Bioactive Potential of Arazá (Eugenia stipitata) Seeds: Hypoglycemic, Antiradical, and Nutritional Properties
Abstract
:1. Introduction
2. Results
2.1. Proximate, Mineral, and Chemical Composition of ASs
2.2. Phenolic Composition and Antiradical Capacity of ASs
2.3. Biological Activities and Chemical Composition of the AS Hydroethanolic Extract
3. Discussion
4. Materials and Methods
4.1. Reagents and Materials
4.2. Extract Preparation
4.3. Proximate and Mineral Seed Composition
4.4. Chemical Characterization
4.5. Analysis of Phenolic Compounds
4.6. DPPH Radical Cation Decolorization Assay
4.7. Biological Activities of the AS Extract
4.7.1. Determination of Cell Viability Using an MTT Assay
4.7.2. Anticholesterolemic Activity
4.7.3. Inhibitory Activity of the α-Glucosidase Enzyme
4.7.4. Inhibitory Activity of the α-Amylase Enzyme
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AS | Arazá seeds |
EGCG | Epicatechin gallate |
EGC | Epigallocatechin |
LC-ESI-LTQ-XL-MS/MS | Liquid Chromatography Electrospray Ionization Linear Ion Trap Mass Spectrometry |
DPPH | 2,2’-Diphenyl-1-1-picrylhydrazyl |
CI | Confidence interval |
HMG-CoA | 3-Hydroxy-3-methylglutaryl coenzyme A |
MVK | Mevalonate kinase |
MDD | Mevalonate 5-diphosphate decarboxylase |
FPPS | Farnesylpyrophosphate synthase |
TMAO | Trimethylamine N-oxide |
DMSO | Dimethyl sulfoxide |
pNPG | p-Nitrophenyl glucopyranoside |
DNS | 3,5 Dinitrosalicylic acid |
References
- Neri-Numa, I.A.; Carvalho-Silva, L.B.; Morales, J.P.; Malta, L.G.; Muramoto, M.T.; Ferreira, J.E.M.; de Carvalho, J.E.; Ruiz, A.L.T.G.; Maróstica Junior, M.R.; Pastore, G.M. Evaluation of the Antioxidant, Antiproliferative and Antimutagenic Potential of Araçá-Boi Fruit (Eugenia stipitata Mc Vaugh—Myrtaceae) of the Brazilian Amazon Forest. Food Res. Int. 2013, 50, 70–76. [Google Scholar] [CrossRef]
- Rodríguez-Cortina, A.; Hernández-Carrión, M. Amazonian Fruits in Colombia: Exploring Bioactive Compounds and Their Promising Role in Functional Food Innovation. J. Food Compos. Anal. 2025, 137, 106878. [Google Scholar] [CrossRef]
- Álvarez, A.; Jimenez, A.; Jairo, J.; Arteaga, M.; Elizabeth, M. Chemical and Biological Study of Eugenia stipitata Mc Vaugh Collected in the Colombian Andean Region. Artic. Asian J. Pharm. Clin. Res. 2018, 11, 362–369. [Google Scholar] [CrossRef]
- Lemieux, I.; Després, J.P. Metabolic Syndrome: Past, Present and Future. Nutrients 2020, 12, 3501. [Google Scholar] [CrossRef]
- Duarte-Casar, R.; González-Jaramillo, N.; Bailon-Moscoso, N.; Rojas-Le-Fort, M.; Romero-Benavides, J.C. Five Underutilized Ecuadorian Fruits and Their Bioactive Potential as Functional Foods and in Metabolic Syndrome: A Review. Molecules 2024, 29, 2904. [Google Scholar] [CrossRef]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Dias- Audibert, F.L.; Delafiori, J.; de Souza, F.G.; Catharino, R.R.; do Sacramento, C.K.; Pastore, G.M. Chemical Characterization of Eugenia stipitata: