase MOF (KAT8)—in modulating AURKB stability through acetylation at lysine 215 (K215). This post-translational modification inhibits AURKB ubiquitination, thereby stabilizing its protein levels. MOF/MSL-mediated AURKB stabilization promotes the proper assembly of the chromosomal passenger complex (CPC), ensuring mitotic fidelity. Notably, inhibition of MOF reduces AURKB K215 acetylation, leading to decreased AURKB expression and activity. Consequently, this downregulation suppresses expression of the downstream oncogene c-MYC, ultimately attenuating the malignant proliferation of breast cancer cells. Collectively, our findings reveal a novel mechanism by which lysine acetylation regulates AURKB stability, highlight the significance of the MOF-AURKB-c-MYC axis in breast cancer progression, and suggest potential therapeutic strategies targeting this pathway in clinical settings. Full article
(This article belongs to the Collection Feature Papers in 'Cell Proliferation and Division')
Show Figures

Figure 1

27 pages, 1585 KiB  
Article
Airflow Dynamics for Micro-Wind Environment Optimization and Human Comfort Improvement: Roadshow Design for Theater Stage Spaces
by Yiheng Liu, Menglong Zhang, Wenyang Han, Yufei He, Chang Yi, Yin Zhang and Jin Li
Sensors 2025, 25(14), 4456; https://doi.org/10.3390/s25144456 - 17 Jul 2025
Abstract
The optimization of ventilation strategies in high-ceiling theater stage spaces is crucial for improving thermal comfort and energy efficiency. This study addresses the challenge of uneven temperature distribution and airflow stagnation in stage environments by employing computational fluid dynamics (CFD) simulations to evaluate [...] Read more.
The optimization of ventilation strategies in high-ceiling theater stage spaces is crucial for improving thermal comfort and energy efficiency. This study addresses the challenge of uneven temperature distribution and airflow stagnation in stage environments by employing computational fluid dynamics (CFD) simulations to evaluate the effectiveness of different ventilation modes, including natural, mechanical, and hybrid systems. Six airflow organization scenarios were designed based on modifications to structural layout, equipment settings, and mechanical disturbances (e.g., fan integration). Key evaluation indicators such as temperature uniformity coefficient, airflow velocity, and exhaust efficiency were used to assess performance. The results show that a multi-dimensional optimization approach combining spatial adjustments and mechanical disturbances significantly reduced the average temperature from 26 °C to 23 °C and the temperature uniformity coefficient from 2.79 to 1.49. This study contributes a comprehensive design strategy for stage ventilation that improves comfort while minimizing energy consumption, offering practical implications for performance space design and HVAC system integration. Full article
(This article belongs to the Special Issue IoT and Ubiquitous Computing for Smart Building)
33 pages, 5578 KiB  
Review
Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review
by Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han and Pan Cao
Biomimetics 2025, 10(7), 470; https://doi.org/10.3390/biomimetics10070470 - 17 Jul 2025
Abstract
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on [...] Read more.
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas–liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

Back to TopTop