A Native Fruit from the Amazon Rich in Nutrients and Source of Bioactive Compounds. Food Res. Int. 2021, 139, 109904. [Google Scholar] [CrossRef]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Dias-Audibert, F.L.; Delafiori, J.; de Souza, F.G.; Catharino, R.R.; do Sacramento, C.K.; Pastore, G.M. Gastrointestinal Bioaccessibility and Bioactivity of Phenolic Compounds from Araçá-Boi Fruit. LWT 2021, 135, 110230. [Google Scholar] [CrossRef]
- Barros, R.G.C.; Andrade, J.K.S.; Denadai, M.; Nunes, M.L.; Narain, N. Evaluation of Bioactive Compounds Potential and Antioxidant Activity in Some Brazilian Exotic Fruit Residues. Food Res. Int. 2017, 102, 84–92. [Google Scholar] [CrossRef]
- Aburto, N.J.; Ziolkovska, A.; Hooper, L.; Elliott, P.; Cappuccio, F.P.; Meerpohl, J.J. Effect of Lower Sodium Intake on Health: Systematic Review and Meta-Analyses. BMJ 2013, 346, f1326. [Google Scholar] [CrossRef]
- Garcia-Vallejo, M.C.; Poveda-Giraldo, J.A.; Cardona Alzate, C.A. Valorization Alternatives of Tropical Forest Fruits Based on the Açai (Euterpe oleracea) Processing in Small Communities. Foods 2023, 12, 2229. [Google Scholar] [CrossRef]
- Acosta-Vega, L.; Moreno, D.A.; Cuéllar Álvarez, L.N. Arazá: Eugenia stipitata Mc Vaught as a Potential Functional Food. Foods 2024, 13, 2310. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, H.; Hosseini-Ghazvini, S.M.B.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct. 2017, 8, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Kumar, V.; Nayak, S.K.; Wadhwa, P.; Kaur, P.; Sahu, S.K. Alpha-amylase as molecular target for treatment of diabetes mellitus: A comprehensive review. Chem. Biol. Drug Des. 2021, 98, 539–560. [Google Scholar] [CrossRef] [PubMed]
- Proença, C.; Ribeiro, D.; Freitas, M.; Fernandes, E. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 3137–3207. [Google Scholar] [CrossRef]
- Guan, Q.; Tang, L.; Zhang, L.; Huang, L.; Xu, M.; Wang, Y.; Zhang, M. Molecular Insights into α-Glucosidase Inhibition and Antiglycation Properties Affected by the Galloyl Moiety in (−)-Epigallocatechin-3-Gallate. J. Sci. Food Agric. 2023, 103, 7381–7392. [Google Scholar] [CrossRef]
- Le, D.T.; Kumar, G.; Williamson, G.; Devkota, L.; Dhital, S. Molecular Interactions between Polyphenols and Porcine α-Amylase: An Inhibition Study on Starch Granules Probed by Kinetic, Spectroscopic, Calorimetric and in Silico Techniques. Food Hydrocoll. 2024, 151, 109821. [Google Scholar] [CrossRef]
- Wijianto, B.; Arief, I.; Yohana, V. Molecular docking study of epigallocatechin gallate (EGCG) as a therapy for type 2 diabetes mellitus. J. Kim. Ris. 2024, 9, 46–58. [Google Scholar] [CrossRef]
- Ni, J.; Wen, X.; Wang, S.; Zhou, X.; Wang, H.X. Investigation of the Inhibitory Combined Effect and Mechanism of (−)-Epigallocatechin Gallate and Chlorogenic Acid on Amylase: Evidence of Synergistic Interaction. Food Biosci. 2023, 56, 103406. [Google Scholar] [CrossRef]
- Ge, H.; Liu, J.; Zhao, W.; Wang, Y.; He, Q.; Wu, R.; Li, D.; Xu, J. Mechanistic Studies for Tri-Targeted Inhibition of Enzymes Involved in Cholesterol Biosynthesis by Green Tea Polyphenols. Org. Biomol. Chem. 2014, 12, 4941–4951. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Zhao, X.; Li, S.; Fang, Z.; Liu, Y.; Zeng, Z.; Li, C.; Chen, H. Probing the Binding Mechanism of Tea Polyphenols from Different Processing Methods to Anti-Obesity and TMAO Production-Related Enzymes through in Silico Molecular Docking. Food Chem. X 2024, 21, 101053. [Google Scholar] [CrossRef]
- Islam, B.; Sharma, C.; Adem, A.; Aburawi, E.; Ojha, S. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking. Drug Des. Devel. Ther. 2015, 9, 4943–4951. [Google Scholar] [CrossRef] [PubMed]
- Harborne, J.B. A List of Recommended TLC Systems for All Major Classes of Plant Chemical. In Phytochemical Methods A Guide to Modern Techniques of Plant Analysis; Chapman and Hall: London, UK, 1998; pp. 277–279. [Google Scholar]
- Dimler, R.J.; Schaefer, W.C.; Wise, C.S.; Rist, C.E. Quantiative Paper Chromatography of D-Glucose and Its Oligosaccharides. Anal. Chem. 1952, 24, 1411–1415. [Google Scholar] [CrossRef]
- Georgé, S.; Brat, P.; Alter, P.; Amiot, M.J. Rapid Determination of Polyphenols and Vitamin C in Plant-Derived Products. J. Agric. Food Chem. 2005, 53, 1370–1373. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, X.Q.; Weber, C.; Lee, C.Y.; Brown, J.; Liu, R.H. Antioxidant and Antiproliferative Activities of Raspberries. J. Agric. Food Chem. 2002, 50, 2926–2930. [Google Scholar] [CrossRef]
- Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant Activity of Flavonoids from Licania Licaniaeflora. J. Ethnopharmacol. 2002, 79, 379–381. [Google Scholar] [CrossRef]
- Scarpa, E.S.; Antonelli, A.; Balercia, G.; Sabatelli, S.; Maggi, F.; Caprioli, G.; Giacchetti, G.; Micucci, M. Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules 2024, 14, 836. [Google Scholar] [CrossRef]
- Patanè, G.T.; Putaggio, S.; Tellone, E.; Barreca, D.; Ficarra, S.; Maffei, C.; Calderaro, A.; Laganà, G. Catechins and Proanthocyanidins Involvement in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 9228. [Google Scholar] [CrossRef]
- Deveci, E.; Çayan, F.; Tel-Çayan, G.; Duru, M.E. Inhibitory Activities of Medicinal Mushrooms on α-Amylase and α-Glucosidase-Enzymes Related to Type 2 Diabetes. S. Afr. J. Bot. 2021, 137, 19–23. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
Parameter Analyzed | Arazá Seeds |
---|---|
% Ash | 0.82 ± 0.08 |
% Crude protein | 4.96 ± 0.05 |
Ethereal extract | 0.16 ± 0.02 |
% Crude fiber | 27.7 ± 0.3 |
% Nitrogen | 0.78 ± 0.05 |
% Ca | 0.16 ± 0.02 |
% Mg | 2.27 ± 0.2 |
Na (mg/kg) | 1.02 ± 0.1 |
% K | 0.01 ± 0.001 |
Fe (mg/kg) | 20.2 ± 0.2 |
Cu (mg/kg) | 0.07 ± 0.005 |
Mn (mg/kg) | 21.6 ± 2.2 |
Zn (mg/kg) | 14.0 ± 1.2 |
B (mg/kg) | 5.51 ± 0.4 |
% P | 13.5 ± 1.25 |
% S | <0.03 |
Carbohydrates (mg glucose/100 g d.w.) | 13.80 ± 0.1 |
Total phenols (mg gallic acid/100 g d.w.) | 155.88 ± 6.12 |
Flavonoids (mg quercetin/100 g d.w.) | 41.68 ± 8.1 |
β-Carotenoids (mg β-carotene/100 g d.w.) | 43.66 ± 1.5 |
Compound (mg/kg) | Rt (min) | LOQ (mg/kg) | Arazá Seeds |
---|---|---|---|
Theobromine | 3.1 | 0.1 | <0.1 |
Theophylline | 3.7 | 0.1 | <0.1 |
Epigallocatechin (EGC) | 3.7 | 0.1 | <0.1 |
Catechin | 3.7 | 0.1 | <0.1 * |
Epicatechin (EC) | 4.2 | 0.1 | <0.1 * |
p-Hydroxybenzoic Acid | 3.8 | 0.4 | 1.1 |
Caffeine | 4.1 | 0.1 | <0.1 |
Caffeic Acid | 4.2 | 0.1 | <0.1 |
Vanillic Acid | 4.6 | 0.1 | <0.1 |
Epigallocatechin Gallate (EGCG) | 4.1 | 0.2 | <0.2 |
p-Coumaric Acid | 4.7 | 0.1 | 0.9 |
Epicatechin Gallate (ECG) | 4.6 | 0.1 | 2.3 |
Ferulic Acid | 5.2 | 0.1 | <0.1 |
Quercetin | 5.8 | 0.1 | 0.4 |
Rosmarinic Acid | 5.1 | 2.5 | <2.5 |
Luteolin | 6.0 | 0.1 | 0.2 |
Trans-Cinnamic Acid | 5.8 | 0.4 | <0.4 |
Naringenin | 5.8 | 0.1 | 0.3 |
Apigenin | 6.3 | 0.1 | <0.1 |
Pinocembrin | 6.6 | 0.1 | 0.1 |
Ursolic Acid | 9.0 | 0.1 | <0.1 |
Pelargonidin 3-glucoside | 4.3 | 0.1 | <0.1 |
Rutin | 5.2 | 0.1 | <0.1 |
Assay | Regression Model | Correlation Coefficient | R2 | IC50 (µg/mL) | CI 95% (µg/mL) |
---|---|---|---|---|---|
DPPH inhibition | %I = √(8099.05 – 261,116/Concentration) | −0.990 | 97.92% | 46.64 | (40.98–53.70) |
ASs extract α-Amylase inhibition | %I = 1/(0.0104662 + 0.448657/Concentration) | 0.916 | 84.01% | 47.05 | (33.42–60.56) |
Acarbose α-Amylase inhibition | %I = √(−6499.51 + 2037.25 × ln(Concentration) | 0.991 | 98.39% | 82.88 | (184.1–18.99) |
ASs extract α-Glucosidase inhibition | %I = −5.2705 + 14.1288 × ln(Concentration) | 0.994 | 98.94% | 49.99 | (61.81–39.98) |
Acarbose α-Glucosidase inhibition | %I = √(9260.83 − 84,301.2/Concentration) | −0.928 | 84.92% | 12.47 | (9.18–15.74) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez Jaramillo, C.C.; Méndez Arteaga, J.J.; Cuéllar Álvarez, L.N.; Murillo Arango, W. Bioactive Potential of Arazá (Eugenia stipitata) Seeds: Hypoglycemic, Antiradical, and Nutritional Properties. Plants 2025, 14, 1662. https://doi.org/10.3390/plants14111662
Pérez Jaramillo CC, Méndez Arteaga JJ, Cuéllar Álvarez LN, Murillo Arango W. Bioactive Potential of Arazá (Eugenia stipitata) Seeds: Hypoglycemic, Antiradical, and Nutritional Properties. Plants. 2025; 14(11):1662. https://doi.org/10.3390/plants14111662
Chicago/Turabian StylePérez Jaramillo, Claudia Cristina, Jonh Jairo Méndez Arteaga, Liceth N. Cuéllar Álvarez, and Walter Murillo Arango. 2025. "Bioactive Potential of Arazá (Eugenia stipitata) Seeds: Hypoglycemic, Antiradical, and Nutritional Properties" Plants 14, no. 11: 1662. https://doi.org/10.3390/plants14111662
APA StylePérez Jaramillo, C. C., Méndez Arteaga, J. J., Cuéllar Álvarez, L. N., & Murillo Arango, W. (2025). Bioactive Potential of Arazá (Eugenia stipitata) Seeds: Hypoglycemic, Antiradical, and Nutritional Properties. Plants, 14(11), 1662. https://doi.org/10.3390/plants14111662